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Abstract: Given the profound integration of the sharing economy and the energy system, energy
storage sharing is promoted as a viable solution to address the underutilization of energy storage and
the challenges associated with cost recovery. While energy storage sharing offers various services for
system operation, a significant question remains regarding the development of an optimal allocation
model for shared energy storage in diverse application scenarios and the proposal of efficient solving
algorithms. This paper presents the design of a computable combinatorial mechanism aimed at
facilitating energy storage sharing. Leveraging the distinct characteristics of buyers and sellers
engaged in energy storage sharing, we propose a combinatorial auction solving algorithm that
prioritizes and incorporates the offers of shared energy storage, accounting for temporal variations
in the value of energy resources. The numerical results demonstrate that the proposed solving
algorithm achieves a computation time reduction of over 95%, adequately meeting the practical
requirements of industrial applications. Importantly, the proposed method maintains a high level of
computational accuracy, ranging from 92% to 98%, depending on the participants and application
scenarios. Hopefully, our work is able to provide a useful reference for the further mechanism design
for energy storage sharing.

Keywords: computational algorithms design; combinatorial auction; energy storage sharing; multiple
services provision

1. Introduction
1.1. Motivation

Driven by the dual carbon goal, building a new type of power system that adapts to
the gradually increasing proportion of new energy has become the development form of
future electrical energy development [1]. The integration of a large number of new energy
sources has also brought new challenges to the flexible and efficient operation of the power
system [2]. In recent years, with the development and maturity of energy storage, new
energy storage resources with rapid response capability, represented by electrochemical
energy storage, are regarded as the key to weakening the uncertainty of both supply
and demand and ensuring the low-carbon, safe and flexible operation of the new power
system [3–5]. On the one hand, energy storage can achieve spatiotemporal translation
of electrical energy, transforming the original electrical balance of the power system into
surface balance, improving the supply- and demand-matching ability of the power system.
On the other hand, it can also delay investment in transmission and distribution assets to a
certain extent, which can play a non-wire alternative value [6–8].

Although energy storage resources can provide multi-dimensional support capabilities
for the system, they can fundamentally solve the challenges posed by large-scale new energy
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integration to the adequacy of the power system [9]. However, in practical operation, the
imperfect market mechanism of auxiliary services limits the profitability of energy storage
in the market, and also leads to significant differences in the systematic value and actual
monetization value of energy storage [10]. On the other hand, due to the limitations
of energy storage ownership and different market access conditions, the current energy
storage utilization rate is relatively insufficient, further limiting the cost recovery of energy
storage. The energy storage system has characteristics such as high investment cost, long
investment payback period, and poor self-sufficiency. Scholars have proposed the model of
shared energy storage, which is essentially the application of the shared economy in the
energy field, aiming to improve the utilization rate of energy storage resources. Compared
to traditional energy storage configuration methods, energy storage sharing has a series of
characteristics such as easy scheduling, diversified returns, high utilization rate, and short
investment payback period [11–13].

Not only limited to theoretical research in academia, shared energy storage has shown
strong application potential and value in various aspects of the power supply chain. Gener-
ally speaking, energy storage sharing is a commercial operation model in which a third
party or manufacturer is responsible for investment, operation and maintenance, and leases
the power and capacity of the energy storage system to the target user in the form of
commodities as a lessor, adhering to the principle of “who benefits, who pays” to collect
rent from the lessee [14,15]. Users can utilize the power of shared energy storage charging
and discharging to meet their own energy supply needs within the service time limit,
without the need to independently build energy storage power stations, greatly reducing
the original capital investment [16]. Compared with the high investment cost and poor
controllability of traditional energy storage power stations, shared energy storage has the
advantages of high emptiness, improved utilization rate and guaranteed cost dispersal.
In recent years, with the advancement of digital technologies such as blockchain, energy
storage sharing among large-scale market members has become possible [17–20]. In detail,
the advancement of the shared energy storage business model holds significant economic
value. Firstly, it enhances the flexibility of system operation and facilitates the integration of
renewable energy sources within the system. Moreover, it benefits energy storage investors
by improving the utilization rate of energy storage and reducing the investment payback
period. Secondly, shared energy storage contributes to the establishment of an independent
market presence for energy storage and fosters market mechanisms tailored to energy
storage participation.

1.2. Literature Review

In recent years, numerous studies have concentrated on the operational models of
shared energy storage in various application scenarios. These models can be broadly
categorized into two main approaches. (1) The first approach utilizes auction theory to
allocate shared energy storage resources among different market members or implements
distributed peer-to-peer trading to enhance the utilization rate of energy storage resources
and mitigate investment risks [21–23]; in [21], the authors proposed an application sce-
nario for energy storage sharing among configured distributed PV users, and altogether
quantitatively assessed the potential benefits of a shared energy storage model in urban
energy systems. In [22], the authors proposed an overall framework for adapting energy
storage sharing under peer-to-peer trading model, based on which, the authors of [23]
further designed a corresponding transaction settlement mechanism under the framework
of distributed peer-to-peer trading, aiming to stimulate the sharing of idle energy storage
resources in seeking and thus the utilization of energy storage resources. (2) The second
approach, based on cooperative game theory, involves the formation of alliances among
energy storage and other market participants to collectively engage in the market. Within
these alliances, energy storage resources are shared, and the resulting cooperative surplus is
distributed among the alliances based on their respective contributions [24–26]. Admittedly,
the above research provides a very valuable reference for promoting the development of
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shared energy storage. For the optimization research of shared energy storage, however,
the key issue ignored in the literature is that if the shared energy storage is regarded as a
new business model, and the right to use the power/capacity parameters of the shared
energy storage in a specific period of time is taken as the subject matter, the auction of the
right to use energy storage is inseparable from the traditional electricity energy trading.
Actually, the demand of different users for shared energy storage is a certain combination
of charge and discharge power and capacity, and its essence is a combinatorial auction
process, which is specifically reflected in the mathematical model. The power and capacity
parameter demands of energy storage resources declared by users at different times must
be met simultaneously instead of only partially. Therefore, what it needs is a dynamic
matching process between energy storage demand and corresponding idle and shareable
energy storage resources.

In this context, the problem of energy storage sharing considering multi-dimensional
attribute coupling has also been studied from the perspective of combinatorial auctions.
The authors of [27] focus on the auction problem of energy storage sharing considering both
the capacity and power allocation of energy storage. In [28], a combinatorial double auction
mechanism for energy storage sharing is proposed, the complex offer constraint of the
combinatorial auction is simplified to a mixed integer linear programming model. However,
in fact, the combinatorial auction of energy storage sharing is a typical NP-hard problem
that is difficult to solve in polynomial time, and its computational complexity will grow
exponentially with the increase of market members, which poses a challenge to practical
applications. In [29], a greedy-based algorithm is designed for the combinatorial auction of
energy storage sharing. However, only the single-side auction is taken into account, which
cannot meet the practical requirements for many-to-many in energy storage sharing. In [30],
a fully polynomial-time approximation algorithm is designed that can achieve the solution
of the combinatorial auction problem in polynomial time, however, its scenario is limited
to peak-valley spread arbitrage on the user side with limited generalization capability. It
is difficult to adapt to the practical system requirements for multi-application scenarios,
which makes the proposed combinatorial auction mechanism for energy storage much
less meaningful.

1.3. Contributions

To fill the aforementioned gap, this paper will deeply research the combinatorial
auction mechanism of shared energy storage considering multiple application scenarios.
The contributions are summarized as follows:

(1) We establish a framework for a shared energy storage combinatorial auction that
incorporates multi-dimensional parameter coupling. The allocation of shared energy
storage entails matching resource supply and demand across various dimensions,
including storage capacity, charging and discharging power, and stored energy for
each operational period. These resources exhibit coupling characteristics, akin to a
combinatorial auction. Furthermore, we analyze the correlation between different
application scenarios and the shared energy storage combinatorial auction, taking
into account the multiple scenarios in which shared energy storage can be applied.
Our analysis focuses on resource demand and time scale.

(2) Building upon the distinct characteristics of buyers and sellers engaged in energy
storage sharing, we design a combinatorial auction solving algorithm that ranks the
offers of shared energy storage from these participants. This algorithm effectively
captures the variations in the value of energy resources across different time periods.
The proposed solving algorithm significantly reduces the search space of the model,
enabling a rapid solution to the combinatorial auction model, while maintaining high
accuracy even in conventional scenarios.

(3) Additionally, we design a settlement model based on bundle pricing. This model
calculates pricing results based on the priority matching outcomes of buyers and
sellers, incentivizing participants in the combinatorial auction to disclose their true
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information. Case studies using real-world datasets reveal notable variations in the
demand for shared energy storage resources across different application scenarios.
The shared energy storage combinatorial auction, when applied to multiple scenarios,
demonstrates a substantial enhancement in resource allocation efficiency.

The remainder of the paper is organized as follows. Section 2 introduces the framework
of energy storage sharing from the perspective of combinatorial auction. Section 3 presents
the system model for combinatorial auction of energy storage sharing. Section 4 provides
the pricing mechanism for combinatorial auction. Section 5 conducts the cases studies and
Section 6 draws the conclusions. Hopefully, our work is able to provide a useful reference
for the further mechanism design for energy storage sharing.

2. Framework of Energy Storage Sharing
2.1. The Overall Combinatorial Auction for Energy Storage Sharing

Generally speaking, the operation of energy storage mainly involves the charge and
discharge of energy storage, energy storage capacity, net change value of electricity and
charge and discharge efficiency and other parameters. Demand scenarios for shared energy
storage mainly include peak cutting and valley filling, frequency modulation, and backup.
In this paper, we will focus on the combinatorial auction problem between different en-
ergy storage characteristics and demand scenarios. In other words, shared energy storage
operators are faced with the problem of how to optimally allocate shared energy storage
parameters according to the different demands of market members. Considering the syner-
gistic coupling between the charge and discharge power and capacity of energy storage, it
is only meaningful to obtain the corresponding right allocation at the same time. Therefore,
the essence of shared energy storage operation is a combinatorial auction problem. As
mentioned above, this paper constructs the operation mode of shared energy storage based
on combinatorial auction as shown in Figure 1 to achieve the optimal allocation of shared
energy storage resources in different periods.
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Figure 1. The framework of combinatorial auction for energy storage sharing.

(i) Energy storage sellers

A supplier of energy storage is the seller in the auction of shared energy storage
and provides services to the demander according to different resource holdings in the
combinatorial auction process. In practice, energy storage providers can be large-scale
centralized energy storage resources, while the shared energy storage in urban energy
systems is mostly reflected in distributed energy storage resources with small individual
capacity.
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(ii) System operator for energy storage sharing

An operator of energy storage sharing is responsible for organizing the shared storage
auction, collection and matching the different demand of shared storage bidders scenarios
offer, according to the result of the auction and shared storage resources allocation under
different demand scenarios and settlement, the distribution of the shared storage involves
energy storage capacity of each operational time, charge and discharge power and energy
storage to store the energy of the multidimensional resource allocation. Moreover, there are
coupling characteristics among resources, so its essence is a kind of combinatorial auction,
which can be performed by power grid operators or third-party aggregators in the current
market of China.

(iii) Energy storage buyers

The users of energy storage are the buyers; the buyer in the auction of shared energy
storage needs to submit relevant demand parameters and quotations to the operator of
shared energy storage according to the flexible adjustment demand scenarios, such as peak
shaving and valley filling, frequency modulation, standby application, etc. The quotation
should meet its own needs and guarantee expected revenue at the same time. The specific
combinatorial auction model will be analyzed in detail in Section 3.

2.2. Correlation between Multiple Services Provision and Energy Storage Sharing

As mentioned above, energy storage sharing runs through all aspects of the power
supply chain in potential application scenarios, providing multi-dimensional support
capabilities for the system, such as peak shaving and frequency services provision etc.
Generally speaking, the operation of energy storage mainly involves parameters such as
energy storage charging and discharging, energy storage capacity, net change in electricity
quantity, and charging and discharging efficiency. However, it should be noted that
the requirements for shared energy storage operation vary among different application
scenarios. The essence of energy storage sharing is the dynamic matching of supply and
demand with different dimensional parameters of energy storage resources at different
time periods. Considering the coupling effect of capacity and charging and discharging
power in energy storage operation, it is necessary to obtain corresponding allocation of
usage rights simultaneously in order to be meaningful. In other words, energy storage
sharing can be understood as a type of combinatorial auction problem.

Considering the differences in shared energy storage requirements among different
application scenarios, this article mainly considers the following three types of application
scenarios, denoted as A1–A3, respectively.

(i) A1, Energy arbitrage: this application scenario is commonly used for energy storage
sharing on the user side or power supply side. The corresponding shared energy
storage buyer needs to simultaneously bid for the charging and discharging power
usage rights of valley and peak hours, respectively, as well as the capacity between
valley and peak hours. From a systemic perspective, arbitrage behavior also helps
peak shaving and valley filling, which can reduce the system operation cost.

(ii) A2, Frequency services provision: this application scenario is commonly used for vari-
able renewable stations to mitigate real-time energy imbalances. The corresponding
shared energy storage buyer has a low demand for capacity, but it is necessary to
ensure the right for charging and discharging power during the corresponding period
of time.

(iii) A3, Capacity reserve: this application scenario has wide applicability and can be used
as a conventional backup reserve or non-wire alternatives. The corresponding shared
energy storage buyer requires discharge capacity during a specific period of time, so
both discharge power and capacity usage rights are required.

Overall, the differences in application scenarios will be reflected in the differential
demands of shared energy storage buyers for charging power, discharging power, and
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energy storage capacity at different time periods, as shown in Table 1. “+” indicates the cor-
relation between different shared energy storage application scenarios and corresponding
parameters, with more “+” indicating stronger correlation.

Table 1. The correlation between different shared energy storage application scenarios and corre-
sponding parameters.

Application Capacity Charging Power Discharging Power

A1 Energy arbitrage +++ Only valley hours Only peak hours

A2 Frequency services
provision + ++ ++

A3 Capacity reserve ++ + Specific hours

3. System Model for Combinatorial Auction

In this section, we first introduce the combinatorial auction model of energy stor-
age sharing, including the bid submission and winner determination process. Then, the
corresponding computationally manageable algorithm is designed.

3.1. Bids Submission Considering Multi-Application Scenarios

The concept of package bidding is adopted in the design combinatorial auction for both
energy storage buyers and sellers. As mentioned above, there are significant differences in
the requirements for energy storage in different application scenarios, which will also lead
to the diversity of submission bids from shared energy storage buyers. In practice, due to
the coupling characteristics of multi-dimensional resources such as energy storage capacity
and charging and discharging power, the bids submission in combinatorial auction is
composed of energy storage resource demands of different dimensions in multiple periods.
Among them, the requirement of multi-resources of shared energy storage in each period
can be regard as the basic bids, i.e., atomic bids, and can be expressed as follows.

Qn = [pc
n, pd

n, en] (1)

where subscript n represents the serial number of the combinatorial auction bids, Qn repre-
sents the atomic bid vector and pc

n, pd
n, en denote the required charging power, discharging

power and the capacity of energy storage of the combinatorial auction bids.
Considering the coupling of shared energy storage in practical applications, buyers

of shared energy storage often require energy storage resources in multiple time intervals
simultaneously, that is, only the submission bids in all bidding periods are selected at the
same time can meet their needs. As a result of this, the above atomic bids can be extended
to the following form:

xn = [Qn, bn] (2)

Qn = [pc
n,t, pd

n,t, en,t] (3)

where xb
n and bn denotes the actual bid and the corresponding bidding price of the combi-

natorial auction.
It should be noted that the above bidding submission is applicable to both the buyer

and seller in energy storage sharing, but the corresponding bidding price has the opposite
physical meaning. To facilitate differentiation, we will use superscripts “B” and “S” to
distinguish the bidding information from the buyer and seller of shared energy storage,
respectively. Moreover, there are also studies related to combinatorial auctions that discuss
other bids submission forms such as OR-bid and XOR-bid, which correspond to different
logical relationships between multiple atomic bids. However, in the shared energy storage
combinatorial auction, these order configurations can be equivalent to multiple independent
combinatorial auction quotations, which will not affect the matching and solution of the
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shared energy storage combinatorial auction. More details of the order configurations in
combinatorial auction can be found in [31–33].

3.2. Winner Determination Process

After the bidding stage of the combinatorial auction, the energy storage sharing
operator needs to determine the winning bids from the shared energy storage buyer and
seller. The corresponding winner determination model of the energy storage sharing can
be formulated as follows:

Max R = ∑
n∈ΦB

bB
n · yB

n − ∑
n∈ΦS

bS
n · yS

n (4)

yS
n ∈ [0, 1] (5)

yB
n ∈ {0, 1} (6)

0 ≤ ∑
n∈ΦB

(pB,c
n,t · y

B,c
n ) ≤ ∑

n∈ΦS

(pS,c
n,t · y

S,c
n ) (7)

0 ≤ ∑
n∈ΦB

(pB,d
n,t · y

B,d
n ) ≤ ∑

n∈ΦS

(pS,d
n,t · y

S,d
n ) (8)

0 ≤ ∑
n∈ΦB

(eB
n,t · yB

n ) ≤ ∑
n∈ΦS

(eS
n,t · yS

n) (9)

where ΦB and ΦS denote the set of buyers and sellers in the energy storage sharing. yS
n and

yB
n are the state variables for buyers and sellers in the combinatorial auction.

The objective function (4) is to maximize the overall social welfare and achieve efficient
matching between the buyer and seller in energy storage sharing. Constraints (5) and (6)
show the limit of the state variables in the combinatorial auction. Note that yB

n is a binary
variable, while yS

n is not. This means that the needs of the shared energy storage buyer
must be fully met, and the resources of the shared energy storage seller can be split, which
is consistent with the introduction of the shared energy storage combinatorial auction
mentioned earlier. Constraints (7)–(9) show the multi-resource limits in the combinatorial
auction of energy storage sharing.

The above winner determination model of the combinatorial auction in energy storage
sharing can be equivalent to a constrained multi-dimensional 0–1 knapsack problem, that
is, for the submission from the energy storage buyer, its energy storage resource demand
in each period must be met at the same time. It is a typical NP hard problem, and it is
difficult to find the optimal solution at multiple times. That is, in practice, when there are
many market members participating in the shared energy storage lease, it will be difficult
to obtain an effective allocation method by using a conventional optimization algorithm.
In Section 3.3, we will design the corresponding computationally manageable algorithm
to solve the NP-hard winner determination model. We will design a computationally
manageable algorithm for the proposed combinatorial auction for energy storage sharing
in Section 3.3.

3.3. Computationally Manageable Algorithm Design

Actually, there is always an inherent contradiction between the economic efficiency of
the auction and the computational complexity of solving the winner determination model
in the mechanism design of the combinatorial auction. To reduce the time complexity
of solving the winning bid problem, it is often necessary to sacrifice a certain allocation
efficiency. Only by sacrificing a small amount of economic efficiency of the auction to
impose some restrictions on the bid, can we successfully realize the combinatorial auction,
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that is, take a compromise way to quickly obtain an approximate optimal allocation scheme
at the expense of solving accuracy.

As a result of this, we use the idea of the greedy algorithm to identify the priority of
different combinatorial auction bids in energy storage sharing, so as to reduce the decision
space as much as possible and improve the search speed. By using this method, the
combinatorial auction of energy storage sharing can solve the combinatorial auction model
in polynomial time while ensuring that the results obtained are closer to the optimal value
as much as possible.

As mentioned above, the bids submission in energy storage sharing include the
required storage resources and the corresponding prices. For the participants in energy
storage sharing, the attractiveness of a bid does not only depend on the price that the
bidder is willing to pay for the unit energy storage resources, but it is also affected by
the scarcity of storage resources in different periods, that is, relatively higher payment
prices are required in some periods of scarce energy storage resources. The specific priority
analysis method of bid submissions for buyers and sellers of in energy storage sharing can
be expressed as follows.

For the energy storage sellers, the opportunity cost of participating in the shared
energy storage combinatorial auction can be measured by its profitability in the electricity
market, which can be presented as follows.

Max RS
n = ∑

t∈ΦT
∑

n∈ΦS

(λt pS,c
n,t − λt pS,d

n,t ) (10)

0 ≤ pS,c
n,t ≤ pS,c

max (11)

0 ≤ pS,d
n,t ≤ pS,d

max (12)

SOCS
n,t = SOCS

n,t−1 +
1

eS
n,t

(
ψS,c

n · pS,c
n,t−1 −

pS,d
n,t−1

ψS,d
n

)
(13)

0 ≤ SOCS
n,t ≤ 1 (14)

∑
t∈ΦT

(ψS,c
i · p

S,c
n,t−1 −

pS,d
n,t−1

ψS,d
i

) = 0 (15)

where RS
n and λt denote the expected market revenue of shared energy storage seller n and

the clearing price in the day-ahead market, respectively. ψS,c
n and ψS,d

n are the charging and
discharging efficiency of the energy storage seller. SOCS

n,t denotes the state of the charge.
Based on the above market profitability evaluation model of different sellers in energy

storage sharing, the bidding priority of shared energy storage sellers can be calculated
as follows:

χS
n =

bS
n

RS
n

(16)

where bS
n denotes the priority of bidding and the equivalent bidding unit of sellers in energy

sharing. The economic rationale of the above priority analysis method is that for two bid
submission with same bid prices, if the required energy storage resources are more prof-
itable in the market, the corresponding bid in combinatorial auction should be given higher
priority. From the perspective of incentive compatibility, energy storage sharing sellers
hope that their bids will have strong profitability in the market to improve the priority, so
they are willing to fully share their energy storage resources in the submission bid.

For the energy storage buyers, the situation is quite different. The above evaluation
method based on market profitability is not applicable. This is mainly because shared
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energy storage buyers can strategically submit multiple discrete energy storage resource
demands to reduce their profitability in the electricity market, and thus improve the priority
of their own quotations.

As a result of this, we can only start from the physical meaning of energy storage
resources. Considering the differences in the scarcity of multi-dimensional energy storage
resources in different periods, we introduced the concept of resource scarcity. When the
electricity price is low, that is, when the power supply is relatively abundant, market
members are more inclined to store energy at this time. Therefore, it can be considered
that charging power is more valuable than discharging power, and vice versa. For energy
storage capacity, this attribute is a necessary condition for realizing the time-space transfer
of electric energy. It is easy to know that the value of energy storage capacity is higher in
scenarios with strong price volatility. Based on this idea, the scarcity of attributes of each
dimension of shared energy storage can be calculated by the following formula:

µB,c
t = v · λt (17)

µB,d
t =

v

λt
(18)

µB,e
t =

1
2
· (v · λt +

v

λt
) (19)

v· = T
∑

t∈ΦT
λt

(20)

where T denotes the total number of time periods. v is a parameter representing the
distribution of electricity prices. In practice, the shared energy storage operator can replace
it with other indicators or parameters that can represent the scarcity of electric energy
according to the actual situation.

In energy storage sharing, the attractiveness of a shared energy storage bidding is not
only determined by the price that the bidder is willing to pay for the unit energy storage
resources, but also affected by the scarcity of shared energy storage resources in different
periods, that is, in some energy storage resource scarce periods, a relatively higher payment
price is required. Based on the quantification method of resource scarcity in different
dimensions of shared energy storage mentioned above, the bidding priority of shared
energy storage buyers can be calculated as follows:

χB
n =

bB
n

QB
n

(21)

QB
n = ∑

t∈ΦN

(µB,c
t ·

pc
n,s,t

pc
max

+ µB,d
t ·

pd
n,s,t

pd
max

+ µB,e
t ·

en,s,t

cES
max

) (22)

where bB
n and QB

n indicate the priority of bidding and the equivalent bidding unit of buyers
in energy sharing, respectively.

Compared with the traditional method that simply relies on bidding information of the
combinatorial auction, the above priority evaluation method takes into account the scarcity
of multi-dimensional energy storage parameters and the interest needs of the buyers and
sellers of the shared energy storage, and establishes a connection with the electricity market
price, which can effectively reduce the potential strategic bidding behavior. On this basis,
the proposed computable algorithm for combinatorial auction of energy storage sharing
can be presented via the following steps:
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(1) Input relevant submission data from both the buyers and sellers from the combina-
torial auction of energy storage sharing, calculate the priority of buyer and seller
quotations.

(2) Sort the priority of buyer and seller quotations in descending order, respectively.
Calculate the unit parameter value corresponding to each quotation. Matching is
only allowed when the buyer’s unit value is higher than the seller’s unit value. This
is mainly to ensure incentive compatibility for subsequent settlement. The specific
shared energy storage combinatorial auction settlement mechanism will be explained
in the next paragraph.

(3) Starting from the buyer with the highest priority, with buyer’s serial number G = 1,
select all sellers that meet the matching requirements to form an available shared
energy storage set, determine whether the demand can be met, and if it can be
met, output 1. At the same time, allocate resources for each dimension of shared
energy storage according to the seller’s priority, and update the remaining unmatched
seller quotes.

(4) Buyer’s serial number G = G + 1, select the remaining shared energy storage sellers
to form an available shared energy storage set, determine whether the demand can
be met, and if it can be met, output 1. At the same time, allocate resources for each
dimension of shared energy storage according to the seller’s priority, update the
remaining unmatched seller quotes, determine whether the serial number is greater
than N, if Y, then next step, if not, return 3.

(5) Output combinatorial auction results.

As mentioned above, the combinatorial auction of energy storage sharing is typical NP-
hard problem that is difficult to solve in polynomial time, and its computational complexity
will grow exponentially with the increase of market members. The essence of algorithm
design in combinatorial auction is to make a tradeoff between efficiency and computational
complexity of auction. The computational complexity of the proposed priority-based
algorithm is analyzed in the next section.

3.4. Computational Complexity Analysis

The most cumbersome part of the algorithm for solving the shared energy storage
combinatorial auction model mentioned above is to calculate the priority of each offer,
and sort all the combinatorial auction offers according to the priority (that is, step 2 in
the algorithm process). Assuming that the number of offers of the shared energy storage
buyer or seller is K1 and K2, respectively, which is without loss of generality, we define the
problem scale K as follows:

K = Max(K1, K2) (23)

Taking the classic merge sort method as an example, the merge sort method is a stable
sorting algorithm, and its core idea is the ‘divide and conquer’ idea. If you want to sort an
array, you need to first divide the array into the front and back parts, then sort the front
and back parts, respectively, and then merge the two parts in the order together, which is
the final result. Through recursive analysis, it is easy to know that the calculation time is:

T2(K) = α2 log 2K + K log 2K (24)

where α2 is a constant coefficient, T2(K) represents the calculation time of algorithm step (2)
when the corresponding problem size is K.

In contrast, for shared energy storage buyers, the computational complexity of step (1)
is only related to the number of time periods T, with T = 24 in a shared energy storage
combinatorial auction with hourly time periods in the day-ahead market; for the seller of
shared energy storage, although the optimization problem shown in (10)–(15) needs to be
solved, it is essentially a linear programming problem, and the computational complexity
is a polynomial level related to the number of variables. Compared with the combinatorial
auction quotation scale K, it can be expressed by constant coefficients. The computational
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complexity of steps (3) and (4) is linearly related to the problem size K, and the total solving
time of the proposed algorithm is as follows:

T(K) = α1 + α3K + α2 log 2K + K log 2K (25)

where α1 and α3 are all constant coefficients. When the big O mark method is used,
because O(KlogK) > O (K) > O(logK), the corresponding time complexity of the proposed
algorithm can be expressed as O(KlogK). In contrast, the computational complexity of
the traditional exhaustion-based method and dynamic programming-based method for
solving the problem of shared energy storage combinatorial auction is O (2K) and O (K2),
respectively, which will grow exponentially with the expansion of the problem scale.

3.5. Pricing the Shared Storage in Combinatorial Auction

The essence of shared energy storage combinatorial auction can be understood as the
dynamic matching of supply and demand of energy storage resources at different time
periods. For a winning shared energy storage seller, its auctioned energy storage resources
may be obtained by multiple energy storage buyers. Similarly, the energy storage resources
purchased by a shared energy storage buyer may also come from multiple shared energy
storage sellers. The matching settlement price for each transaction can be calculated based
on the unit price quoted by both parties. The specific pricing and settlement results are
as follows:

ξS
n =

bS
n

∑
t∈ΦT

(
∣∣∣pS,c

n,t

∣∣∣+ ∣∣∣pS,d
n,t

∣∣∣+ ∣∣∣eS
n,t

∣∣∣) (26)
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∣∣∣+ ∣∣∣e∗i,j,t∣∣∣) (30)

where ζS
n and ζB

n represent the value of the seller and the buyer’s unit resources in energy
storage sharing. |·| represents the dimensionless numerical value of the corresponding
parameter. λi,j represents the settlement price corresponding to the matching part between
the shared energy storage buyer i and seller j. RB

i and RS
j represent the benefits that shared

energy storage buyer i and seller j need to pay or receive, respectively. It should be noted
that in order to maintain consistency with the aforementioned bid density calculation, all
dimensional parameters are also represented by dimensionless numbers.

Different from the unified clearing price used in most power market clearing, the
transaction settlement mechanism proposed above is to calculate the settlement price
separately for each matching pair formed by the buyer and the seller in the shared energy
storage combinatorial auction, which can be understood as the social welfare of each
matched energy storage sharing transaction being shared equally by the buyer and the
seller. The significance of calculating the settlement price separately in this way is to
incentivize both buyers and sellers of shared energy storage to quote truthfully. For
example, for combinatorial auction participants, they can try to choose a quote that is lower
than their true needs, in order to obtain higher benefits. This “free riding” phenomenon
is particularly common in unified settlement prices. However, in the above settlement
mode, deviating from the true evaluation price may lead to a decrease in the priority
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of the quotation. On the one hand, it may reduce the likelihood of winning the bid in
one’s own quotation, and on the other hand, for shared energy storage buyers or sellers,
it may increase or decrease the final settlement price. That is to say, the proposed energy
storage combinatorial auction pricing and settlement mechanism helps to suppress strategic
bidding behavior and improve resource allocation efficiency to a certain extent.

It should be noted that our proposed model is technology-neutral, focusing on achiev-
ing the optimal allocation of energy storage resources using the declaration information
provided by buyers and sellers. The shared energy storage combination auction model
and solution method presented in this article can, in theory, be applied to any type of
energy storage.

4. Case Studies

In this section, two cases with different problem sizes are adopted to validate the
effectiveness of the designed combinatorial auction of energy storage sharing.

4.1. Basic Case

For simplicity, in the basic case, we first only consider three buyers and five sellers
in the combinatorial auction of energy storage sharing, denoted as B1–B3 and S1–S5,
respectively. The combinatorial auction includes five time periods, of which three buyers of
shared energy storage correspond to the three types of application scenarios described in
Section 2.2. The relevant parameters of the shared energy storage combinatorial auction are
shown in Table 2, where the light yellow background is the quotation information from the
combinatorial auction participants, the light red background is the market price information
in the day ahead, which is used to calculate the quotation priority of each combinatorial
auction, and the light blue part is the calculated information. It includes quotation priority
and unit value, which are used in the winner determination and settlement processes in
the combinatorial auctions, respectively.

Table 2. Relevant information in combinatorial auction of energy storage sharing.

Bid Information (pc,(·)
n,t , pd,(·)

n,t , e(·)
n,t Bid Price Priority Unit Value

No. T1 T2 T3 T4 T5 b(·)
n b(·)

n ζ(·)
n

Buyer
B1 (A1) (2,0,2) (2,0,4) (0,0,4) (0,4,4) - 70 3.46 3.89
B2 (A2) (1,1,1) (1,1,1) (1,1,1) - - 30 3.12 3.33
B3 (A3) - - (3,0,3) (0,0,3) (0,3,3) 48 2.77 3.19

Seller

S1 (1,1,2) (1,1,2) (1,1,2) - - 33 1.2 2.75
S2 - (1,1,2) (1,1,2) (1,1,2) - 35 0.92 2.91
S3 - - (1,1,2) (1,1,2) (1,1,2) 35 2.33 2.91
S4 (2,2,4) (2,2,4) (2,2,4) (2,2,4) (2,2,4) 120 0.95 3.0
S5 (2,2,4) (2,2,4) - - - 8 2 0.5

Price λt($/MWh) 25 27 50 65 30 - - -
µd

t 0.64 0.69 1.27 1.65 0.76 - - -
Scarcity µc

t 1.58 1.46 0.79 0.61 1.31 - - -
µe

t 1.11 1.07 1.03 1.13 1.04 - - -

As can be seen in Table 2, the scarcity of storage resources in different periods are
various, for example, the scarcity index of discharging power is higher in T3 and T4, which
results from relatively high market prices in the above two periods. Regarding the scarcity
of storage resources, for the buyers of shared energy storage, the scarcity of energy storage
resources also leads to different priorities and unit prices corresponding to each bidding
information, that is, relatively higher payment prices are required in some periods of scarce
energy storage resources. From the perspective of shared energy storage sellers, we can
also clearly note that although the energy storage resources owned by S1–S3 are similar
to the quotations, there are obvious differences in the corresponding priorities, which is
mainly because the differences in market prices in different periods determine the different
profitability of each seller’s energy storage.
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Based on the bidding information of both buyers and sellers of shared energy storage
mentioned above, the shared energy storage operator can obtain the final matching trans-
action winning result by solving the combined auction model, as shown in Table 3. For
shared energy storage sellers, there may be a possibility that their bids may not be fully
auctioned out. The values in the table represent the transaction proportion of declared
parameters for each time period, denoted as yB

n and yS
n, respectively.

Table 3. Winner determination results of the combinatorial auction.

No.
Winner Determination Results State Variables Priority Unit Value

T1 T2 T3 T4 T5 yB
n yS

n b(·)
n ζ(·)

n

Buyer
B1 (A1) (2,0,2) (2,0,4) (0,0,4) (0,4,4) - 1 - 3.46 3.89
B2 (A2) (1,1,1) (1,1,1) (1,1,1) - - 1 - 3.12 3.33
B3 (A3) - - (3,0,3) (0,0,3) (0,3,3) 1 - 2.77 3.19

Seller

S1 (1,0,0) (0,0,0) (1,0,2) - - - 33.3% 1.2 2.75
S2 - (1,0,1) (1,0,2) (0,1,2) - - 75% 0.92 2.91
S3 - - (0,0,0) (0,1,1) (0,1,0) - 25% 2.33 2.91
S4 (2,1,3) (2,1,4) (2,1,4) (0,2,4) (0,2,3) - 51.7% 0.95 3.0
S5 (0,0,0) (0,0,0) - - - - 0 2 0.5

From the winner determination results, it can be seen that except for S5, all other
shared energy storage sellers have varying degrees of energy storage resource transactions.
Among them, all buyers have completed the transaction, which means the corresponding
state variable is 1, while the state variable of the seller may be a non-integer, which is
consistent with the physical meaning of the shared energy storage combination auction
we mentioned earlier. From the proportion of shared energy storage sellers’ transactions,
it can be clearly seen that the transaction situation and priority are basically inversely
correlated. Shared energy storage sellers with relatively low quotations have more trading
opportunities. Although S5 has a higher priority compared to S3, there are still no resources
winning the bid. This is mainly because S5 only covers the first two periods, and the
first two periods have higher priority energy storage resources, namely S1 and S4, which
resulted in the bid not winning. However, it should be noted that the quotation of S5 is
relatively low. In fact, if S5 wins the bid, more social benefits will be generated. This also
indicates that the algorithm proposed in this paper is an approximation algorithm, which
will lose some calculation accuracy while improving the solution speed. We will further
analyze it in Section 4.2.

4.2. Large-Scale Combinatorial Auction of Energy Storage Sharing

In this subsection, large-scale combinatorial auction scales with the 24 operation hours
of the next operating day are considered. To demonstrate the rationality and effectiveness
of the proposed combinatorial auction solving algorithm in this paper, three scenarios are
designed for comparation, denoted as M1–M3, respectively.

(1) M1 is a benchmark, in which branch and bound method is adopted to obtain the
results of energy sharing, and can considered as the theoretical optimal solution of
the corresponding combinatorial auction.

(2) M2 is the proposed computable combinatorial auction in this paper, we use the idea
of the greedy algorithm to identify the priority of different combinatorial auction bids
to achieve the solution in polynomial time while ensuring that the results obtained
are closer to the optimal value as much as possible.

(3) M3, similar to the algorithm proposed in [16], is a conventional greedy algorithm
based on the unit parameter value which is adopted to solve the shared energy storage
combinatorial auction model. Compared to the M2 scenario, the method in M3 does
not consider the differences in the value of shared energy storage resources in different
time periods.
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In essence, the combinatorial auction solution algorithm proposed in this paper is
a kind of approximation algorithm, which realizes the fast solution of the combinatorial
auction model at the cost of sacrificing part of the calculation accuracy. In large-scale
problems, it may make the net winning bid decision result deviate from the theoretical
optimal solution. In this section, we use the approximate ratio (AR) index to measure
the difference between the combinatorial auction result and the theoretical optimal social
welfare, that is, the ratio of the combinatorial auction social welfare (M2 or M3) obtained
by the approximation algorithm and the theoretical optimal social welfare (M1).

The changes in the efficiency of shared energy storage combinatorial auctions under
different participation scales are shown inFigure 2. The participation scale of shared energy
storage combinatorial auctions is the total number of quotes from shared energy storage
buyers and sellers. We assume that the number of shared energy storage buyers and sellers
is equal, and the three types of application scenarios in the declaration information of
shared energy storage buyers are generated at a ratio of 1:1:1.
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tion scales.

From the results in the figure, it can be clearly seen that with the continuous expansion
of the participation scale of the shared energy storage combinatorial auction, the difference
in economic efficiency between M2 and M3 shows a gradually increasing trend. This is
mainly because the participation of large-scale market members reduces the possibility of
individual extreme situations, ensuring the difference in energy storage demand between
time periods. It should be noted that the economic effectiveness of the M2 and M3 scenarios
is related to the actual declaration information of combinatorial auction and the value of
scarcity index. In some cases, the social welfare of the M2 scenario is lower than that of the
M3 scenario. We will further investigate key influence factors of the combinatorial auction
of energy storage sharing in Section 4.3.

4.3. The Influence of Services Provision and Market Conditions

In practice, the efficiency of shared energy storage combinatorial auctions is influenced
by various factors. In this subsection, we will analyze the impact of different service
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offerings and market conditions, namely resource scarcity, on the shared energy storage
combinatorial auctions from the perspective of market demand.

Considering the correlation between multiple services provision and energy storage
sharing, different services provision portfolios of energy storage buyers are generated. The
approximate ratio of the combinatorial auction with different services provision (A1-A3)
portfolios with a total problem size of 2000 are presented in Figure 3. The vertical axes
in the figure represent the proportion of frequency services provision (A2) and capacity
reserve among shared energy storage buyers (A3), indicating that the remaining application
scenario is energy arbitrage. The horizontal axis represents the approximate ratio obtained
by solving the combinatorial auction model in the M2 scenario.
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As one can observe, the scatter plot shows a downward trend, indicating that as
the proportion of A2 and A3 increases, the approximate ratio of combinatorial auctions
gradually decreases. In other words, when the proportion of A1, i.e., energy arbitrage, is
high, the proposed solution algorithm can guarantee higher accuracy. This result is intuitive,
mainly because the evaluation method used in this article for the ranking of shared energy
storage seller quotes is based on market profitability. This method is essentially similar to
the energy storage operation in the A1 arbitrage scenario. Therefore, when the A1 scenario
has a high proportion, the corresponding approximation ratio is also higher.

In addition to the multiple application scenarios, market conditions can affect the
scarcity of shared energy storage resources in different periods, which may also exert
influence on the combinatorial auction efficiency of energy storage sharing. To compare
and analyze the impact of market demand differences on the results of combinatorial
auctions, we have introduced the proportion coefficient y in this subsection to represent
the proportion of the expansion or reduction of the original shared energy storage resource
scarcity parameter. Figure 4 shows the economic efficiency index of different scarcity
proportional coefficients under M2 and M3 when the participation scale of combinatorial
auctions is 1000. Note that the proportional coefficient is 1.0, indicating the basic shared
energy storage resource scarcity scenario, and the distribution function of the corresponding
declaration information generation is also adjusted with the change in the proportional
coefficient y.
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As can be seen from the above figure, when the proportion coefficient y gradually
decreases, the difference between the combinatorial auction results corresponding to the
M2 and M3 scenarios gradually decreases. This is mainly because the continuous decrease
of y means that the scarcity of energy storage resources in different time periods gradually
converges. When there is no difference in scarcity in each time period, the algorithms
corresponding to M2 and M3 scenarios are equivalent.

In addition, it can also be found that with the increase in the proportion coefficient y,
M3′s economic efficiency gradually decreases, while M2 shows a trend of first increasing
and then decreasing. This is mainly because M3 does not consider the differences between
periods, so when the proportion coefficient y is large, M3 performs poorly. M2 corresponds
to the greedy algorithm based on scarcity proposed in this paper, so it performs well to a
certain extent.

5. Discussion

As previously mentioned, the allocation of shared energy storage entails the multi-
dimensional matching of resource supply and demand, encompassing storage capacity,
charging and discharging power, and stored energy for each operational period. The
fundamental principle of energy storage sharing lies in the dynamic alignment of supply
and demand using diverse parameters of energy storage resources across varying time
intervals. Recognizing the interdependence between capacity, charging and discharging
power in energy storage operations, it becomes imperative for energy storage buyers to
acquire the corresponding allocation of usage rights that align with their specific storage
needs, such as energy arbitrage, frequency services provision, and capacity reserve.

These interconnected characteristics of diverse storage resources can be viewed as a
type of combinatorial auction. In this article, we propose a method that ranks the offers
from buyers and sellers of shared energy storage, effectively capturing the value disparities
of energy resources across distinct time periods. Compared to traditional methods for
solving combinatorial auction problems, the solution algorithm proposed in this paper
can reduce the search space of the model by more than 90%, and the solution accuracy
can reach up to 98.3% in conventional scenarios. Compared with the conventional greedy
algorithm based on unit parameter value in energy storage sharing, the economic efficiency
of the proposed energy storage combinatorial auction solving algorithms can be improved
by approximately 5.7% with a relatively high combinatorial auction scale, e.g., 10,000.

It is important to acknowledge that the crux of designing combinatorial auction-
solving algorithms lies in striking a balance between solution speed and computational
accuracy, commonly referred to as the approximation ratio. We are delighted to report that
our proposed algorithm consistently achieves high accuracy across various scenarios. We
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find that the proposed computable combinatorial auction demonstrates better adaptability
to the application of energy arbitrage, with a maximum difference in approximate ratio
combi-nations for different scenarios of approximately 0.15. As the field of combinatorial
auction models continues to expand, the solving accuracy of the methods presented in this
paper demonstrates a progressive improvement, indicating the efficacy of our proposed
approach in addressing practical application requirements.

Furthermore, the accuracy of combinatorial auction-solving algorithms can be influ-
enced by various factors, including variations in application scenarios and resource scarcity
within the market. Notably, energy arbitrage demonstrates greater suitability for the pro-
posed computable combinatorial auction. This is primarily due to the evaluation method
employed in this study, which ranks shared energy storage seller quotes based on market
profitability. Compared with the traditional greedy algorithms, the economic effectiveness
improvement brought by the proposed method in our work can reach up to approximately
5% in situations of high market scarcity. These findings underscore the significance of
carefully selecting the evaluation method during the algorithm design of shared energy
storage portfolio auctions. Market operators conducting shared energy storage portfolio
auctions can optimize auction efficiency by choosing the most suitable evaluation method
aligned with the diverse requirements of potential shared energy storage buyers.

6. Conclusions

The integration of the sharing economy and energy system has led to the advocacy
of energy storage sharing as an effective solution for addressing the low utilization rate
of energy storage and the challenges related to cost recovery. This paper presents the
construction of a framework for the shared energy storage combinatorial auction that incor-
porates multi-dimensional parameter coupling. Furthermore, we analyze the correlation
between different application scenarios and the combinatorial auction of shared energy
storage, taking into account the diverse application scenarios and examining the resource
demand and time scale. A computable combinatorial auction solving algorithm is designed
based on the distinctive characteristics of buyers and sellers in energy storage sharing. This
algorithm effectively reduces the model search space and enables a rapid solution to the
combinatorial auction model.

The case studies compare three scenarios, revealing the following: firstly, the pro-
posed solving algorithm significantly reduces the computation time by over 95% com-pared
to the traditional method for solving combinatorial auction, while ensuring high accuracy
in the conventional case. Secondly, increasing the problem size of the combinatorial auction
of energy sharing improves the stability and accuracy of the method proposed in this paper.
Notably, as the combinatorial auction scale grows from 200 to 10,000, the approximate ratio
progressively rises from 92.7% to 98.3%. Compared to conventional greedy algorithms,
the proposed method in this paper achieves a maximum accuracy improvement of 5.7%.
Moreover, the combination of different application scenarios affects the economic effec-
tiveness of shared energy storage combinatorial auctions to a certain extent. Lastly, the
proposed temporal value in this article effectively captures the temporal disparities among
different energy storage resources, surpassing traditional greedy algorithms. Consequently,
in situations of high market scarcity, the approximation difference can reach a maximum of
approximately 5%.

Hopefully, our work is able to provide a useful reference for the further mechanism
design for energy storage sharing. Based on the main findings of our work, further in-depth
research can be expanded from the following three aspects: (1) a novel energy storage
sharing framework considering network constraints and system operation; (2) energy
storage sharing mechanism considering the investment process of different types of energy
storage; (3) energy storage sharing mechanism design covering multiple power supply
chain links.
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