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Abstract: In the context of global warming, tropical cyclones (TCs) have garnered significant attention
as one of the most severe natural disasters in China, particularly in terms of assessing the disaster
losses. This study aims to evaluate the TC disaster loss (TCDL) using machine learning (ML)
algorithms and identify the impact of specific feature factors on the prediction of model with an
eXplainable Artificial Intelligence (XAI) approach, SHapley Additive exPlanations (SHAP). The
results show that LightGBM outperforms Random Forest (RF), Support Vector Machine (SVM), and
Naive Bayes (NB) for estimating the TCDL grades, achieving the highest accuracy value of 0.86.
According to the SHAP values, the three most important factors in the LightGBM classifier model are
proportion of stations with rainfall exceeding 50 mm (ProRain), maximum wind speed (MaxWind),
and maximum daily rainfall (MaxRain). Specifically, in the estimation of high TCDL grade, events
characterized with MaxWind exceeding 30 m/s, MaxRain exceeding 200 mm, and ProRain exceeding
30% tend to exhibit a higher susceptibility to TC disaster due to positive SHAP values. This study
offers a valuable tool for decision-makers to develop scientific strategies in the risk management of
TC disaster.

Keywords: tropical cyclones; disaster loss; machine learning; XAI; SHAP

1. Introduction

Tropical cyclones (TCs) are among the most severe natural disasters in the world [1].
TCs trigger extreme winds, torrential rains, high waves, and storm surges, posing significant
threats to human life, property, and coastal ecosystems [2–4]. China is frequently affected
by TCs every year owing to its proximity to the northwest Pacific Ocean, which is one
of the largest TC genesis regions in the world. Statistical data from 2001 to 2020 indicate
that the direct economic loss and fatalities induced by TCs in China accounted for 17%
and 10% of the total losses from meteorological disasters, respectively [5]. Moreover, the
occurrence of extreme natural disasters has become more and more common, which is
attributed to global warming and shifting climates [6,7]. Consequently, effective TC disaster
management has emerged as a critical component in achieving sustainable development
and resilience in the face of evolving risks in China.

Based on the well-established concept that TC disaster loss (TCDL) is primarily deter-
mined by hazard, vulnerability, and resilience, extensive studies have been conducted to
examine the role of these three factors in TCDL assessment [8–12]. However, significant
uncertainty still remains concerning the relevant conclusions. Some studies suggest that

Sustainability 2023, 15, 12261. https://doi.org/10.3390/su151612261 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151612261
https://doi.org/10.3390/su151612261
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-7954-1533
https://doi.org/10.3390/su151612261
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151612261?type=check_update&version=1


Sustainability 2023, 15, 12261 2 of 17

the impact of socio-economic development on TCDL is more significant than TC intensity.
For instance, Schmidt et al. [13] employed the widely used nonlinear least squares algo-
rithm, Levenberg–Marquardt, to investigate the influence of socio-economic factors and
climate change on TCDL in the United States. Their findings revealed that losses attributed
to socio-economic factors were approximately three times greater than those caused by
climatic factors. Yonson et al. [14] utilized statistical methods to assess the impact of socio-
economic vulnerability and hazard on TC-related fatalities. It was found that the number
of deaths appeared to be more influenced by the poverty incidence rate rather than the
rainfall amount during TC events. On the other hand, some studies argue that the impact
of TC intensity change caused by climatic factors on disaster losses is more substantial.
Ye et al. [15] used a negative binomial regression model to quantify the relationship between
direct economic losses caused by TC and maximum wind speed, asset value, and per capita
Gross Domestic Product (GDP), and the results showed that the effect of maximum wind
speed on economic losses was greater than that of asset value and per capita GDP.

While physically based models have proven effective in solving weakly non-linear
problems of low dimensionality, they are inadequate for accurate prediction of TCDL,
which is complex, high-dimensional, and strongly non-linear in nature. Therefore, an
effective assessment model for natural disasters should encompass multiple factors and
reflect the complicated non-linear relationship between these factors and TCDL [16].

In this context, Artificial Intelligence (AI) models have been successfully applied in
earth system science and hazard assessment, yielding more encouraging results compared
to physical models [17–22]. Zhang et al. [23] employed five different models, including
Back Propagation Neural Network (BPNN), 1D convolutional neural network, Decision
Tree (DT), Random Forest (RF), and XGBoost, to examine the correlation between debris-
flow-triggering factors and disaster losses. They found that the XGBoost model based
on Gradient Boosting Decision Trees (GBDT) exhibited a significantly higher accuracy
than the RF and other models. In 2017, LightGBM was introduced as an improved model
of XGBoost by Microsoft and recognized as one of the most successful and advanced
implementations of GBDT due to its exceptional speed and accuracy [24]. However, the
use of AI models in natural hazard assessment is limited by the hindrance of lack of
transparency and explainability, which stems from the inherent “black box” nature for most
AI models [25,26].

Thus, it is of utmost significance that the model outputs can be explained and inter-
preted. The emergence of eXplainable AI (XAI) algorithms, such as SHapley Additive exPla-
nations (SHAP) [27], the Local Interpretable Model-agnostic Explanations (LIME) [28], etc.,
provides analyses to identify the contribution of each conditioning factor to the probability
of natural hazard occurrences at a sample-wise scale, thereby enhancing the transparency
of complex AI models. By representing feature attributions as a linear model, SHAP of-
fers a unified framework for interpreting machine learning (ML) models that combines
the strengths of both Shapley values and LIME. Felsche and Ludwi [29] used SHAP to
understand the factors contributing to droughts and found that variables like the North
Atlantic oscillation index and air pressure 1 month before the event prove essential for
prediction. Aydin and Iban [30] employed SHAP to explain the generated ML-based flood
susceptibility maps, and the results showed that lower elevations, lower slopes, and areas
closer to river banks are more prone to flooding. Iban and Bilgilioglu [31] utilized SHAP
to provide insights into how each factor affects the occurrence of snow avalanches and
drew the conclusion that ski resorts with elevations of more than 2000 m and slopes of less
than 30 degrees have a higher sensitivity to avalanches, as indicated by higher positive
SHAP values.

As demonstrated above, XAI has gained widespread use recently and serves as a
valuable instrument for devising innovative strategies to mitigate the harmful consequences
of natural hazards. Despite the potential benefit of XAI, the current state of its application,
its achievements, and the challenges it faces remain underexplored. Recent studies have
extensively investigated the application of XAI in various natural disasters, including
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droughts, floods, snow avalanches, and others. However, XAI methods for TC disaster
management have yet to be fully evaluated and implemented. Therefore, in response to this
gap, this study aims to further explore the potential of XAI methods for TCDL assessment.

The novelty of this study lies in the application of ML and XAI algorithms to predict
TCDL and to further ascertain the factors that contribute to the predictive model and their
relative significance. The study is structured as follows. Section 2 introduces the data and
methods used in this study. Section 3 evaluates the performance of ML models and utilizes
SHAP to provide interpretation and explanation for the predictions. Section 4 discusses the
results and Section 5 draws the conclusion.

2. Data and Methods
2.1. Data Sources

This paper focuses on 492 disaster events caused by TC that occurred from 2000 to 2020
in different provinces in China, as depicted in Figure 1. Within the domain of ML research,
the predictive performance of ML models heavily depends on the input features [32,33].
Constructing a comprehensive and scientific indicator system for the estimation of TCDL
is of great significance, yet there is currently no unified system for TCDL indicators in
China. Therefore, this study extensively collects open-source data and develops a relatively
comprehensive indicator system covering three aspects of TCDL: the hazard of disaster-
causing factors (maximum daily rainfall, maximum wind speed, etc.) [34], the vulnerability
of the disaster-bearing body (provincial GDP, population, etc.) [35], and the resilience (beds
of medical institutions, telephones, etc.) [36] (Table 1). Furthermore, the system incorporates
multiple factors of society, economy, population, medical treatment, transportation, etc.
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Table 1. The categories and sources of samples.

Category Indicator Short Name Data Source

Hazard

Maximum daily rainfall (mm) MaxRain Dataset of basic
meteorological elements from

surface meteorological
stations in China (v3.0)

(http://idata.cma/, accessed
on 1 May 2023)

Proportion of stations with rainfall exceeding
50 mm (%) ProRain

Maximum wind speed (m/s) MaxWind
Proportion of stations with wind speed exceeding

14 m/s (%) ProWind

Vulnerability

Provincial GDP (billion) GDP

National bureau of statistics
(http://www.stats.gov.cn/,

accessed on 1 May 2023)

Population POP
Population density per km2 POPDens

Area of agricultural crop sown (hm2) CropArea
Area of buildings constructed (m2) ConsArea
Area of buildings completed (m2) ComArea

Total line length of bus and trolley bus operation
lines (km) BUS

Resilience

Beds of medical institutions per 10,000 people MedBeds National bureau of statistics
(http://www.stats.gov.cn/,

accessed on 1 May 2023)

Telephones per 100 people TEL
Internet per 10,000 people NET

Per capita GDP PCGDP

TCDL

Direct economic loss (billion) —
Yearbook of meteorological
disasters in China during

2000–2020 [37]

Casualties —
Affected area (hm2) —
Collapsed houses —

2.2. Data Preparations
2.2.1. Adjustment of Economic Indicators

Considering the impact of inflation, it is not advisable to directly compare the same
economic indicators between different years. Thus, the inflation should be eliminated to
get the real indicator which can reflect the actual economy level by the GDP deflator [15].
The actual economic loss can be obtained according to Equation (1) as follows:

Actual economic loss = Nominal economic loss/GDP Deflator (1)

The GDP deflator data is from the website of World Bank (http://data.worldbank.
org/datacatalog/world-development-indicators, accessed on 1 May 2023). The trend of
China’s GDP deflator from 2000 to 2020 is shown in Figure 2.

2.2.2. Normalization

As indicators usually have different units and orders of magnitude in a multi-indicator
system it is necessary to normalize the indicators to ensure the reliability of the results [36].
Each indicator was normalized using Equation (2).

X∗
ij = (Xij − min)/(max − min) (2)

where Xij and X∗
ij represent the values of indicator j in the i-th TC event before and after

normalization, respectively, and min and max represent the minimum and maximum value
of the given indicators among all TC events, respectively.

http://idata.cma/
http://www.stats.gov.cn/
http://www.stats.gov.cn/
http://data.worldbank.org/datacatalog/world-development-indicators
http://data.worldbank.org/datacatalog/world-development-indicators
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Figure 2. The trend of China’s GDP deflator from 2000 to 2020.

2.2.3. Comprehensive Disaster Grade

In order to comprehensively and quantitatively evaluate the four disaster indicators
casualties, actual economic losses, affected area, and collapsed houses, this study employs
a combination of subjective and objective weighting methods to determine their respective
weights. Specifically, the subjective weighting method utilized in this study is the expert
scoring method [38], while the objective weighting method is the entropy method. The
combined weight is calculated as follows:

wj =

√
αjβ j

∑4
j=1

√
αjβ j

(3)

where wj represents the combined weight of indicator j, αj is the weight obtained using the
expert scoring method, and βj is the weight calculated using the entropy method.

As shown in Table 2, the weight values for the four loss indicators, casualties, actual
economic loss, collapsed houses, and affected area, are determined as wj = (0.33, 0.27, 0.21,
0.19) (j = 1, 2, 3, 4), respectively. The formula for calculating the comprehensive disaster
index Di is expressed as follows:

Di =
4

∑
j=1

wj × X∗
ij (4)

Table 2. The combined weight of each disaster index.

Casualty Actual
Economic Loss

Collapsed
Houses

Affected
Area

Weight 0.33 0.27 0.21 0.19

The K-means algorithm was utilized to classify the 492 samples into low (73), moderate
(216) and high-class (203) based on the comprehensive disaster index, denoted by green,
blue, and red markers, respectively, in Figure 3.
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2.3. TCDL Evaluation System

In this study, the assessment of TCDL was conducted using four ML algorithms,
LightGBM, Random Forest (RF), Support Vector Machine (SVM), and Naive Bayes (NB).
SVM and NB are widely used single ML models, while RF and LightGBM are typical
representatives of ensemble ML models based on bagging and boosting, respectively.
Indicators of hazard, vulnerability, and resilience are employed as feature variables, and
the comprehensive disaster grade is considered as the predictive variable for training and
testing in ML models (Figure 4).
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2.3.1. Dataset

80% of the total samples are randomly selected as the training set or cross-validation set
(CV set), while the remaining 20% are designed as the test set (not involved in training). In
order to enhance the robustness and ensure the stability of model, a 5-fold cross-validation
method was utilized to train and fine-tune the model for optimal performance. Specifically,
the training set was equally divided into 5 parts, with one part selected as the validation
set in a non-repetitive manner, while the other four parts were used as the training set for
parameter adjustment.

To assess the sensitivity of the feature variables to the label index, the probability
density function (PDF) distributions of MaxRain and MaxWind are presented in Figure 5.
It shows that the distributions of PDF across different categories are noticeably distinct
both for MaxRain and MaxWind, which indicates a promising potential for the prediction.
Similarly, this characteristic is observed for other feature variables as well. Furthermore, in
comparison with MaxRain, the PDF of MaxWind shows more obvious peaks, displaying its
greater significance in distinguishing the categories.
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Figure 5. PDF distribution of (a) MaxRain and (b) MaxWind under low, moderate, and high classes
of TCDL.

2.3.2. Model Tuning

To achieve the best performance of the LightGBM model, 7 parameters were se-
lected for tuning, with the ranges exhibited in Table 3. A grid search method was subse-
quently employed to determine the optimal combination of parameters, involving a total of
37,500 iterations (5 × 5 × 5 × 5 × 3 × 4 × 5). The optimal model was selected based on
the minimum value of Log loss, and the corresponding best parameter combination is
presented in Table 3. Additionally, the parameter “is_unbalance” in LightGBM is set to
“true” to effectively address the issue of data imbalance and enhance the model’s general-
ization performance. The optimal parameter combinations for the other three ML models
are omitted here.
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Table 3. The range and optimal combination of parameters in LightGBM.

Parameter Dynamic Range Optimal Value

num_leaves Max number of leaves in one tree [10, 15, 20, 25, 30] 15
max_depth Maximum depth of the tree [5, 6, 7, 8, 9] 7

max_bin Max number of bins [5, 10, 15, 20, 25] 10
min_leaf Minimal number of data in one leaf [10, 15, 20, 25, 30] 20

fea_frac Fraction of features randomly selected on each tree
[0.6, 0.8, 1.0] 1.0

learn_rate Shrinkage rate [0.01, 0.03, 0.05, 0.1] 0.01
n_estimators Number of boosting iteration [50, 100, 150, 200, 250] 100

2.3.3. Evaluation Metrics of Models

The model evaluation was conducted with several widely used metrics in classification
problems to quantitatively assess and compare the performance of models. These metrics
include precision, accuracy, recall, and F1 score, which are calculated based on the true
positive (TP), true negative (TN), false positive (FP), and false negative (FN) values.

Precision refers to the ratio of TP to the total number of positive predictions. It
measures the ability of model to accurately identify positive instances. The formula is
expressed as follows:

Precision =
TP

TP + FP
(5)

Accuracy represents the ratio of correctly predicted instances (both TP and TN) to the
total number of instances. It provides an overall measure of how well the model performs.
The formula is defined as follows:

Accuracy =
TP + TN

TP + FN + FP + TN
(6)

Recall, also known as sensitivity or true positive rate, calculates the ratio of TP to the
total number of actual positive instances. It measures the ability of model to identify all
positive instances correctly. The formula is shown as follows:

Recall =
TP

TP + FN
(7)

The F1 score is a harmonic mean of precision and recall. It provides a balanced evalua-
tion of the model’s performance, considering both precision and recall simultaneously. The
formula is as follows:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(8)

By utilizing these metrics, the results of a model can be quantitatively evaluated and
compared, allowing for a comprehensive assessment of its performance.

2.4. SHapley Additive exPlanations (SHAP)

SHAP was initially introduced in game theory by Shapley [27] as a method to assess
the individual contributions of players in a collaborative game. Its primary objective is to
distribute the overall gain among players in proportion to their respective contributions
to the final outcome. By introducing SHAP values, a solution is provided to address the
challenge of fairly rewarding each player while assigning a distinct value that considers
local accuracy, consistency, and null effect [27]. In contrast to other models for computing
global feature importance, such as information gain ratio or permutation feature impor-
tance, SHAP allows for a sample-wise evaluation of the impact of each conditioning factor.
It has been successfully employed in various studies related to natural hazard susceptibil-
ity mapping, including water erosion [39], wildfires [40], and landslides [41]. Due to its
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outstanding performance, SHAP was utilized in this study to reveal the reasoning behind
TCDL prediction.

The Python-based SHAP library developed by Lundberg and Lee [42] was utilized
for calculating SHAP values. A larger mean absolute Shapley value (|SHAP|) indicates
a conditioning factor’s greater importance for the output feature. The direction of a
conditioning factor’s contribution can be determined by its positive or negative SHAP
values [30]. Scholars have employed a range of SHAP plots and visualizations, including
force plots, summary graphs, and dependence plots, to effectively showcase the global and
local significance of specific factors and samples for the model’s output.

The recent advancements in machine learning algorithms, as demonstrated by Lund-
berg and Lee [42], have paved the way for gaining deeper insights into model outputs,
thereby enhancing transparency in traditionally opaque black box models.

3. Results
3.1. Model Evaluation

The evaluation metrics used in this study to assess the performance of ML models
include accuracy, recall, precision, and F1 score. As presented in Table 4, the single-
model algorithms, SVM and NB, show considerably lower performance compared to the
ensemble-model algorithms, RF and LightGBM. Notably, the LightGBM model based on
boosting outperforms the RF model based on bagging and exhibits the best performance
among the four models. The accuracy and precision of LightGBM reach 0.86 and 0.83,
respectively, indicating its ability to accurately predict comprehensive disaster losses in TC
events. Moreover, the recall value of 0.83 demonstrates that the LightGBM model effectively
identifies positive cases of high disaster losses in TC events. The F1 score, which considers
both precision and recall, also reaches 0.83, suggesting a well-balanced performance for
LightGBM between the two metrics. Overall, these results strongly support the suitability
of LightGBM for the prediction of TCDL.

Table 4. Assessment of TCDL based on four ML algorithms.

Accuracy Recall Precision F1

LightGBM 0.86 0.83 0.83 0.83
RF 0.71 0.7 0.72 0.7

SVM 0.64 0.54 0.52 0.53
NB 0.64 0.63 0.67 0.62

3.2. Interpretation of the LightGBM Model

As illustrated in Section 3.1, LightGBM has superior performance compared to the
single-model algorithms SVM and NB, as well as the ensemble model RF, for the prediction
of TCDL. Consequently, the LightGBM model was selected to be explained and interpreted
using the SHAP approach in Section 3.2.

3.2.1. SHAP Summary Plots

Figure 6 presents the sample-wise SHAP summary plot of input feature factors derived
from the LightGBM classifier. The feature factors are ranked based on their contributions.
The X-axis represents the SHAP value, while the Y-axis represents the feature factors. Each
dot on the plot corresponds to a sample of a TC disaster event from the test dataset, with
the color indicating the value of a specific factor. Sky blue signifies a lower value, while
magenta denotes a higher value. The horizontal position of the dot indicates whether the
feature factor has a positive or negative influence on the prediction.
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As depicted in Figure 6a, in the low class of TCDL, samples with higher values of
ProRain (proportion of stations with rainfall exceeding 50 mm), MaxWind (maximum wind
speed), NET (internet per 10,000 people), and CropArea (area of agricultural crop sown)
display negative SHAP values. Conversely, samples with higher values of ProWind (pro-
portion of stations with wind speed exceeding 14 m/s), TEL (telephones per 100 people),
and MedBeds (beds of medical institutions per 10,000 people) exhibit positive SHAP values.
This indicates that ProRain, MaxWind, NET, and CropArea have an adverse impact on the
likelihood of the low TCDL class, while ProWind, TEL, and MedBeds have a favorable in-
fluence on it. In the moderate class of TCDL, PCGDP (per capita GDP) and CropArea have
positive SHAP values (Figure 6b), which illustrates that the likelihood of TCDL increases
as PCGDP and CropArea increase. It can be seen from Figure 6c that the magenta dotted
MaxWind, ProRain, and MaxRain (maximum daily rainfall) values have positive impacts
on the prediction ability for the high TCDL class. However, the situation is reversed for
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the low class, in which MaxWind, ProRain, and MaxRain have negative impacts on TCDL.
Moreover, in comparison with the minor and positive impacts on the low and moderate
TCDL classes, PCGDP shows obvious negative impacts on the high TCDL class. This also
reveals that a higher PCGDP will reduce the risk of severe TC disasters.

Figure 7 displays the mean of the absolute SHAP (|SHAP|) values for all input feature
factors in the test dataset. The |SHAP| values provide insight into the magnitude of the
impact for each feature factor in the LightGBM classifier model. The higher the mean
|SHAP| value, the more significant the contribution of the respective feature factor to the
overall prediction process.
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conditioning factor.

It can be seen from Figure 7 that ProRain (proportion of stations with rainfall exceeding
50 mm) and MaxWind (maximum wind speed) play a significant role in all three classes
of TCDL. Their contributions to the prediction of TCDL grades are almost twice those
of the other feature factors. Conversely, the contribution of the vulnerability factors is
relatively lower when compared to hazard and resilience in general. In the moderate class
of TCDL, the overall contribution of all feature factors is smaller in comparison with their
contribution in the low and high classes. This indicates that the impact of feature factors
on the model’s prediction varies across different classes of TCDL. For instance, PCGDP
(per capita GDP) presents a mean |SHAP| value close to 0 in low-class predictions. How-
ever, it exhibits a relatively substantial contribution to moderate and high-class predictions,
with mean |SHAP| values reaching approximately 0.4.

3.2.2. SHAP Dependence Plots

Figure 8 depicts the SHAP dependence plot for the four most significant contributing
factors (MaxWind, ProRain, MaxRain, and MedBeds) in the high TCDL class. The SHAP
dependence plot can identify the relationship between a single factor (X-axis) and the
corresponding SHAP values generated (Y-axis) to evaluate the effect of each feature factor
on prediction accuracy.
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As shown in Figure 8a, samples with MaxWind (maximum wind speed) values of less
than approximately 30 m/s have negative SHAP values, which implies a negative contribu-
tion to the likelihood of TCDL. Conversely, samples with MaxWind values greater than
30 m/s have positive SHAP values, highlighting a positive contribution to the probability
of TCDL. In addition, a quasi-linear relationship exists between MaxWind and its corre-
sponding SHAP values. Regarding ProRain (proportion of stations with rainfall exceeding
50 mm), samples with values below approximately 30% have negative SHAP values, while
samples with values above 30% have positive SHAP values (Figure 8b). In general, the
SHAP value rises as the value of ProRain increases. It can be observed from Figure 8c
that samples with MaxRain (maximum daily rainfall) values of more than approximately
200 mm exhibit positive SHAP values, revealing that the model is more likely to predict a
higher probability of TCDL when it encounters an extreme rainfall event. From Figure 8d,
it is evident that there appears to be a quasi-linear relationship between NET (internet per
10,000 people) and its corresponding SHAP values. The SHAP value decreases as the value
of NET increases when the NET value is less than approximately 48.
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3.2.3. Probability Waterfall Plots for Single Samples

Figure 9a–c display the probability waterfall plots for three samples of low, moderate,
and high TCDL classes, respectively. The total probability value (f(x)) for each sample is
marked in black at the top right and calculated using the SHAP value. Additionally, the
factors that have positive influences on the total probability are depicted in magenta, while
the factors that have negative influences are represented in light blue, along with their
corresponding probability values.
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In Figure 9a, the highest positive probability value of 0.46 for a test sample in the
low class of TCDL is produced by ProRain (proportion of stations with rainfall exceeding
50 mm) with the value of 0. Additionally, values of 75.48 for MedBeds (beds of medical
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institutions per 10,000 people) and 33.4 m/s for MaxWind (maximum wind speed) also
result in high positive probability values. On the other hand, for a test sample in the
moderate class (Figure 9b), the ProRain value of 42.86% produces a negative probability
value when compared to that in the low class. For the sample in the high TCDL class
(Figure 9c), factors such as MaxWind with a value of 49.3 m/s and MaxRain (maximum
daily rainfall) with a value of 303.5 mm generate positive probability values of 0.37 and
0.18, respectively, illustrating a prediction of high TCDL susceptibility. Overall, it can be
concluded from Figure 9c that samples with a value of MaxWind exceeding 30 m/s, a
value of MaxRain exceeding 200 mm, and a value of ProRain exceeding 30% generally
have a high risk of TC disaster, which is also confirmed in the SHAP dependence plot
(Figure 8).

4. Discussion

In natural disaster research, ML algorithms have gained prominence as one of the
most successful strategies. The prediction capabilities of single-model and ensemble-
model classifiers (NB, SVM, RF, LightGBM) for generating the TCDL grade are compared
in this study. LightGBM, based on the GBDT algorithm, exhibits superior performance
compared to the other classifiers in all performance criteria. Other scholars have also
indicated that GBDT-based ensemble classifiers surpass the other tree-based ensemble
classifiers [23,30]. However, the results of Zhang et al. [36] showed that RF, based on the
bagging algorithm, demonstrates the best performance when compared to other tree-based
models. Hence, more comparisons are necessary to determine the suitable classifiers for
natural disaster assessment.

The indicators of hazard, vulnerability, and resilience are incorporated into the system
for estimating TCDL grades. According to the SHAP value, ProRain (proportion of stations
with rainfall exceeding 50 mm) and MaxWind (maximum wind speed) are the two most
important contributing factors, followed by MaxRain (maximum daily rainfall), MedBeds
(beds of medical institutions per 10,000 people), and ProWind (proportion of stations with
wind speed exceeding 14 m/s). Moreover, the factors of hazard and resilience have larger
SHAP values than vulnerability in general, indicating a greater contribution to TCDL
grade prediction. Similarly, Ye et al. [15] have found that the effect of maximum wind
speed during TC on economic losses is greater than that of asset value and per capita
GDP. Nevertheless, this claim will vary in different regions with respect to different natural
hazards [13,14,36].

For the low class of TCDL, events characterized by higher values of ProRain (pro-
portion of stations with rainfall exceeding 50 mm), MaxWind (maximum wind speed),
NET (internet per 10,000 people), and CropArea (area of agricultural crop sown) display
negative SHAP values. Conversely, events with higher values of ProWind (proportion
of stations with wind speed exceeding 14 m/s), TEL (telephones per 100 people), and
MedBeds (beds of medical institutions per 10,000 people) exhibit positive SHAP values. As
a result, ProRain, MaxWind, NET, and CropArea have an adverse impact on the likelihood
of the low TCDL class, while ProWind, TEL, and MedBeds have a favorable influence on
it. For the moderate class, PCGDP (per capita GDP) and CropArea have positive SHAP
values, suggesting a positive impact on the likelihood of a TC disaster event. It is noted for
the high class of TCDL that MaxWind, ProRain, and MaxRain (maximum daily rainfall)
values have a positive impact on the prediction ability, which is contrary to the low class.
Moreover, events with values of MaxWind exceeding 30 m/s, ProRain greater than about
30%, and MaxRain of more than about 200 mm tend to produce positive SHAP values,
implying a positive contribution to the probability of TCDL.

5. Conclusions

Tropical cyclones are among the most challenging natural hazards to be predicted due
to multiple factors and the complex nonlinear relationships between them. Therefore, the
assessment of TCDL is essential for TC disaster prevention, risk mitigation, and decision-
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making. The primary objective of this study is to develop a model for estimating TCDL
grades based on ML algorithms and enhance the transparency and explainability of predic-
tion process by using XAI approaches. This will allow decision-makers to transform their
perception of ML as a black box into a transparent and explainable technology, enabling
them to make informed judgments based on XAI interpretation. The main findings of the
study are as follows:

• Among the four ML models (LightGBM, RF, SVM, NB), LightGBM demonstrates
superior performance, achieving the highest values for accuracy (0.86), recall (0.83),
precision (0.83), and F1 score (0.83).

• For the estimation of all three classes (low, moderate, high) of TCDL, ProRain (pro-
portion of stations with rainfall exceeding 50 mm) and MaxWind (maximum wind
speed) exhibit notable significance. And their contributions to TCDL grade prediction
are approximately twice as substantial as those of other feature factors. In contrast,
the impact of vulnerability factors is relatively lower when compared to hazard and
resilience factors in general.

• Specifically, the impact of each feature factor on the model’s prediction varies across
in the low, moderate, and high classes of TCDL. In terms of the high class, events
characterized by MaxWind (maximum wind speed) with values exceeding 30 m/s,
MaxRain (maximum daily rainfall) with values exceeding 200 mm, and ProRain
(proportion of stations with rainfall exceeding 50 mm) with values exceeding 30%
tend to present a higher risk of TCDL.

• Future work will focus on incorporating remote sensing data for enhanced cover-
age and spatial resolution, along with exploring other additive SHAP properties for
TCDL assessment.
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