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Abstract: With the rapid increase in unmanned aerial vehicles (UAVs), ensuring the safety of airspace
operations and promoting sustainable development of airspace systems have become paramount
concerns. However, research dedicated to investigating the population exposure risks of UAV
operations in urban areas and their spatial pattern is still missing. To address this gap, this study
evenly divides the urban space into uniform grids and calculates critical areas for two UAV types
within each grid. By integrating geospatial data, including buildings, land use, and population, data-
driven risk maps are constructed to assess the spatial distribution patterns and potential population
exposure risks of two UAV types and compare them with commonly used census units. The results
indicate that the mean time between failures (MTBF) for the selected generic and rotary-type UAVs
can be up to 9.04 × 108 h and 1.22 × 108 h, respectively, at acceptable risk levels, considering
uncertainties. The spatial pattern of population exposure risk exhibits spatial heterogeneity and
multi-scale effects in urban areas, aligning with population distribution. High-risk areas concentrate
in regions characterized by high population mobility, such as transport hubs, commercial service areas,
residential zones, and business districts. Additionally, the comparation emphasizes the potential
bias introduced by using census units in risk assessment, especially in regions with significant urban
build-up. This framework enables the evaluation of safety and acceptability across diverse urban land
use areas and offers guidance for airspace management in megacities, ensuring the safe integration
of UAVs in urban environments.

Keywords: unmanned aerial vehicle; risk assessment; risk map; population exposure risk; airspace
management

1. Introduction

Unmanned aerial vehicles (UAV) have been receiving significant attention due to their
many commercial and civilian applications, including precise agriculture, terrain mapping [1],
rescue, and delivery of foods or medical goods [2], among many others [3,4]. Unfortunately,
the use of unmanned aerial systems (UAS) in urban areas is strongly restricted by regula-
tions concerning unmanned operations in the civil airspace, primarily for safety reasons.
The two critical safety hazards posed by UAVs operating in urban low-airspace environ-
ments are midair collision with another aircraft and discontinuance or breakdown of flight
over a populated area [5]. The former risk (usually called air risk) is strongly related to
the level of integration for UAS operations in the National Airspace System (NAS). Air
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risk must be addressed through the appropriate certification of UAVs for operation over an
urban area, combined with robust and comprehensive airspace structure design and air
traffic management [6]. The latter risk to people and property on the ground due to the
hazard of discontinuance or breakdown of flight (usually called ground risk) is the focus
of this research. In this context, sustainable urban air traffic management is of paramount
importance. However, urban areas are characterized as central core regions with dense
population, high-value infrastructure, and a variety of associated socio-economic activi-
ties [7,8]. In addition, there are some technological difficulties, such as surveillance with
and communication with UAVs in low-altitude airspace, especially in urban very low-level
airspace [9]. Therefore, the complexity and uncertainty of urban environment operation
affects the process of large-scale application of UAVs.

In the field of manned aviation, the assessment of risk has been a topic of study for
several decades [10], and the population exposure risk (PER) is clearly defined as an equiv-
alent level of safety (ELS). Current policy to enable the integration process of UAVs into the
NAS is inspired by manned aviation [11]. ELS is calculated using the expected number of
fatalities on the ground per flight hour given the UAS operation [12]. Most studies have
used the ELS as a preliminary method for quantifying PER [13–15]. In particular, the Joint
Authorities for Rulemaking on Unmanned Systems (JARUS) has proposed the Specific
Operational Risk Assessment (SORA) [16], which is a novel classification evaluation frame-
work that integrates air and ground risks and mitigation measures. Related studies have
applied the SORA model to undertake applications in specific operational scenarios [17],
but the ground risk classification criteria within the SORA model lack specific and detailed
quantitative indicators, making it less generalizable. Therefore, in order to calculate ELS
more scientifically and reasonably, various studies have proposed various population expo-
sure risk models (PERM) [18]. These models mainly involve the combination of multiple
sub-models, including the probability of failure, the type of failure [13], the crash area
estimation [19], the protection of shelter (buildings, trees, etc.) [20], and the model of such a
crash resulting in a fatality [21]. However, accurately quantifying ground risk is challenging
due to the various factors that may impact the ELS, along with the associated uncertainties,
such as aircraft type, flight area, mission type, population spatial distribution, weather
conditions, etc. [22,23].

Risk maps, which incorporate risk assessment models and a Geographic Information
System (GIS) to visualize potential risk, have been employed in various fields, including
the identification and management of epidemic transmission risk, noise exposure risk,
flood risk, and air pollution exposure risk. For complex systems like UASs, PER assessment
approaches require considering all relevant factors associated with the geographical envi-
ronment in order to more accurately quantify the vulnerability and resilience to different
crash risks. However, few studies have utilized risk maps to quantify the PER of UAS
operation. Primatesta [13] generated a risk map through a probabilistic approach using
different UAV parameters, uncontrolled descent events, environmental characteristics, and
uncertainties on parameters. Kim [24] generated a risk map to compute the third-party
risk on the ground, which was used to determine the capacity of the corridor. Pang [25]
computed an integrated risk cost mapping for different flight height layers and developed
a cost-based path optimization model for reducing the risk cost. Risk maps show the spatial
distribution of PER, which is convenient for the evaluation of UAS operations in specific
scenarios [26]. To quantify population density, most previous studies used the uniform
density value based on census data [20]. Although uniform data are simpler to get, they do
not accurately reflect the population distribution at a finer spatio-temporal resolution [27].
Furthermore, the above studies did not further explore and analyze the risks from the
perspective of functional urban areas. Specifically, each urban administrative/census unit
consists of many components (e.g., buildings, streets, green space, and blue space), all
of which show a great difference in spatial distribution and have significant impact on
the quantification of risk. The geographical data examined in this study mainly comprise
point or polygonal elements, such as building footprints, incident points, and impact areas,
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which are typically modeled as vector elements. The spatial grid model represents a highly
intuitive means to assess risk, facilitating visualization and quantification. Unlike a vector
model, a spatial grid-based map can partition space into smaller cells, enabling a more
detailed analysis of the spatial patterns of risk.

The applications of geospatial big data have gained tremendous popularity in recent
years, thereby providing new opportunities to produce accurate gridded population and
urban land use datasets at finer spatial resolutions [28,29]. Many high-quality population
datasets have been produced and are available in finer spatial detail [30], such as Gridded
Population of the World (GPW) [31], LandScan [32], and WorldPop [33]. To fill the deficiency
of fine-scale urban PER analysis of UAV operations, this research utilized grid-based risk
maps combined with the high resolution of population and land use details to (1) assess the
ground impact of two types of UAVs, (2) explore the PER distribution pattern characteristics
and reveal the high PER hotspot from the perspective of functional areas, and (3) explore the
risk and disparities based on different spatial units. The framework of this study is shown
in Figure 1. The research contributes to existing literature by expanding the application
of multisource geospatial data in UAS risk assessment and management research, and
its novelty is that it expands the literature by providing a high-resolution quantitative
model to assess the exposure risk of UAV operations based on a combination of the GIS
and ground risk models. The findings offer potential implications for urban air mobility
management and facilitating the large-scale adoption of UAVs.
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Figure 1. The framework of the study.

The structure of the paper is as follows: Section 2 introduces the study area, data
preprocessing for model inputs and the population exposure risk model. Section 3 presents
the results, which are subsequently discussed in Section 4. The paper concludes with a
summary of the results and their implications for future research.
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2. Materials and Methods
2.1. Study Area

Hangzhou, the provincial capital of Zhejiang, is a bustling metropolis in East China
situated in the southern Yangtze River Delta and is well known as a major hub for e-
commerce in China [34]. Its low average elevation provides advantageous conditions
for the operation of UAS (Figure 2c, digital elevation model (DEM)). These favorable
geographical features, combined with a well-established digital economy, provide a robust
foundation for UAS operation. In recognition of these advantages, the Civil Aviation
Administration of China has granted Hangzhou the first-ever specific unmanned aerial
vehicle commissioning letter and unmanned aerial vehicle logistics distribution business
license in China.
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Figure 2. Location and environment of Hangzhou and study area. (a) Location of the study area
(red-line boundary) in Hangzhou (white-line boundary). (b) Map of county administrative units in
the study area, with no-fly zones as red polygons. (c) shows the elevation of the study area.

2.2. Generation of Population Exposure Risk Map

In our framework (shown in Figure 1), the risk map was created by dividing the study
area into uniform cells and assigning a risk value to each cell. The cells correspond to
geographic coordinates and various geographical attributes, such as population, shelter,
and building footprints, were incorporated to capture the features of the area of interest.
The generation of the PER map for low-altitude UAV operations involved combining the
PERM with these geographical layers, as described in Sections 2.3.1 and 2.3.2.

2.2.1. Geographical Data

Population density layer: In Figure 3, we present the population data of the study
area at various scales. The census data (shown in Figure 3a) at the sub-district level were
obtained from the Hangzhou Bureau of Statistics. Additionally, we present the population
grid datasets: WorldPop (spatial resolution is 100 m, in Figure 3b, https://hub.worldpop.

https://hub.worldpop.org/
https://hub.worldpop.org/
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org/, accessed on 20 July 2022). Since the horizontal distance of a small UAS crash is
generally less than 100 m, this paper finally used the WorldPop dataset as the population
density layer in order to inscribe a more accurate population exposure risk map.

Sheltering layer: When estimating the UAV fall impact of the people on the ground, it
is necessary to consider the shelter effect associated with the land cover. To characterize the
land cover types in each risk map unit, we used the 10 m Finer Resolution Observation and
Monitoring of Global Land Cover (FROM-GLC) products [29]. Urban building geospatial
data were obtained from OpenStreetMap (https://www.openstreetmap.org (accessed on
20 June 2020, shown in Figure 4d)).

No-fly zone layer: Most related study used the no-fly zone to help people identify
areas where they cannot operate a UAV. No-fly zones are typically deter-mined by national
regulation agencies, nature-sensitive areas, security areas, airports restrictions, and tempo-
rary restrictions due to major sporting events [35]. In this study, we assumed that there was
no temporary no-fly zone in the study area except for the clearance area of civil airports [9]
(Figure 2b).
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Because of their different sources and formats, all data were further processed by
unification of the geographic reference using the WGS_1984_UTM_Zone_51N. In addition,
the vector data from the input geographical data layer were rasterized and the raster size
was unified to 100 m as the uniform resolution for the grid-based risk map.

2.2.2. Data Processing for Risk Analysis

In order to solve the problem mentioned in introduction and to estimate the popula-
tion spatial distribution and shelter factor more accurately, it was necessary to combine
and further process the high-resolution geographical data in Section 2.2.1. As the main
land cover type in the study area (shown in Figure 4a), impervious surfaces are defined
as artificial structures closely related to the population that contain building roofs, roads,
and industrial areas, and the sheltering factor of these subareas varies significantly [28].

https://hub.worldpop.org/
https://hub.worldpop.org/
https://www.openstreetmap.org
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Therefore, in this study, impervious surfaces were further subdivided, as were building
roofs with a high sheltering effect and other areas with high exposure risk (shown in
Figure 4b). Therefore, to more accurately estimate the PER, based on related research [36],
we allocated the population density distribution weight and sheltering factor (shown in
Figure 4) according to the land cover area, which portrays the distribution of the popu-
lation in different types of land cover within the risk map units and the corresponding
sheltering factor.
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In order to cover the various types of UAVs available on the civil market that can be
licensed for airworthiness in urban areas, we identified two different types of materials
and configurations, defined as generic and rotary UAVs, respectively, in the present work,
in terms of weights, dimensions, and configurations. The generic UAV (Zhihang V330,
Shenzhen, China) selected for this study combines the superior aerodynamic performance
of fixed-wing with the vertical take-off and landing function of multi-rotor, which can
quickly take off and land vertically in complex geographical environments. A summary of
the main configuration parameters of used UAVs is shown in Table 1. All of the data were
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obtained from the official manual. The PERM (in Section 2.3) and experiments were then
conducted accordingly with the two individual groups.

Table 1. Population density distribution weights and sheltering factors in different land cover types.

Land Cover Type Population Density Weight 1 Sheltering Factor 1

Cropland 0.02 0.5
Forest 0.03 1.5

Grassland 0.02 0.5
Shrubland 0.02 0.8
Wetland 0.01 0.2

Water 0.02 0.2
Imperious area 2—outdoor 0.3 0.3
Imperious area 2—indoor 0.5 4

Bare land 0.03 0.2
1 Population density weight and sheltering factor are both dimensionless quantities that participate in the
computation of the model. 2 Impervious area is defined as artificial structures closely related to the population
that contain building roofs, roads, and industrial areas.

2.3. Population Exposure Risk Model

For the purposes of this study, population exposure risk is defined as the likelihood
that a particular type of UAV operating in a specific area poses a risk of injury or death to the
people on the ground. The PER model for a UAV is based on a sequence of three conditional
events: (1) the loss control of the UAV that leads to an uncontrolled crash on ground,
(2) the total effective casualty area of the UAV body or fragment and the corresponding
number of people affected, and (3) casualties caused by a crash on people after the shelter
(building, tree, etc.) protection effect [5,11,13,20]. The probabilistic expectation of the
serial combination of the three events describes the expected number of fatalities per
hour of operation of the UAS [14], referred to as the expected safety level (ELS). For
manned aircraft, the updated fatality rates based on National Transportation Safety Board
(NTSB) data for the period of 1983 to 2006 are closer to 10−7 per hour, including the
fatalities after emergency landings, ditching, and other situations [11]. In order to achieve
acceptance by the authorities or the public, most studies have used ELS for GRM that are
an order of magnitude higher than those required for manned systems, at 10−8 fatalities
per hour [14,15]. Given that the estimation of failure probabilities is beyond the scope of
our study, we adopted a predetermined minimum acceptable ELS of 10−7 in our model.
Subsequently, we computed the minimum mean time between failures (MTBF) as a measure
to evaluate the PER.

ELSg =
1

MTBF
× Ne × Pf (1)

where ELSg is defined as the number of the ground fatalities per flight hour. Ne is the
number of people that may be impacted by the debris or body of the UAV. It is a function
of population density and the area exposed to the crash. Pf represents the probability of
the individual suffering fatal injuries caused by the crash. It depends on the kinetic energy
of the crashed UAV at the impact point and the sheltering factor.

More details of the two main components of the model are given in Sections 2.3.1
and 2.3.2.

2.3.1. Number of People Exposed to the Crash

In order to more accurately assess the number of people exposed to the crash on the
ground, it is essential to evaluate the population distribution and the geometric area of the
UAV crash (critical area, CA). Urban population distribution is a parameter that is closely
coupled with land use type [37]; the details are described in Section 2.2.2. With regard
to the CA model, the JARUS model combines the RTI (Research Triangle Institute) [38]
and NAWCAD (Naval Air Warfare Center Aircraft Division) [39] models and uses as few
parameters as possible to analyze the CA of the UAV (Figure 5).
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Figure 5. Critical area assessment model of unmanned aerial vehicle crash for generic and ro-
tary types.

In Figure 5, the left and right sides correspond to the ground impact process for two
types of UAVs. For the generic type, the length of the projection of its critical area in the
horizontal plane consists of glide (where the aircraft is still airborne) and slide (where
the aircraft is moving on the ground) distance. Moreover, due to the special aerodynamic
properties of rotary UAVs, the glide distance will also be zero.

As given in Figure 5, Rp is the safe buffer zone of an average standing person
(hp = 1.75 m) and Lwingspan/2 is the maximum radius of the UAV dimension. A and
C in Figure 5 depict two positions of a circularized flat piece, A when it is hp feet above
ground and C at impact. The glide distance (AC) is given as.

vhorizontal = vimpact cos θ (2)

dglide =
hp

tan θ
(3)

When a UAV collides with the ground in a vertical direction, i.e., θ = 90 deg, the glide
distance dglide will be zero. However, in practical collision scenarios, such an occurrence
is rare. Therefore, the glide distance is a parameter that is influenced by the height of the
human and the angle of impact. In addition, the combined radius considering the person’s
safe buffer is defined as

RD = Rp +
Lwingspan

2
(4)

The part from C to D represents the sliding aircraft slowing down to a velocity at
which the kinetic energy is no longer lethal. The maximum non-lethal kinetic energy is
Knon−lethal , which gives the sliding aircraft a maximum non-lethal speed of

vnon−lethal =

√
2Knon−lethal

m
(5)

where m is the mass (this study uses the maximum takeoff mass for conservative estimation)
of the UAV, assuming −Cgg represents the acceleration experienced by the aircraft during
the slide process. Cg is the friction coefficient associated with the materials between the
aircraft and the ground. The reduced residual horizonal speed is given by multiplication
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with the coefficient of restitution e. Therefore, the time from impact to reaching non-fatal
velocity is

tsa f e =
vnon−lethal − evhorizontal

−Cgg
(6)

If tsa f e becomes negative (which will happen if the horizontal impact speed is less than
the maximum non-lethal speed in Equation (10)), it is set to zero. The slide distance with
reduction during the time tsa f e is

dslide,reduced = evhorizontaltsa f e −
1
2

Cggt2
sa f e (7)

With the combination of glide and slide, the critical area of the JARUS model can be
estimated with the following equation:

Ac = 2RD(dglide + dslide,reduced) + πR2
D (8)

Therefore, we used the JARUS model [16] and the land use type-based population
distribution model to assess the number of people exposed to the crash in a risk map grid,
which can be defined by Equation (1).

Nexp osedi
= σ × Acritical ×

Ngrid × wlandusei

Alandusei

, i = 1, 2, . . . , n (9)

where Nexp osedi
is defined as an estimation of the number of people exposed to an uncon-

trolled failure in the land use type i. σ is the estimated bias that in a critical area is assessed
with the wind effect and the number of fragments. Based on the technical reports from the
FAA [40], σ = 1.3. Acritical is the critical area in the JARUS model (illustrated in Figure 5
and calculated by Equations (3)–(9)). Ngrid is the number of people in the risk map grid
unit.wlandusei

is the population distribution weighted coefficient of land use type i. Alandusei
is the area of land use type i within the risk map grid unit.

2.3.2. Probability of Fatality

Previous research has employed parametric models to examine the risk of injury and
fatalities. Two established indicators used to quantify head injuries from impact are the
head injury criterion (HIC) and the Abbreviated Injury Scale (AIS) [21]. However, crashes
caused by operating in urban areas do not necessarily cause direct damage; for instance,
trees and buildings may provide shelter and thus increase the chances of survival. A
drawback of the above model is that it is difficult to adjust it to take the sheltering effect
into account. Dalamagkidis, Valavanis, and Piegl [11] proposed a model to assess the
probability of fatality as a function of kinetic energy at impact that also takes into account
sheltering and the correction factor k to improve the estimates for kinetic energy. This
model is given by:

Pf atality =
1 − k

1 − 2k +
√

α
β

(
β

Eimpact

) 3
Ps

, k = min

1,

(
β

Eimpact

) 3
Ps

 (10)

where Ps represents the shelter factor, whose value is in the range of (0, ∞). The higher
values imply a better sheltering effect and a lower probability of fatality for the same kinetic
energy. k is a correction factor used to improve the estimates provided for low kinetic
energy. Parameter α refers to the impact energy required for a 50% probability of death
when Ps equals 6. Parameter β corresponds to the impact energy required to cause death
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when Ps reaches zero. Based on the fatality limit defined in technical reports [41], β = 34 J.
Eimpact is the kinetic energy at impact, computed as:

Eimpact =
1
2

mv2
impact (11)

where m is defined in Equation (5) and vimpact is the impact velocity at crash.

2.4. Statistical Methods

First, we employed global spatial autocorrelation analysis to examine the overall cor-
relation and variations of population exposure risk (PER) in the study area. Subsequently,
local spatial autocorrelation analysis was conducted to identify cluster patterns of PER. To
investigate the spatial dependence between PER and other urban geographical features, we
utilized global bivariate Moran’s I. This measure assesses the spatial correlation between
the population and PER across the entire study area. The calculation of Bivariate Moran’s I
necessitates the use of spatial weight matrices, which represent the spatial relationships
between the locations where the two variables are measured. In our study, we employed
a spatial weight matrix based on queen contiguity with a first-order neighbor defined in
a 3 × 3 matrix. Bivariate Moran’s I ranges from −1 to 1, with values close to 1 indicating
strong positive spatial association, values close to −1 indicating strong negative spatial as-
sociation, and values close to 0 indicating random or weak spatial association. Permutation
tests were conducted with 999 permutations to assess the statistical significance of bivariate
Moran’s I (assigned at p < 0.05). Additionally, a Kruskal–Wallis analysis was performed to
identify significant differences in PER among different urban functional areas (assigned
at p < 0.05). The relevant statistical analyses were conducted using the scipy and pysal
packages in Python 3.8.

3. Results
3.1. Assessing the Critical Area of UAV Crash

According to the estimation method in Section 2.3.2, the critical area is mainly deter-
mined by the weight and size of the UAV, the height and buffer radius of the ground person,
the friction, and the angle and velocity at the impact point on the ground. In this study,
the critical area was estimated using the iso-parametric method described in SORA, with
impact angles and velocities ranging from a set minimum to maximum for both generic and
rotary UAVs. The weight of the UAVs was estimated from the maximum takeoff weight
listed in Table 2, with the height of the ground person assumed to be 1.75 m and the risk
buffer radius set to 1 m. The friction coefficients were set to 0.6 and 0.9 for the generic and
rotary UAVs, respectively, based on their material and shape. The results of this estimation
are displayed in two-dimensional plots of critical area as a function of impact angle and
velocity, with separate plots for each type of UAV, as shown in Figure 6.

Table 2. UAV parameters for population exposure risk analysis.

Type Name Wingspan (mm) Length (mm) MTOM (kg) Speed (m/s)

Generic ZhihangV330 3300 1650 15 25
Rotary DJI Phantom 4 Pro 350 350 1.375 20

As depicted in Figure 6, the horizontal axis of the plots represents the impact angle
and the vertical axis represents the velocity, with colors indicating the estimated impact
area based on the model. Contours outlining typical critical areas are also added to the
plot. A pattern is observed between the critical area and two factors—impact angle and
velocity—for both experimental UAVs. As the impact angle increased, the effect of impact
velocity on critical area decreased, as evidenced by the white contour line appearing to
drop vertically when impact angle and velocity are small. This is due to an increase in
impact angle, resulting in a decrease in horizontal velocity and a reduction in slide area,
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leading to the critical area being primarily influenced by the glide. The generic UAV, due to
its greater weight and shape, had a larger critical area compared to the rotary UAV.
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The above results had a similar pattern to the weight-based approach and the aircraft
type-based study [15]. When data were collected from an actual accident or experimental
simulation [24], the critical area did indicate a good fit based on vehicle weight. The
difference in the two-dimensional probability density estimates of crash location between
fixed-wing and multi-rotor aircraft further supports this [13]. However, it should be
noted that using only the shape and mass of a UAV as the basis for risk classification
and management is insufficient, as there are multiple factors that influence the ground
kinetic energy. Therefore, it is necessary to conduct risk assessment for different types
of UAVs based on specific operational scenarios and UAV specifications. In considering
the uncertainties inherent in risk analysis, it is crucial to identify any sources of bias in
order to estimate the true mean rather than a biased estimate. Determining these biases is a
challenging task that often requires comparisons to empirical data or model results. Based
on the above study and the FAA technical report, we added bias parameters (in Equation
(9)) to estimate the critical area considering the dominant uncertainty sources, which be
considered a constant with a value of 1.4.

3.2. Population Exposure Risk Characterization

Due to the inherent difficulties in quantifying failure rates of different UAV types
operating in diverse regions, we adopted a substitution approach to assess the associated
risks. Specifically, we employed a fixed acceptable safety level of 10−7 within our model and
calculated the MTBF for each urban grid cell. A longer MTBF, indicating a lower required
failure rate, implies a higher risk of population exposure in the area. This highlights the
imperative for implementing more stringent UAV safety management measures in the
region. Utilizing the relevant parameters, we computed the risk values for each grid cell
within the study area, which were subsequently visualized geographically in Figure 7. To
facilitate a more comprehensive comparison, we present the minimum acceptable MTBF
for the two UAV categories from three different perspectives: city-wide, regional, and
micro-regional. To ensure consistency in our descriptions, we refer to the average failure
rate times at acceptable equivalent safety levels as the population exposure risk (PER) in
the subsequent sections of this paper.
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The population exposure risk demonstrated spatial heterogeneity for both generic and
rotary UAVs, with higher PER values observed in central urban areas, whereas relatively
lower PER values were found in the eastern and western regions. Noteworthy similarities
can be observed in the clustering patterns of PER and population density across various
scales. To confirm this spatial correlation, a global bivariate Moran’s I analysis was con-
ducted, revealing Moran’s I values of 0.83 (p < 0.01) and 0.86 (p < 0.01) for the population
exposure risk of rotary and generic UAVs, respectively, when considered alongside pop-
ulation density. These results indicate that regions with higher population density tend
to exhibit an increased population exposure risk not only within the region itself but also
in the surrounding areas. Statistical calculations were performed to determine the mean
and maximum PER values for the generic and rotary UAV types. The generic UAV type
demonstrated a mean PER of 6.48 × 107, with a maximum value of 9.04 × 108, whereas the
rotary UAV type exhibited a mean PER of 8.67 × 106, with a maximum value of 1.22 × 108.
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Examining the overall spatial pattern, it is evident that the PER values for the generic
UAV type exceeded our predefined acceptable range in almost all populated areas of the
study region. Conversely, the PER values for the rotary UAV type surpassed the acceptable
range solely within the core urban area. Further analysis at finer scales revealed that high
PER hotspots were concentrated in central urban areas characterized by a high population
density. In contrast, low PER areas were predominantly located in the northwestern and
southeastern parts of the study region, as well as in the central section of the Qiantang
River. Through additional examination, it became apparent that this clustering of PER
values primarily stemmed from the intense urbanization observed within the inner city,
resulting in higher population density and mobility. Notably, these areas possess a greater
capacity for providing shelter.

To further explore the characteristics of PER, we conducted an analysis to examine the
differentiation of PER across different urban functional areas. It is important to note that
we excluded airport facilities from our analysis, as they are designated as no-fly zones for
UAVs. In Figure 8a,b, we present the different urban functional areas from a general and a
local perspective, respectively. The “1-Other” functional area encompasses land cover types
such as arable land, forest, grassland, scrub, wetland, water, and bare ground, excluding
impervious surfaces. Figure 8c,d display the PER box line diagrams for the two types of
UAVs in the different urban functional areas, with the solid lines in the boxes representing
the 25th percentile, median, and 75th percentile.
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Figure 8. Comparation of population number and population exposure risk among the grid units at
each functional area in Hangzhou. (a) Urban land use and functional area from a global perspective
and (b) from a local perspective; (c) population exposure risk for generic type and (d) for rotary type.
The colors and numbers in the legends at the lower right corner correspond to the different functional
areas depicted in subfigures (a–d).

To compare the PERs of the different zones, we employed a non-parametric Kruskal–
Wallis test. Our results revealed a significant difference (p < 0.01) in PER between rotary and
regular drones across various urban functional areas. Figure 8b,c present zonal statistics
of PER levels for generic and rotary UAV operations in various urban functional areas.



Sustainability 2023, 15, 12247 14 of 20

Although both UAV types exhibited similar risk variations across these areas, the risk
associated with the generic type was approximately six times higher compared to the
rotary type. These discrepancies can be attributed to the distinct physical properties and
ground impact process inherent to each UAV type. Notably, high-risk areas for both types
of drones were predominantly concentrated in transport stations, followed by business
offices, commercial service areas, residential areas, educational institutions, sports and
cultural facilities, medical facilities, administrative centers, and industrial areas. In contrast,
areas with parks and other natural elements had relatively lower risk. These findings are in
line with our population size model.

3.3. Exploring the Risk and Disparities Based on Different Spatial Units

To assess the impact of using different spatial units for risk assessment, we compared
the risk of population exposure for both UAV types at the street-level census spatial cells
and 100 m spatial grids. Figure 9a,b illustrate a three-dimensional visualization of PER for
a generic-type UAV under the two spatial units, utilizing the three-scale perspective shown
in Figure 7. The results revealed a more pronounced averaging effect in the census faceted
cells, whereas the 100 m regular grids provided finer spatial detail as the scale became
finer. To compare the risk quantification values between the two spatial units, we utilized
spatial operations to subtract the quantification values of the census cells from those of the
regular grids.
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Figure 9. Spatial distribution of population exposure risks and assessment errors for census units
and 100 m regular grids. (a,b) Three-dimensional visualization of PER for generic-type UAV under
the census and grid spatial units; (c) Google Satellite; (d) spatial error map: census unit minus grid
cell space.

The resulting spatial distribution of risk deviations, depicted in Figure 9d, exhibited a
core–edge structure in urban spatial space. In urban fringe areas characterized by lower
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population density, the use of spatial units had a smaller impact on the accuracy of risk
assessment, resulting in fewer errors. However, in densely populated areas located in urban
centers, errors in risk assessment due to the choice of spatial units became more evident.
More specifically, the utilization of census units for risk assessment in central urban areas
featuring natural elements like rivers and grasslands tended to result in an overestimation
of risk, with values reaching up to 4 × 108. Conversely, in densely populated and built-up
areas, the use of census units led to an underestimation of risk, with values reaching up
to 2 × 108.

The univariate local Moran’s index was used to further analyze the risk of population
exposure and the spatial aggregation of risk errors. According to the cluster and outlier
analysis at the 1% significance level, the cluster distribution of the generic-type UAV (first
row of Figure 10) was almost identical to that of the rotary type (second row of Figure 10).
The figure visualizes the spatial clustering of population exposure risk within the study
area of Hangzhou. Most areas fell into HH and LL clusters, with a few areas in L-H and
H-L outliers. These patterns provide evidence of the positive spatial autocorrelation that
exists within the study area. For both scales of PER, areas characterized by the HH clusters
were concentrated in the urban core, whereas the LL clusters showed a clear pattern of
distribution in the urban periphery. These observations are in line with our previous
findings in Section 3.1.
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Furthermore, when scrutinizing the disparities in PER across the two scales, it became
evident that the HH and LL aggregation types were significantly prevalent within the
urban core. Remarkably, both HH and LL types of clusters correspond to the areas where
the census units exhibited a tendency to overestimate and underestimate risk aggregation,
respectively. In culmination, these results reflect the existence of positive spatial autocorre-
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lation of both population exposure risk and risk bias within the confines of the Hangzhou
study area.

4. Discussion
4.1. Population Exposure Risk Characterization

UAS will need to satisfy public safety standards. Level of risk is one of the commonal-
ities between most global certification authorities [27]. The risk level associated with these
platforms varies depending on their size and speed. As UAV increase in size and weight,
government regulations become more stringent, specifying the purpose of operations and
the level of training required for operators [42]. Certification authorities currently face a
deficiency in comprehensive analysis of operational data and reports on unsafe events
related to civil UAVs. This limitation can impede the decision-making process, resulting
in delays or biased results. Furthermore, many existing studies have employed simplistic
census units for risk assessment in urban areas, leading to distorted estimations [27]. This
discrepancy exacerbates the conflict between the demand for UAV operations in densely
populated regions and the inaccurate quantification of risk assessment in such areas. In
light of the relevant findings presented in this study, we contend that meticulous attention
should be paid to airworthiness certification and risk management when planning UAV
operations in urban areas. Tailored test and evaluation methods for each UAV type and a
deeper understanding of the capabilities and limitations of different UAVs are essential in
order to provide more accurate guidance for the sustainable management of aerospace. Fur-
thermore, assessment and certification processes must be tailored to different cities within
the same country or even distinct areas within a single city. Concerning the utilization
of spatial population data for assessments, it is recommended to employ high-precision
population grid data for densely populated areas. However, the criteria for delineating
sparse and dense populations may vary from country to country, making it challenging
to establish a uniform standard. It is advisable to characterize the intensity of population
activity in conjunction with the extent of urban built-up areas or the proportion of urban
impervious surfaces.

The spatial gridded model proposed in this study, which subdivides the urban area into
unique cells corresponding to MTBF, can serve as a foundation for airworthiness certification
and route planning for UAVs in various urban areas. To establish a systematic process,
it is recommended to initiate pilot applications in low-risk scenarios within urban areas,
prioritizing locations abundant in natural geographical elements such as rivers, woods,
and other similar features. This strategy facilitates the construction of a robust framework
for risk assessment in typical scenarios. With the accumulation of operational experience,
standardized scenarios (STS) can be systematically developed, ensuring a structured and
iterative process. Furthermore, this approach can be expanded in the future to encompass a
diverse range of standard scenarios tailored to different urban functional areas and applica-
tion scenarios. The adoption of such an approach significantly simplifies the assessment
and supervision process, providing a more efficient and comprehensive framework.

4.2. Model Advantages and Limitations

This study indicates that grid-based risk map analysis is a powerful method to analyze
the spatial pattern and hotpots of PER, which could be used to detect the high PER areas
in a city. Multi-source big data, such as high spatial resolution population grid data,
land cover/land use data, and city-scale building data, were used as the risk element
layers in this study to evaluate the PER of UAS operations. In the case of population, the
most important component of population exposure risk, we divided the geographic space
into a homogeneous grid, and within each grid the population distribution was further
subdivided according to various land cover types and buildings, which reduced overly
conservative estimates due to uniform population distribution. In addition, the grid can
be further appended with all kinds of attribute information, including high spatial and
temporal resolution geo-fencing and other information. The grid unit can be integrated
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with various risk assessment models, which can eventually be applied to path planning,
air traffic management, airspace resource management, etc. These assessed PER maps and
hotspots are particularly important for government managers or urban planners to mitigate
and reduce exposure risks of small UAS operations in urban low-airspace environments.
In addition to the advantages of the PER analysis of small UAVs operated in the urban
environment described above, this study has limitations.

Firstly, uncertainty concerning the population mobility and spatial pattern can be
attributed to numerical estimates in parameterizations and mismatches in spatial resolution
of various types of geographical data. Specifically, although we used higher-resolution
data and weighting factors for the population estimates, in practice, spatial variation in
population distribution is not static, with hourly, daily, weekly, and seasonal changes.
Such spatio-temporal effects have a major role in determining the variations in exposure,
especially in a populated area. It would be valuable to investigate and quantify these
weight factors using big data such as cellular networks and smart-ID data in future surveys.

Secondly, the critical area model in PERM consists of a rectangle as wide as the
combination of wingspan and person buffer and as long as the glide and slide distance.
However, there can be significant differences in the calculation of critical area in built-up
urban areas and open areas. For example, in areas with high levels of urban build-up,
UAVs may crash on buildings before falling to human height, resulting in debris that may
affect even larger physical areas.

Last but not least, the estimation of UAS failure is fixed in this study, but UAS failure is
much more complicated when combined with weather, electromagnetic environment, and
crowded buildings [5,23]. Furthermore, we did not consider that some UAS might have
recovery measures to address these failures (e.g., use of redundant systems). Although a
higher level of accident data and structural/functional information of hardware would
increase the potential sources of data available for the PER model, reliability data at this
level may not be accessible or may come at a significant monetary cost [11].

5. Conclusions

The present study underscores the significance of conducting quantitative risk assess-
ment for sustainable urban air traffic management, particularly in the context of integrating
UAS into national airspace. To this end, a geographic data-driven framework was devel-
oped to evaluate the population exposure risk (PER) associated with unmanned aerial
system (UAS) operations. The proposed framework adopts a human-centric approach
by generating a grid-based risk map to estimate PER within a city-scale area, taking into
account population size, crash area, and ground sensitivity to UAS crashes. The framework
was applied to two popular types of UAVs in Hangzhou, allowing for an investigation
of how UAV variables, shelter factors, and population characteristics influence PER in
different functional areas of the city. A comparison with census spatial units was also
conducted. The key findings of our study are as follows:

(1) Significant variations in PER were observed among different types of UAVs operating
in urban low airspace, attributable to their varying shapes, weights, and performance
characteristics. In central urban areas, the average MTBF was found to be 108 orders
of magnitude, indicating the need for stringent hardware and software management
requirements to maintain an acceptable level of risk.

(2) Spatial heterogeneity and multiscale effects were identified in the spatial pattern of
PER in urban areas, consistent with the distribution of the population. Areas with
high population mobility, such as transport hubs, commercial services, and residential
and business areas, exhibited higher PER. Conversely, natural land uses, such as
vegetation, water bodies, and croplands, generally presented lower PER levels.

(3) The utilization of census units in risk assessment within urban areas presents a po-
tential for biased estimation, particularly in regions exhibiting substantial levels of
urban build-up. Specifically, higher degrees of urban build-up are prone to the un-
derestimation of risk, whereas lower degrees can engender an overestimation. This
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highlights the significance of considering suitable spatial units to ensure accurate risk
quantification and assessment in areas with varying levels of urban development.

In future research, several directions can be pursued. Firstly, the PER model should
be expanded to encompass a wider range of UAV types and operation scenarios and
incorporate real-world accident data to facilitate more realistic and practical urban air
mobility management decisions. Secondly, the integrated modeling framework can be
further extended to consider vulnerability to UAS crashes based on different regions
and age groups. Additionally, future work should explore the utilization of high spatio-
temporal resolution population distribution data instead of static historical data, enabling
more accurate and multi-scale estimation of PER.
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AIS Abbreviated Injury Scale
CA Critical area
DEM Digital elevation model
ELS Equivalent level of safety
FAA Federal Aviation Administration
FROM-GLC Finer Resolution Observation and Monitoring of Global Land Cover
GIS Geographic Information System
GPW Gridded population of the world
GRM Ground risk model
HIC Head injury criterion
JARUS Joint Authorities for Rulemaking on Unmanned Systems
MTBF Mean time between failure
NTSB National Transportation Safety Board
NAWCAD Naval Air Warfare Center Aircraft Division
PER Population exposure risk
PERM Population exposure risk model
RTI Research Triangle Institute
SORA Specific Operations Risk Assessment
UAS Unmanned aerial system
UAV Unmanned aerial vehicle
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