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Abstract: Cowpea fodder has been one of the favored livestock forages for centuries in sub-Saharan
Africa, particularly in Senegal. However, little research has been conducted on quantifying the
nutritional quality of cowpea fodder because of the costly wet chemistry analysis. The main objective
of this study was to develop predictive equations for a sustainable quantification of the nutritional
quality of dual-purpose cowpea fodder using near infrared spectroscopy (NIRS) and to investigate
the influence of cropping system, fertilizer, genotype, and their interaction on biomass yield and
cowpea forage nutritional value. In this study, 120 samples from a dual-purpose cowpea variety trial
were used to develop NIRS equations to estimate forage quality parameters including concentrations
of crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), calcium (Ca),
phosphorus (P), potassium (K), and iron (Fe). Partial least squares (PLS) regression generated
prediction equations using NIRS wavelength measurements, and reference wet chemistry analysis
from calibration samples were developed. The PLS prediction equations for the different forage
quality parameters had an R2 of calibration 0.94, 0.93, 0.88, 0.63, 0.69, 0.87, and 0.94 for CP, ADF, NDF,
Ca, P, K, and Fe, respectively. Using these prediction equations, correlation of the predicted values
of the calibration subset and the prediction test subset resulted in significant positive relationships,
with R2 of 0.83, 0.74, 0.70, 0.63, 0.59, 0.75, and 0.83 for CP, ADF, NDF, Ca, P, K, and Fe, respectively.
The corresponding RMSE of these relationships was 0.91, 2.68, 3.45, 0.23, 0.06, 0.11, and 100 for CP,
ADF, NDF, Ca, P, K, and Fe, respectively. The range and mean concentrations of the calibration
subset overlapped with that of the prediction subset for all parameters evaluated. Cross-validation
procedures indicated good correlations between wet chemistry analysis and NIRS forage quality
estimates. Results of the second experiment showed that the cropping system had no significant
effect on cowpea forage yield and nutritive value. However, cowpea variety and fertilizer, both
individually and their interaction, had a significant effect on fodder yield and cowpea forage quality.
We conclude that the NIRS calibration equations developed can be used to accurately predict the
cowpea forage quality parameters evaluated in this study.

Keywords: dual-purpose; cowpea; forage quality; near infrared spectroscopy

1. Introduction

Cowpea (Vigna unguiculata (L.) Walp) is among the most important legume crops
grown worldwide, with much of the current production in sub-Saharan Africa (SSA) [1]. It
is native to the African continent and contributes to food security in SSA immensely because
cowpea’s entire aerial section (grain, green pods, and leaves) is edible [2]. The current
estimated worldwide land used for cowpea production is about 14.5 million hectares [3],
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with approximately 80% cultivated cowpea acreage (11.4 million hectares) located in West
and East Africa [4]. However, cowpea yields in SSA remain very low due to poor soils, low
inorganic fertilizer or manure inputs, and the lack of improved varieties [5].

Cowpea’s drought tolerance, nitrogen (N) fixing ability, adaptability to different crop-
ping systems, and nutritional and economic value make it a suitable crop for smallholder
farmers with limited resources, who are mainly located in the semi-arid regions of West
Africa [6]. Cowpea serves a dual-purpose role as a source of feed for livestock and a food
and protein source for human consumption [7]. In the semi-arid regions in West Africa,
cowpea has been an integral part of traditional cropping systems, where grains (green or
dry) are used as food and haulms are fed to livestock as nutritious fodder [8].

In Senegal, cowpea mainly grows in low-rainfall regions (Louga, Thies, and Diourbel)
as it requires only a short duration from planting to harvest [9]. Cowpea’s adaptation to
sandy and infertile soils is another trait marking its potential adaptation as an important
crop in Senegal and the surrounding regions [10]. Cowpea fodder has been one of the
favored livestock forages for centuries, and its succulent leaves and immature pods are
consumed as vegetables in SSA, particularly in Senegal [11]. The sale of cowpea forage is a
good source of income for farmers in regions with greater demand for livestock fodder [12].

Cowpea fodder is a great source of protein as it may contain up to 19% crude protein on
a dry matter basis [13]. However, few research efforts have been conducted in quantifying
the nutritional quality of cowpea fodder in Senegal and most regions of West Africa because
of the costly wet chemistry analysis, which is not sustainable. Recently, near infrared
spectroscopy (NIRS) has been used to determine the nutritive value of many forage crops
and offers some advantages, such as high throughput, less sample preparation, ease of
use, sustainability, and non-destructivity [14,15]. The main objective of this study was to
contribute to the improvement of food and fodder in Senegal by developing predictive
equations for the nutritional quality of dual-purpose cowpea fodder using NIRS data and to
investigate the influence of the cropping system, fertilizer, genotype, and their interactions
on biomass yield and cowpea forage nutritional value.

2. Materials and Methods
2.1. Location and Experimental Design

Cowpea fodder samples used in this study were collected from a cowpea variety trial
(Experiment 1) comprising 20 cowpea varieties (C1 to C20) and a second study (Experiment 2)
comprising cropping system × genotype × fertilizer trial, which had 10 cowpea varieties
(Table 1). These field experiments were conducted near the National Center for Agronomic
Research (CNRA) in Bambey, Senegal (14.709874 N and −16.481225 W). The soil types in
Bambey are ferruginous tropical sandy soils rich in iron and slightly leached.

The experimental design of the first study, cowpea variety trial, was a split-plot
arrangement with three replications in randomized complete blocks. The main plots
were fertilizer treatments, and cowpea varieties were assigned to the subplots. The fer-
tilizer treatments were of two levels, unfertilized control and recommended NPK dose
(9 kg N ha−1; 30 kg P2O5 ha−1; 15 kg K2O ha−1). The N fertilizer source used in the study
was urea (46-0-0); the P fertilizer source was di ammonium phosphate (0-25-0); and the
K fertilizer source was muriate of potash (0-0-61). Each main plot was subdivided into
20 subplots, corresponding to the 20 cowpea varieties. Data from this first experiment were
mainly used to develop NIRS to wet chemistry nutritive value prediction equations.

The second experiment was a split–split design with the main plots assigned to crop-
ping system of intercropped cowpea or pure cowpea. Subplots were the first 10 varieties of
cowpeas in Table 1, and sub-subplots were five fertilizer management treatments. Fertilizer
treatments were as follows: T1 (control); T2 (30 kg P2O5 ha−1 only); T3 (30 kg N ha−1,
30 kg P2O5 ha−1, and 30 kg K2O ha−1); T4 (15 kg N ha−1, 15 kg P2O5 ha−1,
15 kg K2O ha−1); and T5 (2.5 Mg ha−1 manure + 30 kg ha−1 each of NPK). Data from
this second experiment were used to study management, genotype, and fertilizer effects on
cowpea forage yield and nutritional value.
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Table 1. List of the different varieties used in the 2021 trials in Bambey, Senegal.

Variety ID Variety Name Type Source of Variety

C1 Yacine Grain ISRA, Senegal
C2 Leona Dual-purpose ISRA, Senegal
C3 Thieye Dual-purpose ISRA, Senegal
C4 Kelle Dual-purpose ISRA, Senegal
C5 Melakh Grain ISRA, Senegal
C6 Lizard Dual-purpose ISRA, Senegal
C7 Sam Dual-purpose ISRA, Senegal
C8 Ndiambour Grain ISRA, Senegal
C9 Pakaw Grain ISRA, Senegal

C10 Bambey 21 Grain ISRA, Senegal
C11 Mouride Grain ISRA, Senegal
C12 Diongama Grain ISRA, Senegal
C13 58-74F Fodder ISRA, Senegal
C14 Mougne Grain ISRA, Senegal
C15 66-35F Fodder ISRA, Senegal
C16 E-BC4STR1 Dual-use with forage dominance USA
C17 E-BC4STR2 Dual-use with forage dominance USA
C18 E-BC4STR5 Dual-use with forage dominance USA
C19 E-BC4STR8 Dual-use with forage dominance USA
C20 E-BC4STR11 Dual-use with forage dominance USA

The first experiment had only two factors, variety and fertilizer, and the second
study had three factors: cropping systems; variety; and fertilizer. Even though the two
experiments were independent, in a way, the first experiment is a subset of the second
study because the second study included the fertilizer and variety factors (plus crop-
ping systems) in its design. Therefore, in this current paper, we addressed the impact
of cropping system, variety, and fertilizer on forage nutritive quality from the second
study that has more factors, and we used the data from the first study (mainly) to develop
predictive models.

2.2. Experimental Study Management and Sample Collection

Experimental plots were cleaned by plowing and harrowing to about 15 cm deep
with a tractor and incorporating previous crop residue. The crop was grown strictly under
rainfed conditions with millet as the previous crop. Sowing was carried out after July 15
when enough rainfall (>13.5 mm) had been received. Cowpea was planted at a seeding rate
of 40,000 seed ha−1 and at a spacing of 50 cm × 50 cm. Mechanical and manual weeding
were carried out to control weeds as needed. Fertilizer treatments were applied 25 days
after sowing.

At physiological maturity (RH Zadoks growth stage when 80% of matured pods have
turned color), cowpea pods, grain, and fodder were hand harvested from 40 plants in each
plot and oven dried for 2–3 days at 60 ◦C to a constant weight. Pods were separated from
the plants, shelled, and weighed. The remaining plant biomass was weighed and recorded
as fodder from each plot. The dried cowpea forage samples were then divided into two
subsamples: one subsample ground using a Wiley Mill (Thomas Scientific, Swedesboro, NJ,
USA) to <2 mm screen used for reference wet chemistry analysis; and the other ground
using a Cyclone Sample Mill (UDY CORPORATION, Fort Collins, CO, USA) to <1 mm for
the collection of NIRS data.

2.3. Collection of Spectra Data

Cowpea forage samples (size < 1 mm) weighing 5 g were transferred into a sample cup
and scanned in a Foss NIRSystem equipped with a sample transport module and a small
ring cup used to hold the samples during scanning. Data from reference wet chemistry
(RWC) analysis of the 2-mm samples were entered into the NIRS database to derive a
relationship with the absorbance spectra. The reflectance spectra were taken in the 400 to
2500 nm region and recorded as log(1/R) at 2 nm intervals (Figure 1). Characteristics of
the NIRS region include that it is very broad, highly overlapped, and visually difficult to
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distinguish [14,16]. WinISI II version 1.5 spectral analysis software (InfraSoft International,
Port Matilda, PS, USA) was used to scan and analyze.
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2.4. Wet Chemistry Analysis

All 120 dual-purpose cowpea forage samples from the cowpea variety and fertility
study were sent to a commercial laboratory for wet chemistry analysis to determine forage
nutritional quality parameters including crude protein (CP), acid detergent fiber (ADF),
neutral detergent fiber (NDF), calcium (Ca), phosphorus (P), potassium (K) and iron (Fe).
The CP, NDF, ADF, and minerals element content (Ca, K, P, and Fe) were calculated on a
dry matter basis. Briefly, CP was determined using a combustion procedure that result in
measurement of sample nitrogen content [17]. The nitrogen percentage was then multiplied
by 6.25 to determine the protein concentration [18]. The NDF and ADF concentrations
of each sample were determined with the ANKOM 200/220 Fiber Analyzer based on the
standard procedures provided by ANKOM Technology (Fairport, NY, USA) [19]. The
concentrations of Ca, P, K, and Fe in the cowpea forage samples were determined using
an inductively coupled plasma-atomic emission spectroscopy (ICP-AES) after the samples
were digested with a nitric–perchloric acid mixture [20,21].

2.5. Near Infrared Spectra Model Calibration and Validation

The near infrared spectra models and the establishment of the local equation for the
quantitative analysis of each forage nutritive value parameter were developed with the
120 fodder samples using the modified partial least squares (MPLS) regression and cross-
validation techniques. These techniques were used to calculate the correlation between
laboratory and spectral data. Outliers were excluded by MPLS as well. The center and
select methodology (CSM) was used to choose the 50 calibration subsamples. The center
methodology placed all scanned 120 cowpea fodder samples in mathematically similar
groups around an average or mean scan. The selection method mathematically chose
samples to represent a specific group. Different wave length intervals were used to generate
the calibration equations for the chemical components using the selected 50 subsamples.
The remaining samples not chosen for calibration equations (70 samples in the case) were
used for the prediction of nutritional compositions of cowpea forage samples.

When using NIR spectroscopy, excessive background often exists in the NIR spectra.
When necessary, a weighted multiplicative scatter correction (Weighted MSC), normal mul-
tiplicative scatter correction (Normal MSC), or detrend (DT) math treatment was applied
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to correct the scattering effect which optimizes the multivariate regression equations [22].
The mathematical treatment is given by the expression: D, G, S1, S2, where D refer to the
derivative order number, i.e., 0 for no derivative operation, 1 for the first derivative and
so on; G is gap, the number of data points over which derivation is computed; S1 is the
number of data points in the first smoothing; and S2 is the number of data points in the
second smoothing. S2 is set at 1 in the case of no second smoothing [23]. The collected
spectra data were transformed with several pretreatments before the calibration process.
The results were then applied to produce a calibration equation for each parameter, which
was then tested on the entire set of forage samples. Using this process, we validated the
models used and checked their prediction capacities.

The calibration model was evaluated using statistical parameters including the coeffi-
cient of determination in calibration (R2c), standard error of calibration set (SEC), standard
error of cross validation (SECV), correlation coefficient in cross validation (1-VR), and the
ratio of prediction to standard deviation (RPD). The optimum calibrations were selected
based on minimizing SEC and SECV. R2c is used as an excellent indicator of robustness and
model accuracy [24,25]. The best models obtained were also selected for each constituent
based on the highest R2c.

2.6. Data Analysis

Data analysis of the first Experiment was conducted in SAS. Cowpea genotype, fertil-
izer treatment, and their interaction effects on forage nutritive value were analyzed using
PROC MIXED procedure. Each response variable (CP, ADF, NDF, Ca, P, K, and Fe) was
modeled against fixed variables of genotype, fertilizer, and their interaction with replication
as a random effect variable. Genotype × fertilizer interaction was not significant, and data
from the first study were used to develop the NIRS prediction model. The dataset from
20 cowpea varieties helped to capture a range of variability in nutritive value among cow-
pea genotypes used in Senegal. Prediction of forage nutrient value from the NIRS equations
was conducted using regression. The regression analysis was conducted after a correlation
analysis so that the correlated parameters could be included in the model. Calibration and
prediction of databases were conducted using MPLS from NIRS. Descriptive analysis was
conducted using PROC MEANS procedure in SAS ver. 9.4 (SAS Institute, 2012, Cary, NC,
USA) to compare forage nutritive value from wet chemistry analysis with that predicted
with NIRS.

Data analysis for Experiment 2 was also conducted in SAS. Cropping system, cowpea
genotype, fertilizer treatment, and their interaction effects on forage yield and forage
nutritive were analyzed using PROC MIXED procedure. Each response variable (CP, ADF,
NDF, Ca, P, K, and Fe) was modeled against fixed variables of cropping system, cowpea
genotype, fertilizer treatment, and their interactions, with replication as a random effect
variable. For a significant (α = 0.05) main effect, a mean separation test was conducted
using Tukey’s honestly significant difference.

3. Results and Discussion
3.1. NIRS Prediction Equations against Wet Chemistry Analysis

Results revealed that the variability using the reference data of the studied parameters
fit within the range of variation of these parameters estimated using NIRS prediction
equations (Tables 2 and 3). For example, the mean ± SD for CP concentration of the full set
using RWC analysis and NIRS prediction equation were both 13.6 ± 2.5%. Overall, there
was a strong similarity between the values of the forage quality parameters predicted by
NIRS and those measured using the RWC method, with Ca and P measures showing the
weakest relationship. The results agreed with those reported by Harris et al. [26] when
comparing NIRS and wet chemistry methods for the nutritional analysis of horse hay.
Comparable accuracy and reproducibility for both approaches have also been reported by
Williams and Sobering [27].
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Table 2. Descriptive statistics of forage nutrient value of cowpea samples measured using reference
wet chemistry methods for the full, calibration, and prediction sets.

Variables
Full Set (n = 120) Calibration Set (n = 50) Prediction Set (n = 70)

Range Mean Range Mean Range Mean

CP (%) 5.7–19.3 13.5 ± 2.5 5.7–18.9 13.6 ± 2.8 8.7–19.3 13.5 ± 2.3
ADF (%) 35.6–67.1 52.9 ± 6.0 35.6–67.1 53.4 ± 7.1 39.5–63.7 52.6 ± 5.1
NDF (%) 43.4–83.9 59.8 ± 6.2 43.4–83.9 59.8 ± 7.9 49.7–72.3 59.7 ± 4.7
Ca (%) 1.2–3.8 2.3 ± 0.5 1.2–3.5 2.3 ± 0.6 1.4–3.8 2.4 ± 0.5
P (%) 0.1–0.6 0.4 ± 0.1 0.1–0.6 0.4 ± 0.1 0.2–0.6 0.4 ± 0.1
K (%) 0.2–1.9 0.8 ± 0.3 0.2–1.9 0.8 ± 0.3 0.3–1.6 0.8 ± 0.3

Fe (ppm) 180–2168 581 ± 350 193–2168 672 ± 473 180–1062 517 ± 206

Table 3. Descriptive statistics of forage nutrient value of cowpea samples measured with the NIRS
prediction equation for the full, calibration, and prediction sets.

Variables
Full Set (n = 120) Calibration Set (47–50) Prediction Set (n = 70)

Range Mean Range Mean Range Mean

CP (%) 5.3–18.7 13.7 ± 2.4 5.3–17.9 13.6 ± 2.7 9.1–18.7 13.8 ± 2.1
ADF (%) 38.6–69.9 53.3 ± 6.9 38.6–69.9 53.3 ± 6.9 43.5–66.5 53.3 ± 4.3
NDF (%) 44.5–87.9 60.1 ± 7.2 46.0–82.0 59.9 ± 7.8 44.5–87.9 60.4 ± 6.8
Ca (%) 1.0–3.3 2.3 ± 0.4 1.0–3.3 2.3 ± 0.5 1.6–3.1 2.4 ± 0.3
P (%) 0.1–0.5 0.4 ± 0.1 0.1–0.5 0.4 ± 0.1 0.2–0.5 0.4 ± 0.1
K (%) 0.1–1.5 0.8 ± 0.2 0.3–1.5 0.8 ± 0.3 0.1–1.2 0.8 ± 0.2

Fe (ppm) 216–1774 577 ± 272 216–1774 63 ± 355 239–973 536 ± 184

n, number of samples; Range, minimum value–maximum value; Mean, mean ± standard deviation.

Recently, prediction of forage quality parameters for several forage crops has been
investigated using NIRS [15]. The NIRS technique is fast and reliable compared with tradi-
tional analytical methods as it integrates laboratory value with spectral information [14].
However, some variables may differ significantly between the NIRS and RWC methods due
to the presence of complex high-molecular-weight organic compounds [28]. Spectroscopic
information of the same sample may differ due to differences in particle size and moisture
content, or due to presence of other biochemical compounds [29]. Based on the results that
were found from both methods (RWC and NIRS prediction equations), the cowpea forage
samples had wide ranges in the mineral composition and high SD values for the studied
elements. That wide range observed in the mineral composition values can be explained
by the diversity of the legume species, stages of maturity at sampling, and differences in
plant parts used, i.e., leaves versus stems [30].

3.2. NIRS Models Accuracy: Calibration and Cross Validation

Based on the spectral variability and the outliers pass, 1 sample was deleted for the
calibration of P and K, 2 for CP, ADF and Fe, and 3 for NDF out of the 50 samples of
cowpea originally selected for calibration (Table 4). The NIRS calibration performance for
CP, ADF, NDF, K, and Fe were considered great with high R2c of 0.94, 0.93, 0.88, 0.87, and
0.94, respectively, and medium-to-low R2c for Ca (0.63) and P (0.69). The high R2c (>0.8)
found for almost all the variables in this study except Ca and P indicated good prediction
from the NIRS calibration models developed in the present study. The SEC values were low
for all constituents. According to Hermansen et al. [31], the most accurate models are those
that have a high R2c and RPD and low SEC. Similarly, Lebot et al. [32] classified the use of
R2c for NIRS models and suggested that models with R2c values of 0.66 to 0.81 can only
be used for screening and approximate applications (quantitative predictions). However,
0.83 > R2c > 0.90 can be used for many applications, while models with values of 0.92–0.96
are suitable for most applications, including quality assurance, and models with R2c > 0.98
are usable in any application.
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Table 4. Statistics of the NIRS calibration equation of the minerals for best fit and cross validation.

Variables Math Treatment N SEC R2c SECV RPD 1-VR

CP Weighted MSC 2,8,8,2 48 0.67 0.94 1.38 2.0 0.76
ADF Normal MSC 2,8,8,2 48 1.92 0.93 3.57 2.0 0.76
NDF Normal MSC 1,4,4,1 47 2.74 0.88 3.49 2.3 0.83
Ca Weighted MSC 1,4,4,1 50 0.34 0.63 0.45 1.2 0.36
P Normal MSC 2,8,8,2 49 0.06 0.69 0.09 1.3 0.44
K Detrend 1,4,4,1 49 0.09 0.87 0.19 1.4 0.54
Fe Normal MSC 1,4,4,1 48 0.09 0.94 0.20 2.0 0.84

N, number of samples; MSC, multiplicative scatter correction; SEC, standard error of calibration; R2c, coefficient
of determination in calibration; SECV, standard error of cross-validation; RPD, ratio of performance to deviation,
1-VR, coefficient of correlation in cross validation.

In the current study, the result of R2c for CP, ADF, and Fe were in the range of 0.92–0.96;
NDF and K were in the range of 0.83 to 0.90; and the models for Ca and P had R2c values
between 0.66 and 0.81. According to Fagan et al. [33], a model is considered good enough
to predict a particular quality parameter of samples when the R2c is around 0.90, which
was the case for most variables in this study. The R2c values found in the current study
for CP and ADF were greater (R2c > 0.9) than those for the NDF constituents (R2c < 0.9),
which was in agreement with previous studies [34]. The CP content may be the most
widely measured variable in forage and feedstuffs. Previous studies have reported that
CP concentrations in forages could be well quantified by NIRS [35]. A higher prediction
accuracy using NIRS for CP in comparison to the other parameters was also reported by
García and Cozzolino [36], which suggests that the prediction equation developed in the
current study can accurately predict the CP concentrations of cowpea samples.

The NDF and ADF contents affect the intake and digestibility of forage by livestock,
which were considered to be two important limited factors for the estimation of the nutritive
qualities of feed and forage [14]. Previous studies showed that NDF and ADF concen-
trations could be well predicted by NIRS [36], but in the current study, the NIRS model
constructed for NDF (R2c = 0.88) was less accurate than that for ADF (R2c = 0.93). This
result differs from those previously reported by Despal et al. [37] in different fiber source
feeds (Napier grass, natural grass, rice straw, corn stover, and corn husk) and Rushing
et al. [35], who found a more accurate model for predicting NDF than for ADF. Lower
prediction accuracies using NIRS have been reported by Hoffman et al. [38], but this time
for both variables (NDF and ADF). Asekova et al. [15], in their studies argue, that some
calibrations with R2c < 0.7 may only be useful for screening. However, the R2c values of
CP, ADF, NDF, K, and Fe in the present study are large enough to allow good estimates of
these parameters using NIRS, thus rapidly predicting the nutritive value of cowpea forage.

Overall, it appears that the efficiency of the NIRS in predicting forage quality differs
from one parameter to another [39]. Even though the R2c value is a great statistical indicator
by which to assess the accuracy of the calibration model, it is not the best indicator for this
purpose, as it depends on the range [40]. Thus, the wide range observed in the mineral
composition values of the studied elements and within certain parameters in terms of
concentration can be explained by the diversity of the leguminous species, the stages of
maturity at the time of sampling, and the differences in the plant fractions (leaves versus
stems) used [31]. To overcome the shortcoming of the same sample giving different spectral
information due to its size, moisture, or mixtures, some authors have proposed that better
calibration equations may be obtained by using individual species or groups of similar
forage species instead [23]. For example, the predicted CP values in the current study are in
the range of 9.1% to 17.9% (Table 3), which is different from what other researchers, namely,
Okonya and Maass [41], observed, although they were working with different varieties
in sole-cropped cowpea, which ranged from 29.4 to 34.3%. This shows that the nutrient
content can also be influenced by environmental factors such as soil fertility, the amount of
available assimilates, the maturity at harvest, and the ability of the individual variety to
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develop a symbiotic relationship with the nitrogen-fixing bacteria in the root nodules [42]. It
was reported by Towett et al. [43], in their studies in Tanzania, that cowpea fodder samples
from Majimoto (location 1) had the lowest average CP content, while samples from Arusha
(location 2) had the highest. Additionally, the average CP content of the second harvest
was found to be the lowest, while the fifth harvest had the highest average CP content.

The performances of the cross-validation sets, expressed as “1-VR” and “SECV”, are
also shown in Table 4. The highest SECV of 3.57 was obtained for ADF, while the 1-VR
was very poor for Ca (0.36) and P (0.44). The prediction capacity of the model obtained
was also evaluated with the RPD. It represented the ability of the NIRS model to predict a
substance. The values obtained for RPD were between 1.2 for Ca and 2.0 for CP, ADF, and
Fe. According to Despal et al. (2020) [37], an RPD value of more than 2 was categorized
as a relevant prediction of NIRS. The RPD result for NDF was greater than 2 (RPD = 2.3),
equal to 2 for CP, ADF, and Fe (RPD = 2.0), and <2 for Ca, P, and K. Though not measured,
the low RPD found in the prediction of Ca, P, and K (RPD < 2) in this study could be
due to the presence of polyvalent compounds that can alter the absorption bands of these
variables. Five suggested categories of prediction accuracy using RPD values are as follows:
(1) RPD < 1.5 indicates an unusable equation; (2) 1.5 < RPD < 2.0 indicates the ability of
prediction to distinguish between high and low values; (3) 2.0 < RPD < 2.5 indicate that the
model produced an “approximate” quantitative prediction; (4) 2.5 < RPD < 3.0 reflected a
“good” quantitative prediction; and (5) an RPD > 3.0 indicated an “excellent” quantitative
prediction (Williams, 2001) [44].

3.3. Correlation between RWC and NIRS Prediction

The calibration and prediction points for CP, ADF, NDF, K, and Fe are relatively
close to each other, with a good coefficient of determination (R2 = 0.70–0.83) between the
RWC analysis and the NIRS prediction methods (Figures 2 and 3). As for P and Ca, the
calibration and prediction points do not fit so well, which is reflected in the R2 values of
the calibration and prediction models (R2 = 0.59 and 0.63 for P and Ca, respectively). The
correlation equations between the predicted and measured concentrations for CP, ADF,
NDF, Ca, P, K, and Fe have corresponding RMSEs of 0.91, 2.68, 3.45, 0.23, 0.057, 0.106, and
100.66, respectively. The precision with which the NIRS predicted values matched the RWC
analysis using results from the remaining 70 cowpea samples confirmed that the validation
was as precise as those obtained by other authors [15,23,45,46] using forage legumes NIRS
and wet chemistry analyses (R2 close to 1). Using the criteria, the predictive ability of NIRS
equation models expressed by lower SEC and SECV with relatively high R2c and 1–VR
values was obtained for CP, ADF, NDF, and Fe in this study. Similar results were obtained
by Asekova et al. [15] and by Padhi et al. [47] regarding reliable prediction using NIRS to
predict nutritional value of forage. However, moderate useful calibration equations and
predictive ability were found for the Ca, P, and K models in the present study (Table 4).

3.4. Cropping System, Fertilizer, and Genotype Effects

Fertilizer and genotype each had an effect on the cowpea biomass yield and nutritional
value (Table 5). Considering genotype effects averaged across cropping systems and
fertilizer, the dual-purpose cowpea variety “Ndiambour” produced the greatest fodder
(1130 kg ha−1) and the best forage nutritive value in terms of CP, NDF, ADF, and P (14.2%,
55.6%, 44.5%, and 0.38%, respectively). Our finding was in agreement with Kumar et al.
(2018) [46], who concluded that forage quality depends mainly on its genetic trait (variety);
however, it can be improved by good agronomic practices such as the inter-cropping system.
Iqbal [48] found that appropriate agronomic management strategies are bound to increase
the forage yield as well as its quality attributes, particularly CP concentration.
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In this current study, there was no significant difference between the intercropping sys-
tem and the sole-cowpea system in terms of forage yield; this is in contrast to Alla et al. [49],
who reported that forage yields of cowpea were lower in intercropping with maize than
in the sole-cowpea system. However, Ba [50] found that intercropping forage yields were
greater than either species alone (maize/cowpea). In our study, the cropping system alone
had no effect on the nutritional value of cowpea, but its interaction with variety and fertil-
ization and fertilization alone influenced P and ADF concentrations (Figures 4 and 5). The
results found by Awad and Ahmed [51] demonstrated that intercropping cereals and cow-
pea significantly (p ≤ 0.05) increased cowpea forage nutritional quality, which disagrees
with our finding that management alone had no effect on nutritional quality unless it
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interacted with variety and fertilizer. Yadav et al. [52] found that maize and cowpea grown
together had a 20.4% higher CP compared to monoculture crops.

Table 5. Analysis of variance of cowpea biomass yield and nutritional value content by management,
genotype, and fertilization. Mean values within a column and treatment followed by the same letter
or with no letter are not significantly different (p < 0.05).

Cowpea
Variety

Fodder CP NDF ADF Ca Fe K P
kg/ha % % % % ppm % %

Yacine 400 c 14.6 a 58.1 cdef 46.6 bc 2.37 a 486 a 0.97 cd 0.32 bc
Leona 553 bc 12.9 bcd 60.8 abc 46.9 bc 2.12 a 456 a 1.03 bc 0.35 ab
Thieye 601 b 13.9 ab 57.5 def 45.3 c 2.27 a 440 a 1.06 bc 0.37 a
Kelle 440 bc 13.5 abc 58.7 bcde 45.2 c 2.20 a 407 a 1.07 ab 0.35 ab

Melakh 576 bc 12.5 cd 61.5 a 50.3 a 2.0 a 372 a 0.94 de 0.32 bc
Lizard 474 bc 13.8 ab 57.5 def 44.1 c 2.23 a 422 a 1.05 bc 0.37 a
Sam 508 bc 13.4 abc 59.9 abcd 46.6 bc 2.25 a 464 a 1.01 bcd 0.35 ab

Ndiambour 1130 a 14.2 a 55.6 f 44.5 c 2.17 a 416 a 1.00 bcd 0.38 a
Pakaw 626 b 11.7 d 60.9 ab 49.7 ab 2.15 a 414 a 0.87 e 0.30 c

Bambey 21 628 b 14.2 a 56.2 ef 44.7 c 2.15 a 438 a 1.15 a 0.37 a

Fertilizer treatment

No fertilizer 479 b 13.7 ab 57.4 a 47.3 a 2.23 a 457 ab 0.85 d 0.37 a
30P 517 b 13.1 c 58.7 a 47.6 a 2.24 a 473 a 0.92 c 0.34 b

30N–30P–30K 651 a 13.0 c 59.0 a 46.2 a 2.19 a 425 b 1.04 b 0.34 b
15N–15P–15K 676 a 13.4 bc 58.9 a 46.5 a 2.20 a 431 ab 1.01 b 0.35 ab

Manure 30 NPK 645 a 14.1 a 59.4 a 44.4 b 2.08 b 371 c 1.25 a 0.34 b

Effect

Management (M) 0.625 0.794 0.910 0.509 0.115 0.392 0.810 0.546
Variety (V) <0.0001 0.002 0.001 0.002 0.177 0.398 <0.0001 0.005

Fertilizer (F) <0.0001 0.003 0.077 0.000 0.020 0.001 <0.0001 0.045
M × V 0.273 0.290 0.730 0.725 0.550 0.661 0.596 0.998
M × F 0.105 0.190 0.089 0.042 0.703 0.588 0.739 0.198
V × F 0.500 0.200 0.388 0.071 0.479 0.464 0.452 0.280

M × V × F 0.141 0.144 0.092 0.268 0.164 0.573 0.346 0.039
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The effects of fertilizer application on fodder yield and forage quality across cropping
systems and varieties were also considered in this study. The treatments 15N–15P–15K
(T4), 30N–30P–30K (T3), and 2.5 t ha−1 manure + 30 kg ha−1 of each (T5) NPK yielded
the greatest fodder, which was 676, 651, and 645 kg ha−1, respectively (Table 5). Our
results also showed that fertilizer application increased fodder yields but decreased the
nutrient concentration of cowpea forage (Table 5). The decreased forage nutritive value
with fertilizer application could be due to dilution effect because of the increase in fodder
yield with fertilizer application. Awad and Ahmed [51] found that applying fertilizer had
no effect on forage productivity but significantly improved forage quality. Hasan et al. [53]
also showed that nitrogen fertilizer application significantly increased the nutritive value
of cowpea fodder and CP yield, as well as forage production. Increasing cowpea fodder
productivity with fertilizer application agrees with the findings of the current study.

4. Conclusions

In this work, we have developed NIRS equations to predict the forage quality of
cowpea varieties including CP, ADF, NDF, Ca, P, K, and Fe, and we were able to predict the
nutritional composition of independent samples. From the second experiment, we gained
insight into the effects of management, genotype, fertilization, and their interactions on the
nutritional value of cowpea fodder. From the results of Experiment 2, we conclude that
the cropping system by itself has no significant effect on cowpea forage yield and nutrient
value. However, cowpea variety, fertilizer, and their interactions do have a significant effect
on fodder yield and cowpea forage quality parameters.

The findings of the study show that NIRS could help reduce the need for conventional
wet chemistry procedures. However, when applying the developed calibration for new
materials, it is important to understand that their spectral variability may not yet be covered.
The high correlation between NIRS and wet chemistry analysis found in this study shows
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the potential use of NIRS for the prediction of these seven forage quality parameters of
cowpea varieties grown in Senegal.
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