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Abstract: With growing concerns about environmental issues, sustainable transport schemes are
receiving more attention than ever before. Reducing pollutant emissions during vehicle driving
is an essential way of achieving sustainable transport plans. To achieve sustainable transport and
reduce carbon emissions, on the premise of ensuring rescue timeliness, this research proposes a
multi-objective distribution route optimization model considering the minimization of transportation
cost and transportation risk under dual-uncertainty constraints, providing a practical framework
for determining the optimal location of rescue centers and distribution routes in emergencies using
fuzzy theory. First, this paper proposes objective functions that innovatively take into account the
congestion risk and accident risk during the distribution of medical supplies while introducing the
carbon emission cost into the transportation cost and using the fuzzy demand for supplies and the
fuzzy traffic flow on the roads as uncertainty constraints. Then, this paper designs a multi-strategy
hybrid nondominated sorting genetic algorithm (MHNSGA-II) based on the original form to solve
the model. MHNSGA-II adapts a two-stage real number coding method for chromosomes and
optimizes the population initialization, crowding distances selection, and crossover and mutation
probability calculation methods. The relevant case analysis demonstrates that, compared with the
original NSGA-II, MHNSGA-II can decrease the transportation cost and transportation risk by 42.55%
and 5.73%, respectively. The sensitivity analysis verifies the validity and rationality of the proposed
model. The proposed framework can assist decision makers in emergency logistics rescue.

Keywords: green logistics; distribution route optimization; fuzzy constraints; multi-objective
decision-making

1. Introduction

In recent years, public health emergencies have occurred from time to time, from SARS
and Ebola to COVID-19, posing a serious threat to health. In this case, government agencies
and relevant departments need to carry out abundant emergency logistics activities in a
short period of time to minimize the adverse effects of these emergencies [1].

Emergency logistics is made up of multiple decision-making components, including
the selection of emergency facility locations, management of emergency material storage,
and transportation and distribution of emergency resources [2–4]. Among them, the
distribution of emergency medical supplies is the most critical part.

Public health incidents can cause shortages of various supplies, so it is essential to pro-
vide the necessary protective and medical relief supplies to the affected people in time [5].
How to distribute emergency medical relief supplies efficiently and reasonably from rescue
distribution centers to demand points using a sustainable mode of transportation is a key
issue in the research of emergency logistics, which has important practical significance
and value. Compared with commercial logistics, the emergency distribution of medical
resources has higher requirements for timeliness, and it is necessary to consider not only
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the cost but also the efficiency of the distribution process [6]. Zhao et al. [7] quantified the
urgency of supply demand and road travel reliability in disaster areas and built a route
optimization model with the objective of minimizing the sum of transportation time, cost,
and road reliability. Petroianu et al. [8] considered the number of distribution vehicles,
weather conditions, and road capacity to solve the optimization problem of emergency
resource distribution routes.

With the widespread dissemination of sustainable development concepts, a large
number of studies on sustainable transportation have emerged [9], such as Stević et al. [10],
who developed a new integrated model of aggregators that has great significance for the
sustainability of road engineering. Meanwhile, in the field of logistics and distribution,
Elgharably et al. [11] studied vehicle routing problems under the sustainable goals from
the perspectives of the economy, environment, and society. Alejandro et al. [12] used
alternative-fuel vehicles for distribution and proposed a new approach to solve the green
vehicle routing problem. At present, many scholars have introduced green and low-carbon
factors into their research on general logistics distribution to achieve the goal of sustainable
transportation. However, research on sustainable transportation in the distribution of
emergency medical resources has not received much attention.

In this work, the study proposes a green distribution model for emergency medical
resources under dual-uncertainty conditions and applies the improved NSGA-II to solve it.
The paper innovatively integrates carbon emission costs and transportation risks into the
proposed model, using them as part of the objective function of route optimization while
considering uncertain factors in the distribution process to ultimately determine a suitable
distribution route solution. Specifically, firstly, for the uncertainty of the supply demand
at the demand point and the traffic flow in the distribution route, this paper establishes a
multi-objective route optimization model with the objective of minimizing transportation
cost and transportation risk under dual uncertainty constraints, which could also reduce
the environmental impact of CO2 emissions in the distribution process. Secondly, this
paper improves the NSGA-II with a two-stage coding approach, optimizing and improving
the population initialization, crowding, and cross-variance components at the same time.
Finally, this paper conducts a case study based on the real situation in Shanghai, proving
the effectiveness of the proposed model and improved algorithm.

To sum up, the main contributions of this paper can be illustrated as the following:

• This research presents a multi-objective green distribution model for emergency medi-
cal resources that minimizes transportation costs and transportation risks. Considering
the uncertainty in the delivery process, the study innovatively introduces accident risk
and congestion risk into the objective function.

• This research introduces dual-uncertainty constraints in the model; namely, the uncer-
tainty of supply demand at the demand point and the uncertainty of traffic flow in the
distribution route, which are converted into deterministic constraints with triangular
fuzzy number theory.

• This research proposes a new multi-strategy hybrid improved nondominated sorting
genetic algorithm (MHNSGA-II). The study improves the NSGA-II in terms of two-
stage chromosome real number coding, individual insertion method for initial feasible
solutions, improved crowding selection method, and adaptive cross-mutation.

• This research uses Shanghai as the case area for analysis, and the results confirm the
effectiveness of the proposed model and the improved algorithm, which can provide
reference for relevant decision-making.

This paper consists of six parts: Section 2 presents a literature review. Section 3
describes a multi-objective distribution route optimization model under dual uncertainty.
Section 4 introduces the MHNSGA-II to solve the model. Section 5 includes a realistic
case study of Shanghai and analysis of results. Section 6 summarizes the whole work
and conclusions.
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2. Literature Review
2.1. Sustainable Logistics Transportation

Traditional logistics approaches tend to neglect environmental sustainability in the
decision-making process, while sustainable logistics achieves a balance between the
economy, environment, and society by making the best use of logistics resources and
technologies [13,14]. Gocmen et al. [15] designed a transportation selection model based
on fuzzy risk scores with the aim of minimizing transportation costs, taking a logistics
company in Turkey as the research object and providing an optimal solution for it. In
order to reduce the environmental impact of logistics and transportation, Okyere et al. [16]
studied multimodal transportation as the research object and established a mathemati-
cal model that integrated transportation time, transportation cost, and carbon emissions
during the transportation process. Baah et al. [17] quantitatively analyzed the impact of
sustainable logistics practices on the environment and finance and provided guidance for
subsequent sustainability initiatives. Liu et al. [18] regarded the minimization of carbon
emissions in the transportation process as the entry point of sustainable cold chain logistics
and introduced various costs into the improved route optimization framework.

2.2. Uncertainties in Transportation

Nowadays, research on supply distribution route decision-making is no longer lim-
ited to conventional objectives. Scholars have introduced uncertainty as an objective or
constraint condition into distribution route models and applied different algorithms to
solve them [19–21]. Mohammadi et al. [22] proposed the robust optimization and the
neutrosophic set method to address the uncertainty of demand, facility capacity, and
transportation time in logistics. Calvet et al. [23] combined the Monte Carlo model with
meta-heuristic algorithms to deal with the SMDVRP problem of limited vehicle capacity
and uncertain customer demand during the distribution process. Rafael et al. [24] presented
an extension of simheuristics by adding fuzzy layers to model stochasticity or fuzziness
in transport problems with uncertainties such as time and demand. Considering the un-
certainty of the quantity and arrival time of donations and the randomness of the number
of disaster survivors in humanitarian relief, Robert et al. [25] designed the distribution
strategy of distribution vehicles between the supply point and the demand point.

2.3. Application of NSGA-II in Logistics

NSGA-II and its improved forms have been widely employed in the decision-making
of logistics distribution routes [26,27]. Srivastava et al. [28] improved the crossover and mu-
tation operators based on specific problem characteristics to solve multi-objective VRPTW
problems. Wang et al. [29] focused on the issue of the warehouse recycling path, introduced
the resource sharing strategy, and used an improved NSGA-II to conduct a case study with
Chongqing city, achieving good results. Li et al. [30] proposed a carbon-transaction-based
LRIP model and redesigned the mutation operator. The results illustrated that the proposed
model can effectively reduce carbon emissions. Fang et al. [31] presented a hybrid NSGA-
II-based algorithm to solve the MIDL model and applied it to the actual production process
of automotive manufacturing enterprises. Ghezavati et al. [32] designed a multi-echelon
model and improved the NSGA. Through practical case analysis, it has been proven that
the improved algorithm has more advantages in solving large problems in large models.

2.4. Multi-Criteria Decision of Distribution Route

In recent years, the application field of multi-criteria decision-making has become
increasingly widespread [33], among which multi-objective decision-making is a hot issue
in logistics distribution routing. Wu et al. [34] proposed a method based on symmetry
and multi-criteria decision analysis for selecting the correct urban logistics distribution
route. Gohari et al. [35] compared the single-objective route and the multi-criteria route
solution and obtained the optimal distribution route of container transport in Malaysia un-
der different conditions. Liu et al. [36] showed a vehicle communication-based dispatching
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model for emergency supplies distribution, which calculated the shortest route for distribu-
tion vehicles while meeting the shortest delivery time and material supply requirements.
Zhou et al. [37] aimed at reducing unmet demand and the selection of damaged roads, and
developed a multi-cycle dynamic emergency resource dispatch distribution model. Consid-
ering various uncertain factors that may exist in the process of post-disaster distribution
of supplies, Cengiz et al. [38] proposed a new method integrating multiple algorithms,
aiming at reducing the distance and the number of delivery routes in the process of vehicle
distribution. Sirbiladze et al. [39] simultaneously built a mathematical model of dual-fuzzy
constraints and two-stage distribution route optimization, enabling distribution vehicles to
find optimal transport routes despite extreme and uncertain conditions.

3. Problem Description and Model Construction

This paper investigates the distribution route optimization problem of emergency
medical rescue resources. First, the study needs to determine the number and location
of rescue centers; then, the delivery vehicles must provide relief supplies from the rescue
centers to the demand points on the planned route in sequence according to an optimized
route and finally return to the rescue centers. The distribution process is demonstrated
in Figure 1.
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After a sudden public health event, due to demand information lag and information
asymmetry, it is impossible to accurately calculate the demand for materials at each demand
point. In addition, there are unpredictable transportation problems in the process of
dispatching medical relief supplies from rescue centers to demand points. The study sets
the demand for medical relief supplies and the traffic flow during transportation as the
fuzzy constraints in the model. Considering the particularity of distributing emergency
medical rescue supplies, a multi-objective model with minimum transportation costs and
risks was established based on the traditional distribution model. In this model, in addition
to fixed vehicle costs and fuel consumption costs, low-carbon costs and late arrival penalty
costs caused by congestion are also introduced into the transportation costs. At the same
time, this study innovatively includes the transportation risk factors in the distribution
of emergency medical relief supplies, including the risk of traffic accidents affecting road
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traffic and the surrounding people and the risk of distribution time exceeding expectations
due to road congestion, which affects the treatment of affected people.

To facilitate the representation of the model, the symbols involved are illustrated
in Table 1.

Table 1. Symbol description.

Symbol Description

Parameter
I The set of candidate rescue centers i ∈ I
J The set of demand points j ∈ J
K The set of distribution vehicles k ∈ K
ck Fixed cost of each distribution vehicle
c0 Transport cost per unit of supply and distance

dmn Distance between node m and node n m, n ∈ I ∪ J
Qk Maximum capacity of each distribution vehicle
q̃j Fuzzy demand for medical relief supplies at demand point j, q̃j =

(
q1j, q2j, q3j

)
, q1j ≤ q2j ≤ q3j ≤ Qk

λ Carbon tax price
µmn Carbon emission per unit supply and distance of each distribution vehicle between node m and node n

a Late arrival penalty factor
Rmn Road traffic level between node m and node n, utilized to reflect road congestion situation
vmn Average speed of distribution vehicle traveling on uncongested roads between nodes m and n
to
mn Minimum time of distribution vehicle traveling on uncongested roads between nodes m and n

tmn Travel time of distribution vehicle on congested roads between nodes m and n
Gmn Expected maximum traffic flow of the route between nodes m and n
f̃mn Fuzzy traffic flow of the route between nodes m and n, f̃mn = ( f1mn, f2mn, f3mn), f1mn ≤ f2mn ≤ f3mn ≤ Gmn
δ1 Risk impact factor for transportation accidents
δ2 Risk impact factor for delayed distribution of medical rescue supplies

βmn Probability of accidents occurring in the route between nodes m and n
Smn Area affected by accidents in the route between nodes m and n

r The radius of the area affected by the accident

Decision Variables
Xk

mn If vehicle k travels from node m to node n, the value is 1; otherwise, it is 0. m, n ∈ I ∪ J
Yk

i If vehicle k is assigned of the rescue center i, the value is 1; otherwise, it is 0. m, n ∈ I ∪ J
Zi If the rescue center i is opened, the value is 1, otherwise it is 0.

The assumptions of the model are as follows:

• The number and location of candidate rescue centers are known.
• The number and location of medical rescue supply demand points are known.
• Each demand point can be served by only one rescue center and one vehicle.
• The route of distribution vehicles must start and end at the same rescue center.
• The total quantity of medical supplies for the rescue centers is able to meet total demand.
• The medical supplies in this paper mainly include medicines and epidemic

prevention supplies.

3.1. Dual-Uncertainty Constraints
3.1.1. Constraint of Uncertain Supplies Demand

After an emergency event, the rescue center needs to provide the service of distributing
emergency medical supplies to demand points. However, due to uncertainty and lag, the
demand for medical relief supplies at each demand point is uncertain.

This study uses q̃j to denote the fuzzy demand for supplies of each demand point.
Due to the limited capacity of distribution vehicles, α1 is defined as the reliability that the
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supply demand of each demand point does not exceed the maximum capacity Qk of the
distribution vehicle. Therefore, the constraint equation is expressed as:

Cr

(
∑
j∈J

∑
m∈I∪J

∑
n∈I∪J

q̃jXk
mn ≤ Qk

)
≥ α1 (1)

3.1.2. Constraint of Uncertain Traffic Flow

During the distribution process of medical rescue supplies, if the traffic flow of the
distribution route is too high, it will lead to the possibility of vehicle congestion and the
increased probability of traffic accidents. Congestion and traffic accidents can affect the
normal movement of vehicles on the road and prolong the transportation time of medical
supplies. Considering distribution efficiency, f̃mn is used to indicate fuzzy traffic flow on
distribution routes and formulate α2 as the reliability that the traffic flow of each distribution
route mn does not exceed the expected maximum traffic flow Gmn. The constraint equation
is denoted as:

Cr

(
∑

m∈I∪J
∑

n∈I∪J
f̃mnXk

mn ≤ Gmn

)
≥ α2 (2)

3.2. Multi-Objective Distribution Route Optimization Model
3.2.1. Transportation Cost

In the proposed model, the transportation costs in sustainable green distribution are
mainly composed of vehicle fixed cost, fuel cost, carbon emission cost, and time cost.

Vehicle fixed cost mainly consists of purchase, maintenance, and depreciation costs,
etc. and is usually calculated at constant values. Fuel cost is mainly related to the distance
and the number of supplies transported. Carbon emission cost is calculated based on the
carbon tax policy, expressed by multiplying the carbon tax price by the total amount of
carbon emissions, where the total carbon emissions are equal to the total fuel consumption
multiplied by the CO2 emission factor. Time cost is used to describe the penalty caused
by the vehicle distribution time exceeding the expected time due to road congestion,
where the minimum time a vehicle can travel with an unblocked road is taken as the
expected time. In order to quantitatively describe the driving situation of vehicles in
congested road conditions, combining “Chinese road capacity guidelines” and road traffic
flow characteristics, this paper sets R as “the road traffic flow evaluation coefficient” and
divides road traffic conditions into five levels: 0.00 ≤ R ≤ 0.30 means unblocked state;
0.30 < R ≤ 0.60 is a slightly congested state; 0.60 < R ≤ 0.75 is a somewhat congested
state; 0.75 < R ≤ 0.90 is a more congested state; 0.90 < R ≤ 1.00 means a congested state;
and R > 1.00 is heavy congestion. Based on this, the study establishes a vehicle travel time
model function: {

tmn = 2
3 t0

mn

(
1 + R1.88+7R3

)
to
mn = dmn

vmn

(3)

The total transportation cost during the distribution supplies process can be expressed as:

minC = ∑
i∈I

∑
k∈K

ckYk
i + ∑

i∈I
∑
j∈J

∑
m,n∈I∪J

∑
k∈K

c0q̃jdmnXk
mnYk

i Zi

+∑
i∈I

∑
j∈J

∑
m,n∈I∪J

∑
k∈K

λq̃jµmndmnXk
mnYk

i Zi + ∑
m∈I∪J

∑
n∈I∪J

∑
k∈K

a(tmn − to
mn)Xk

mn
(4)

3.2.2. Transportation Risk

The transportation risk in the green distribution process of medical relief supplies
mainly includes accident risk and congestion risk.

Accident risk is related to the probability of an accident, traffic flow, and the area
affected by the accident, which will affect the material distribution process if a traffic
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accident occurs, assuming that when an accident occurs, the area within the radius of r will
be affected. Therefore, the area Smn affected by the accident is defined as:

Smn = 2rdmn + πr2 (5)

The congestion risk has an impact on distribution time and rescue efficiency, as road
congestion will lead to distribution time exceeding expectations, thereby delaying the
treatment of affected populations. This research combines accident risk and congestion risk
as potential risks in transportation, which can be computed as:

minE = ∑
m∈I∪J

∑
n∈I∪J

∑
k∈K

δ1βmn f̃mnSmnXk
mn + ∑

j∈J
∑

m∈I∪J
∑

n∈I∪J
∑

k∈K
δ2(tmn − to

mn)q̃jXk
mn

= ∑
m∈I∪J

∑
n∈I∪J

∑
k∈K

δ1βmn f̃mnSmnXk
mn + ∑

j∈J
∑

m∈I∪J
∑

n∈I∪J
∑

k∈K
(1− δ1)(tmn − to

mn)q̃jXk
mn

(6)

where δ1 + δ2 = 1.

3.2.3. Multi-Objective Model

A multi-objective distribution route optimization model has been formulated using
the above variables, uncertainty constraints and parameters.

f1(x) = minC (7)

f2(x) = minE (8)

s.t.

Cr

(
∑
j∈J

∑
m∈I∪J

∑
n∈I∪J

q̃jXk
mn ≤ Qk

)
≥ α1, ∀j ∈ J, ∀k ∈ K (9)

Cr

(
∑

m∈I∪J
∑

n∈I∪J
f̃mnXk

mn ≤ Gmn

)
≥ α2, ∀m, n ∈ I ∪ J (10)

∑
i∈I

Yk
i ≤ Zi, ∀k ∈ K (11)

∑
j∈J

Xk
ij = Yk

i , ∀i ∈ I, ∀k ∈ K (12)

∑
i∈I

∑
k∈K

Xk
ij ≤ 1, ∀j ∈ J (13)

∑
i∈I

∑
j∈J

Xk
ij ≤ 1, ∀k ∈ K (14)

∑
m∈E

∑
n∈E

Xk
mn ≤ |E| − 1, ∀E ⊆ J, ∀k ∈ K (15)

∑
m∈I∪J

Xk
mj − ∑

n∈I∪J
Xk

jn = 0, ∀j ∈ J, ∀k ∈ K (16)

∑
k∈K

Xk
in = 0, ∀i ∈ I, ∀n ∈ I (17)

∑
m∈I

∑
n∈J

Xk
mn = 1, ∀k ∈ K (18)

∑
m∈J

∑
n∈I

Xk
mn = 1, ∀k ∈ K (19)
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Qk ≥ ∑
j∈J

q̃jXk
mn, ∀m, n ∈ I ∪ J, ∀k ∈ K (20)

Xk
mn ∈ {0, 1}, ∀m, n ∈ I ∪ J, ∀k ∈ K (21)

Yk
i ∈ {0, 1}, ∀i ∈ I, ∀k ∈ K (22)

Zi ∈ {0, 1}, ∀i ∈ I (23)

Objective function Equation (7) minimizes the total fixed and variable transportation
costs. Objective function Equation (8) measures the total risks throughout the whole process.
Equation (9) represents the constraint of demand points on the fuzzy demand for medical
rescue supplies. Equation (10) requires the constraint of the path between two nodes for
road fuzzy traffic flow. Equation (11) indicates that there are no vehicles driving out of
an unopened rescue center. Equation (12) ensures that there will be a distribution vehicle
to deliver medical relief supplies to the opened rescue center. Equation (13) shows that
any demand point accepts only one rescue center providing rescue supplies. Equation (14)
indicates that each distribution vehicle will provide service for only one rescue center.
Equation (15) ensures the avoidance of distribution sub-loops between the demand points
in the distribution process; E is all the affected demand points that the vehicle passes
through in a certain route. Equation (16) requires that the vehicle must exit from and
drive out from the same node. Equation (17) indicates avoiding routes between open
rescue centers. Equations (18) and (19) show that the start of the route is the rescue center.
Equation (20) requires that the number of relief supplies carried by each distribution vehicle
must not exceed its maximum carrying capacity. Equations (21)–(23) represent constraints
on decision variables.

3.3. Defuzzification of Fuzzy Chance Constraints

Triangular fuzzy number is a concept proposed by Zadeh [40] in 1965, which is used
to solve problems under uncertain conditions.

Definition 1. If U is a given theoretical domain, and for any x ∈ U, there exists a number
0 ≤ ζ(x) ≤ 1 corresponding to it, then ζ(x) is called the subordination of x to U, and ζ is the
subordination function of x, which is the fuzzy number.

If Ã = (a1, a2, a3) is a triangular fuzzy number, a1 ≤ a2 ≤ a3, a1 and a3 are the upper
and lower bounds of this triangular fuzzy number, respectively, and a2 is the median, then
its subordinate function ζ Ã(x) can be expressed as [41]:

ζ Ã(x) =


0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2
a3−x
a3−a2

, a2 ≤ x ≤ a3

0, x ≥ a3

(24)

Definition 2. Based on the fuzzy credibility theory, the fuzzy chance constraint can be converted
into a deterministic constraint, that is, the fuzzy constraint can be defuzzification, so that the
probability of the fuzzy chance constraint is not less than the specified fuzzy quantity preference
value [42,43].
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If Ã = (a1, a2, a3) is a triangular fuzzy number and B is the preference value of the
given determined fuzzy quantity, according to the fuzzy credibility theory, the defuzzifica-
tion can be expressed as:

Cr(Ã ≤ B) =



0 , B ≤ a1
B−a1

2×(a2−a1)
, a1 ≤ B ≤ a2

B+a3−2a2
2×(a3−a2)

, a2 ≤ B ≤ a3

1, a3 ≤ B

(25)

According to the fuzzy credibility theory, the fuzzy demand and fuzzy traffic
flow in this paper are defuzzified and transformed into a certain form. Because
the demand q̃j is a triangular fuzzy number, according to fuzzy number theory, q̃jXk

mn

is also a triangular fuzzy number; so, let Ũj = ∑
j∈J

∑
m∈I∪J

∑
n∈I∪J

q̃jXk
mn, therefore

Ũj = ( ∑
j∈J

∑
m∈I∪J

∑
n∈I∪J

q1jXk
mn, ∑

j∈J
∑

m∈I∪J
∑

n∈I∪J
q2jXk

mn, ∑
j∈J

∑
m∈I∪J

∑
n∈I∪J

q3jXk
mn) = (U1j, U2j, U3j).

According to Definition 2, the fuzzy demand can be expressed as:

Cr(Ũj ≤ Qk) =



0 , Qk ≤ U1j
Qk−U1j

2×(U2j−U1j)
, U1j ≤ Qk ≤ U2j

Qk+U3j−2U2j
2×(U3j−U2j)

, U2j ≤ Qk ≤ U3j

1 , U3j ≤ Qk

(26)

Similarly, for the road fuzzy traffic flow in the distribution path of medical relief
supplies f̃mn, f̃mnXk

mn is also a triangular fuzzy number, making Ṽmn = ∑
m∈I∪J

∑
n∈I∪J

f̃mnXk
mn,

so Ṽmn = ( ∑
m∈I∪J

∑
n∈I∪J

f1mnXk
mn, ∑

m∈I∪J
∑

n∈I∪J
f2mnXk

mn, ∑
m∈I∪J

∑
n∈I∪J

f3mnXk
mn) = (V1mn, V2mn, V3mn);

the road fuzzy traffic flow can be expressed as:

Cr(Ṽmn ≤ Gmn) =



0, Gmn ≤ V1mn
Gmn−V1mn

2×(V2mn−V1mn)
, V1mn ≤ Gmn ≤ V2mn

Gmn+V3mn−2V2mn
2×(V3mn−V2mn)

, V2mn ≤ Gmn ≤ V3mn

1, V3mn ≤ Gmn

(27)

4. Improved NSGA-II
The multi-objective distribution route optimization problem is characterized by multiple

constraints and high complexity and is a typical NP-hard problem. The NSGA-II proposed by
Kalyanmoy et al. [26] is one of the most widely used for solving this problem. NSGA-II incorporates
the elite selection strategy and fast, nondominated sorting on the basis of the original genetic algo-
rithm, enhancing the optimization effect. However, there are still shortcomings, such as premature
convergence and falling into local optima solution. Therefore, this study designs a new multi-strategy
hybrid improved nondominated sorting genetic algorithm (MHNSGA-II) to solve the model above.
The MHNSGA-II flow is shown in Figure 2.

MHNSGA-II runs as follows: first, a two-stage chromosome real number coding strategy and
individual insertion method are used to randomly generate chromosomes as initial populations;
second, after nondominated sorting and selection operations, using improved adaptive crossover and
mutation probability to generate offspring populations, the two populations are merged to form a new
parent population. Then, through rapid nondominated sorting, the individuals with higher Pareto
ranks are calculated for the crowding distance proportion with a “roulette wheel” method, selecting
individuals with a large proportion to form new parent populations. Finally, the above process is
used to generate new offspring populations, which are merged with the new parent populations, and
the above operation is repeated until the maximum number of evolutionary generations is satisfied,
the optimal solution set is output, and the algorithm run ends.
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4.1. Chromosome Coding
This paper adapts a two-stage chromosome real number coding strategy: the first part represents

the rescue center corresponding to each demand point, and the second part represents the delivery
sequence of the demand point in the vehicle distribution process. The coding method is shown in
Figure 3. Assuming that there are seven demand points and three medical rescue centers, and the
demand for medical supplies at each demand point does not exceed the maximum carrying capacity
of the distribution vehicle, it can be seen that rescue center 1 provides supplies for demand points 2
and 5, rescue center 2 provides supplies for demand points 3, 4, and 7, and rescue center 3 provides
supplies for demand points 1 and 6. According to the distribution order of demand points, the
distribution routes of the three rescue centers are as follows:
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Center 1→2→5→Center 1, Center 2→7→4→3→Center 2, Center 3→6→1→Center 3.
In the process of allocating vehicles, due to the constraints of the maximum carrying capacity of

the distribution vehicles, if the fuzzy total demand of a certain demand point exceeds the distribution
margin of the vehicles already on the distribution task, other vehicles from that rescue center will carry
out the distribution until all demand points have vehicles to provide them with distribution services.



Sustainability 2023, 15, 11939 11 of 22

4.2. Improvement of Population Initialization
The performance of NSGA-II depends to some extent on the quality of the population initializa-

tion. This paper improves the process of population initialization and uses the individual insertion
method to obtain initial solutions. That is, under the constraint of fuzzy demand, demand points
are inserted one by one in a distribution path until the total demand of distribution exceeds the
maximum carrying capacity of the vehicle, and then no more demand points are inserted, at which
time an initial feasible solution is generated. The specific steps are as follows:

Step 1: Randomly select a demand point j and put it in the vehicle distribution route. At this
time, the number of vehicles used is k = 1, and the vehicle load is q̃j.

Step 2: Continue to randomly select from the remaining demand points, placing them after
the demand point j. Add a new distribution vehicle, insert the remaining demand points into the
delivery route of the vehicle in sequence, calculate whether the loading capacity of vehicle 1 meets
the maximum carrying capacity, and so on, until all the demand in the distribution route exceeds the
maximum carrying capacity.

Step 3: Add a new distribution vehicle, and insert the remaining demand points into the
distribution route of the vehicle in sequence.

Step 4: Follow steps 2 and 3 in a loop, and after all demand points have been assigned, obtain
the matrix with the number of vehicles as k. Randomly assign the initial route to each medical rescue
center to obtain the initial population.

4.3. Improvement of Crowding Distances Selection
In NSGA-II, the use of “crowding” is proposed to maintain the diversity of the population. For

individuals in the same noninferior class, it is necessary to compare the degree of congestion between
the two and select the individual with a higher degree of congestion to enter the next step, as shown
in Figure 4. This paper assumes that Li is the crowding distance of feasible solution i; yi−1

1 and yi+1
1

are, respectively, the values of the former and latter solutions of the feasible solution i on the function
y1; f max

1 and f min
1 are the maximum and minimum values of the function y1; and the formula for

calculating the crowding distance is:

Li =

∣∣∣yi−1
1 − yi+1

1

∣∣∣
f max
1 − f min

1
(28)
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In Figure 4, if decision makers aim to select five of the eight individuals in Pareto rank 1 for the
next operation, compared with individuals 3 and 6, individuals 2, 4, and 5 are closer to the Pareto
frontier. However, due to the small crowding distance of these individuals, they are excluded from
the selection process, resulting in the quality degradation of the final solution. Thus, the research
improves this strategy: in the process of selecting new populations, individuals of the same Pareto
rank are no longer chosen according to the order of crowding, but via roulette wheel. This means
that the greater the crowding of individuals, the greater the probability of being selected. Specifically,
the following steps are used to calculate the qi:
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Step 1: Assuming a population size of N, calculate the proportion of crowding distance for each
individual as the probability of it being selected,

pi =
Li

N
∑

j=1
Lj

(29)

Step 2: Calculate the cumulative probability of individuals,

qi = ∑i
j=1 Lj (30)

Step 3: Randomly generated γ ∈ [0, 1], if q1 < γ, choose individual 1 for the subsequent parts;
if qi−1 ≤ γ ≤ qi, choose individual i.

4.4. Adaptive Crossover and Mutation Probability
In the process of individual genetic manipulation, the magnitude of the crossover and variation

probabilities (pc and pm) plays a key role in the convergence speed of the algorithm. For the original
NSGA-II, inappropriate crossover and mutation probability values greatly affect the diversity of
the population and the search speed of the algorithm, resulting in premature convergence of the
solution process.

To address this problem, the research introduces adaptive crossover and mutation probability
strategy, so that both of them change automatically with the population fitness. The crossover
probabilities and mutation probabilities are calculated as follows:{

Pc = mean(Pci)

Pm = mean(Pmi)
(31)



Pci =


Pc3( f (i)− f ′(i))+Pc2( f ′(i)− f (i)min)

f (i)− f (i)min
, f ′(i) < f (i)

Pc2( f (i)max− f ′(i))+Pc1( f ′(i)− f (i))
f (i)max− f (i)

, f ′(i) ≥ f (i)

Pmi =


Pm3( f (i)− f (i))+Pm2( f (i)− f (i)min)

f (i)− f (i)min
, f (i) < f (i)

Pm2( f (i)max− f (i))+Pm1( f (i)− f (i))
f (i)max− f (i)

, f (i) ≥ f (i)

(32)

where Pci and Pmi are the crossover and mutation probabilities of the i− th objective function; Pc
and Pm are the average values of Pci and Pmi; f (i)max, f (i)min, and f̃ (i) are the maximum, minimum,
and average values of the objective function, respectively; f ′(i) is the larger value of fitness of the
two individuals to be crossed; and f (i) is the fitness value of the individuals to be mutated. And
0 < Pc1 < Pc2 < Pc3, 0 < Pm1 < Pm2 < Pm3 [44].

5. Case Study
This paper takes a case study about the real situation of Shanghai; therefore, the locations of

candidate rescue centers and demand points are based on the administrative districts of Shanghai.
According to the locations of the tertiary hospitals in Shanghai, the study used the straight-line
connection method and the entropy weight method (EWM) to determine the candidate rescue
centers (numbered 1–10). Meanwhile, combined with the merger and division of the streets in each
administrative area, finally 55 demand points (numbered 11–65) were selected.

5.1. Data Acquisition and Parameter Setting
According to the objective function model established above, the study collected the required

data, and the relevant information of the candidate rescue centers and demand points are displayed in
Tables 2 and 3. The medical supplies involved in this article mainly include essential daily medicines
(such as anti-inflammatory drugs and painkillers), medical disinfectants (such as medical alcohol,
chlorine dioxide, and sodium hypochlorite), improvised medical equipment (such as disposable
infusion sets, sphygmomanometers, and oxygen cylinders), and so on. Considering the actual
situation of emergencies, according to the population density data of each street, the study fuzzed
the demand quantity at each demand point. For example, the fuzzy demand of No. 10 demand point
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is (104,137,170), which means that the minimum demand for supplies at this demand point is 104, the
maximum demand is 170, and the middle part is the average of the two.

Table 2. Candidate rescue center location.

No. Longitude Latitude No. Longitude Latitude

1 121.287859 31.063992 6 121.467594 31.216567
2 121.348194 31.116493 7 121.452872 31.212319
3 121.383997 31.078014 8 121.522425 31.295325
4 121.444263 31.194638 9 121.392983 31.247921
5 121.459204 31.223377 10 121.462506 31.246864

Table 3. Demand point location and material fuzzy demand.

No. Longitude Latitude Fuzzy Demand

11 121.483268 31.238749 (104,137,170)
12 121.489980 31.224447 (91,122.5,154)
13 121.487475 31.209581 (93,125.5,158)
. . . . . . . . . . . .
63 121.517698 31.203494 (110,130.5,151)
64 121.539659 31.176098 (101,131.5,162)
65 121.619286 31.082794 (97,126,155)

The parameters are set as follows: ck = 200; c0 = 0.5; Qk = 1500; λ = 0.2; µmn = 0.3; a = 10; Hmn
is a random number in [0.1, 0.3]; vmn is a random number in [50, 60]; Gmn = 2000; and fuzzy traffic
flow between routes is f̃mn = ( f1mn, f2mn, f3mn), where f1mn takes random values between [150, 200],
f3mn takes random values between [350, 400], and f2mn is the average of both. Both δ1 and δ2 are 0.5. By
referring to historical data, βmn is taken as a random number between [0.3%, 0.5%], and r = 5.

5.2. Results Analysis
This paper adopted MatlabR2018a to solve the model. The parameters were set to PopSize =

200, MaxIteration = 500, and the initial values of pc and pm were 0.9 and 0.1, respectively [45,46]. Each
opened rescue center had up to three vehicles for distribution at the same time. The resulting Pareto
optimal solution is displayed in Figure 5.
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Figure 5. Pareto optimal solution of objective function under MHNSGA-II.

Eighteen Pareto solutions were obtained with MHNSGA-II. There is a conflict between the
two objective functions, and they cannot reach the minimum at the same time, which demonstrates
that there is a phenomenon of “trade off” between transportation costs and transportation risks.
The distribution of the optimal solutions in the Pareto frontier was relatively uniform. When the
minimum value of transportation cost reached 121,172.85, the value of transportation risk was 5268.81.
Based on the Pareto principle, the analysis shows that transport risk “E” is minimized when transport
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cost “C” is maximized, and when the transportation risk “E” is maximized, the transportation cost
“C” is minimized, which means there is a “trade off” phenomenon between the two. Therefore,
decision makers can make different choices according to the urgency of the situation when making
relevant decisions. For example, in an emergency or major situation, medical supplies should be
delivered as soon as possible, so they can choose a solution with lower risk and higher cost to ensure
the timeliness of the supplies. Conversely, they can choose a less costly solution.

In this Pareto optimal solution set, a total of 8 emergency medical rescue centers served 55
demand points, and the remaining 2 were ignored; the set of generated optimal distribution routes is
shown in Table 4 and Figure 6.

Table 4. Vehicle distribution routes set based on MHNSGA-II.

Rescue
Center No.

Number of
Distribution

Vehicles
Distribution Route Rescue

Center No.
Number of

Distribution Vehicles Distribution Route

1 3
1-57-1

1-58-56-54-1
1-55-52-1

5 3
5-24-25-5

5-12-23-17-22-36-35-5
5-47-5

2 1 2-53-2 6 3
6-19-16-31-34-6
6-18-39-38-15-6

6-20-13-42-6

3 3
3-59-61-3

3-41-63-62-3
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center No. 3. (d) Distribution routes of rescue center No. 4. (e) Distribution routes of rescue center
No. 5. (f) Distribution routes of rescue center No. 6. (g) Distribution routes of rescue center No. 7.
(h) Distribution routes of rescue center No. 9.
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Under the constraint of uncertain demand, most rescue centers prioritize the distribution of
closer and more concentrated demand points, and then consider providing services for demand
points that are farther away, thus effectively shortening the total transportation distance to reduce
transportation costs and carbon emissions. Additionally, with a reduction in the number of rescue
centers, it is possible to meet traffic flow constraints, which could decrease transportation risk and
achieve multi-objective optimization.

Hence, depending on the urgency of the situation and the degree of road congestion at that
time, decision makers can decrease the risk of delayed distribution of medical supplies or reduce the
transportation cost by adjusting relevant parameter values. Under the premise of being able to meet
the needs of the demand points and various constraints, green and efficient distribution of medical
supplies can be achieved by changing the number of rescue centers opened and vehicles used, etc.,
and by selecting the closest road for distribution according to the route diagrams.

5.3. Sensitivity Analysis
5.3.1. Sensitivity Analysis of Vehicle Usage

To explore the specific effect of total vehicle usage on the objective function, the maximum
number of vehicles that provide service at the same time in each rescue center was set to two, three,
four, and five. Using the case results in Section 5.2 as the control group, the results were compared
with respect to the total vehicle usage, transportation cost, transportation risk, degree of variation,
and algorithm running time, as shown in Table 5. In Figure 7, the effects of the different numbers of
vehicles used on the two objective functions can be seen more clearly and intuitively.

Table 5. Comparison of objective functions under different distribution vehicles.

Maximum Number of
Vehicles in Each
Rescue Center

Total Number
of Vehicles

Transportation Cost Transportation Risk Algorithm
Running TimeValue Variation Value Variation

2 16 132,865.12 9.65% 4968.26 −5.70% 78 s
3 22 121,172.85 — 5268.81 — 82 s
4 31 113,076.32 −6.68% 5735.50 8.86% 89 s
5 34 116,140.54 −4.15% 5896.14 11.91% 88 s
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Figure 7. The impact of different numbers of vehicles used on the objective functions.

The analysis shows that: (a) The fewer vehicles used, the higher the transportation cost and
the lower the transportation risk. Due to the increase in the number of vehicles, the distribution
task of each vehicle is reduced, but the increase in the total distribution routes raises the risk in
transportation. (b) When the maximum number of vehicles in a single rescue center is changed, the
transportation cost, total vehicle usage, transportation risk, and algorithm running time all change
accordingly, which means that the number of vehicles plays a role in the objective function.
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5.3.2. Sensitivity Analysis of Risk Impact Factors
The transportation risk comprises accident risk and congestion risk, and the sum of the weights

of the two is constant at 1. To explore the effects of the two risks on the transportation situation, the
risk impact factors of the two were set to 0.3 and 0.7, 0.4 and 0.6, 0.6 and 0.4, and 0.7 and 0.3. The
results of the cases in Section 5.2 were used as a control group (the bold line) to compare the results
regarding transportation cost, transportation risk, degree of variation, and algorithm run time, as
shown in Table 6. In Figure 8, the effects of δ1 and δ2 on the two objective functions can be seen more
clearly and intuitively.

Table 6. Comparison of objective functions under different risk factors.

Risk Impact Factor Transportation Cost Transportation Risk Algorithm
Running Timeδ1 δ2 Value Variation Value Variation

0.3 0.7 129,174.11 6.60% 3942.58 −25.17% 82 s
0.4 0.6 122,941.08 1.46% 5071.63 −3.74% 82 s
0.5 0.5 121,172.85 — 5268.81 — 82 s
0.6 0.4 133,814.95 10.43% 6822.08 29.48% 76 s
0.7 0.3 132,813.10 9.61% 6602.57 25.31 83 s
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cost. (b) Impact of δ1 and δ2 on transportation risk.

From the analysis results, it can be observed that: (a) When the weight of risk impact factors
changes, it affects the selection of distribution routes and the allocation of demand points, resulting
in large fluctuations in transportation risks, and the transportation costs also change accordingly.
(b) The impact of δ1 and δ2 on the objective function is not linear, so decision makers can adjust the
factor weights to balance transportation costs and risks according to specific requirements.

5.3.3. Sensitivity Analysis of Credibility
As there are many uncertainties in emergency situations, it is difficult for decision makers to

make immediate judgments about the importance of different constraints and limitations. In most
cases, the need for medical supplies at the demand points should be met to the maximum extent
possible in the shortest possible time, so the constraints on demand and traffic flow are equally
important. This paper utilizes triangular fuzziness and fuzzy credibility theory to represent the
uncertainty of demand and traffic flow and analyzes the sensitivity of each objective function to
different credibility to reflect the impact of fuzzy credibility α1 and α2 on the objective function.
Therefore, this study sets α1 and α2 to the same value, and starts with 0.5 as the adjustment of them.
In order to show the relationship between the objective functions and credibility in a clearer and
more detailed way, this research stipulates that 0.5 ≤ α1 ≤ 1.0, α1 = α2, and the step of change is 0.05.
The experimental results are illustrated in Figure 9.
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Figure 9. The sensitivity analysis of the objective function to credibility.

It can be observed that: (a) With the increase in credibility, the restrictions and requirements for
distribution are more stringent, so the distribution process costs increase, and the transportation risk
also rises. (b) The upward trend of the objective function is most pronounced when the credibility
lies between [0.75, 0.90]. (c) When the credibility is greater than 0.9, the upward trend of the objective
function becomes flat. Therefore, 0.9 is the turning point of reliability and its optimal value.

5.4. Effectiveness of MHNSGA-II and Performance Comparison
To verify the effectiveness of the improved MHNSGA-II, under the parameter settings in

Section 5.2, this study compared the distribution route set and Pareto optimal solution obtained with
NSGA-II [47].

5.4.1. Experimental Results of NSGA-II
The vehicle distribution route diagram calculated with NSGA-II and the comparison of the re-

sults of the two algorithms are represented in Figure 10 and Table 7. It can be seen that:
(a) According to NSGA-II, all rescue centers need to be opened, and almost every rescue center
needs to be equipped with three vehicles to provide services for the demand points, which increases
the fixed cost in the transportation process. (b) The results of NSGA-II show that the vehicle dis-
tribution route of some rescue centers contains only one demand point, such as No. 3 and No. 4
rescue centers; this leads to higher vehicle fixed costs as well as higher transport distances and carbon
emissions. (c) In the NSGA-II results, each rescue center has no fewer than two distribution vehicles,
and the increase in the number of vehicles usage will lead to higher transport risks.

5.4.2. Comparison of Pareto Optimal Solution
This paper conducted 10 experiments, and took the best results for comparison. The comparison

of the results of the Pareto optimal solution is shown in Figure 11. As can be seen from the figure:
(a) MHNSGA-II yields a larger number of Pareto optimal solutions. (b) The optimal solution of
MHNSGA-II is more uniformly distributed, and the Pareto curve is smoother. (c) The minimum
value of the transportation cost of the original MHNSGA-II was 172,731.91, and the corresponding
transportation risk value was 5570.78, which are 42.55% and 5.73% higher than the objective function
value of the MHNSGA-II, respectively. The above conclusions confirm that MHNSGA-II has a more
significant improvement on multi-objective problems and is superior to NSGA-II.



Sustainability 2023, 15, 11939 18 of 22

Sustainability 2023, 15, x FOR PEER REVIEW 19 of 24 
 

 

 
Figure 9. The sensitivity analysis of the objective function to credibility. 

5.4. Effectiveness of MHNSGA-II and Performance Comparison  
To verify the effectiveness of the improved MHNSGA-II, under the parameter set-

tings in Section 5.2, this study compared the distribution route set and Pareto optimal 
solution obtained with NSGA-II [47]. 

5.4.1. Experimental Results of NSGA-II  
The vehicle distribution route diagram calculated with NSGA-II and the comparison 

of the results of the two algorithms are represented in Figure 10 and Table 7. It can be seen 
that: (a) According to NSGA-II, all rescue centers need to be opened, and almost every 
rescue center needs to be equipped with three vehicles to provide services for the demand 
points, which increases the fixed cost in the transportation process. (b) The results of 
NSGA-II show that the vehicle distribution route of some rescue centers contains only one 
demand point, such as No. 3 and No. 4 rescue centers; this leads to higher vehicle fixed 
costs as well as higher transport distances and carbon emissions. (c) In the NSGA-II re-
sults, each rescue center has no fewer than two distribution vehicles, and the increase in 
the number of vehicles usage will lead to higher transport risks. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

Figure 10. Vehicle distribution routes diagram based on NSGA-II. (a) Distribution routes of rescue 
center No. 1. (b) Distribution routes of rescue center No. 2. (c) Distribution routes of rescue center 
No. 3. (d) Distribution routes of rescue center No. 4. (e) Distribution routes of rescue center No. 5. 
(f) Distribution routes of rescue center No. 6. (g) Distribution routes of rescue center No. 7. (h) 

Figure 10. Vehicle distribution routes diagram based on NSGA-II. (a) Distribution routes of rescue
center No. 1. (b) Distribution routes of rescue center No. 2. (c) Distribution routes of rescue
center No. 3. (d) Distribution routes of rescue center No. 4. (e) Distribution routes of rescue
center No. 5. (f) Distribution routes of rescue center No. 6. (g) Distribution routes of rescue center
No. 7. (h) Distribution routes of rescue center No. 8. (i) Distribution routes of rescue center No. 9.
(j) Distribution routes of rescue center No. 10.
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Table 7. Comparison of transport conditions under different risk factors.

Rescue Center
No.

NSGA-II Result MHNSGA-II Result

Number of
Vehicles

Distribution
Route

Number of
Vehicles Distribution Route

1 3
1-56-54-49-1

1-60-63-1
1-55-1

3
1-57-1

1-58-56-54-1
1-55-52-1

2 3
2-59-2

2-41-57-2
2-61-2

1 2-53-2
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Table 7. Cont.

Rescue Center
No.

NSGA-II Result MHNSGA-II Result

Number of
Vehicles

Distribution
Route

Number of
Vehicles Distribution Route

3 2 3-42-3
3-53-3 3

3-59-61-3
3-41-63-62-3

3-60-64-3

4 3
4-27-4
4-64-4
4-40-4

3
4-65-4

4-30-27-26-4
4-29-28-32-4

5 3
5-32-28-5
5-34-46-5
5-20-52-5

3
5-24-25-5

5-12-23-17-22-36-35-5
5-47-5

6 3
6-13-43-6
6-14-26-6

6-11-58-62-6
3

6-19-16-31-34-6
6-18-39-38-15-6

6-20-13-42-6

7 3
7-65-7

7-24-17-45-7
7-23-7

3
7-14-37-21-7

7-11-43-7
7-40-7

8 3
8-15-35-36-31-8
8-21-19-25-12-8

8-38-47-48-8
— —

9 2 9-16-29-9
9-50-44-9 3

9-51-44-46-9
9-49-50-48-9

9-33-45-9

10 3
10-22-39-10

10-33-30-51-10
10-18-37-10

— —

6. Conclusions
This paper focuses on the problem of the distribution of emergency medical rescue supplies

from rescue centers to demand points under sudden public events. On the premise of considering
green and low-carbon distribution, the study establishes a multi-objective distribution optimization
model for minimizing transportation cost and transportation risk under dual-uncertainty constraints.
This research improved the original NSGA-II in various aspects, which were adopted to solve the
proposed model. First, this paper used triangular fuzzy numbers to represent the uncertainties of
the demand of supplies and the traffic flow in the distribution route and transformed the fuzzy
constraints into an equivalent deterministic form through fuzzy credibility theory. Secondly, the
study combined the vehicle, fuel, carbon emission, and time costs as the total transportation cost, and
innovatively introduced the transportation risk of the dangerous goods distribution process into a
proposed framework, developing the dual-objective distribution model that takes into account both
transportation cost and transportation risk. Next, the proposed MHNSGA-II included two-stage
encoding and multi-strategy hybrid improvement, which has significant advantages for solving
multi-objective distribution optimization models. Finally, this research conducted a case study based
on the real situation in Shanghai to verify the effectiveness of the improved algorithm and model. The
results demonstrate that, compared with the original NSGA-II approach, MHNSGA-II can decrease
the transportation cost and transportation risk by 42.55% and 5.73%, respectively. The sensitivity
analysis assesses the validity and rationality of the proposed model, which can provide references for
related decisions.

However, there are many limitations and challenges in the research. In the model construction
and case study, more consideration is given to the influence of objective factors such as time and cost,
while ignoring the subjective feelings of human psychology. Meanwhile, some data in the case study
are difficult to access in real time, so they are replaced by random fuzzy numbers within a certain
range, which deviate somewhat from the real situation. Based on these, it is necessary to further study
relevant problems. In the process of distributing medical supplies, the number of supplies required
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is different at each demand point, and there may be a situation of short supply. It is meaningful to
further study the relationship between material scheduling and route optimization. In addition, from
the perspective of the demanders, the urgency for medical supplies should be taken into account,
and their psychological factors should be added to the process of route selection and optimization.
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