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Abstract: Partial shading conditions (PSCs) are responsible for the root causes of photovoltaic (PV)
system performance deprivation such as hotspots (damaged PV cells), mismatch power losses and
multiple power maxima. Recently, PV array reconfiguration strategies have proven to be beneficial
in improving PV system performance and achieving improved shade dispersion properties. This
research analyzes the improved Su-Do-Ku (I-SDK) PV array configuration in order to counteract the
shading effect. This approach implements a 6 × 6 size PV array configuration and performance
evaluation under different realistic shading scenarios. The performance of the I-SDK configuration
is assessed and compared to that of the total-cross-tied (TCT) and Su-Do-Ku (SDK) arrangements.
The performance indices such as power loss (PL), power at global maximum power point (GMPP),
fill-factor (FF), performance ratio (PR), power enhancement (PE) and execution ratio (ER) are analyzed to
show comprehensive comparison. An experimental analysis confirms the MATLAB/Simulink findings,
demonstrating that the I-SDK configuration outperforms both the TCT and SDK array setups. The
GMPP values of 143.5 W, 141.7 W, 138.1 W and 129.3 W also show the superiority of I-SDK during four
shading instances compared to conventional SP, TCT, SDK and SM arrangements. Moreover, under
similar PSCs, higher %FF (74.61%, 76.10%, 77.1%, 75.92%) and lower PL (36.7 W, 38.5 W, 42.1 W, 50.9 W)
support the adoptability of I-SDK for experimental validation/commercial viability.

Keywords: power loss; photovoltaic system; shading scenarios; fill factor; improved Su-Do-Ku;
mismatch loss

1. Introduction

As a climate-sustainable solution, the world needs urgent and rapid incorporation of
renewable energy (RE) into the global energy scenario. RE sources are commonly known
as clean energy solutions, gaining the deep attention of energy users in commercial and
domestic applications. The PV energy conversion method has received immense attention
from researchers in recent days [1]. Concerns about the worldwide energy problems and
the threat of climate change posed by existing energy sources have spurred the research for
alternative energy sources. The most popular renewable energy source is solar PV, which is
nonpolluting and requires no maintenance [2].

During the first half of 2020, thirteen countries pledged the largest amount of new RE
ever, nearly 50 GW, to be installed in the year span of 2021–2024. Global demand in 2021 is
expected to be 25% higher than in 2020 [3,4]. The researchers performed different studies to
establish an effective and stable conversion of solar PV energy. Module mismatching and
PSCs are two key contributors to PV system losses. Under these conditions, the PV system
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(P-V and I-V characteristics) becomes more complex and has many power peaks. The amount
of energy made by a PV array is greatly reduced when it is in the shade [5–7]. To boost the
efficiency of PV systems, a number of modules are coupled in specified combinations. An
evaluation of the most recent research papers is conducted in this work in order to determine
the research gap. The many varieties of PV array configurations’ performance, reliability,
precision, resilience, efficiency and operation are all investigated. There are several things
that can cause PSCs, such as passing clouds, high-rise buildings, telecommunications towers,
adjacent trees, dead leaves, and so on.

The PV power output is reduced, allowing shaded modules to waste a significant
percentage of the power produced by unshaded modules, resulting in hotspots that might
eventually destroy the PV cell/module [8,9]. When designing an array, several PV modules
are arranged in series and parallel to satisfy the load power demand. Parallel and series
configurations of PV modules are used to meet a PV array’s power requirements. Tradi-
tional and game puzzle-based reconfiguration approaches such as series, series-parallel
(SP), bridge-link (BL), total cross-tied (TCT), honey-comb (HC), Latin square (LS), magic
square (MS) and Su-Do-Ku (SDK) puzzles have been adopted to design PV array systems.

Because of the way these algorithms are designed, the operative point is the earliest
peak in the PV characteristic, which may or may not be a global power peak. Several
advancements in the literature have been recorded to promote these algorithms in order
to find the global power peak under PSCs. This is accomplished by adding more stages
to the algorithm, making it more complex and restricting monitoring speed. Recently, an
improved SDK-puzzle-based algorithm for MPP monitoring was discovered to yield good
results.

1.1. Literature Review

The paper is a survey of the most recent research publications with the goal of iden-
tifying important research gaps. [10–31]. We examined several PV array topologies for
consistency, stability and easy implementation.

The authors in [10] observed the effects of PV faults on the power grid under various
faulty conditions using the MATLAB/Simulink-based study. A comprehensive analysis
is investigated in terms of power at GMPP with selected SP, BL, TCT and reconfigured
methodology (RM) configurations as 3.99 kW, 4.01 kW, 4.6 kW and 5.02 kW. In [11], an
auto-reconfiguration approach is performed through switching-based PV array electrical
connections from SP to TCT under PSCs. For shading pattern-1, the power at GMPP of
conventional setups (SP and TCT) is 25.22 W and 26.19 W, respectively. In addition, PL values
are observed for SP and TCT configurations under similar shadowing conditions as 3.75 W and
2.78 W. In [12], a detailed study is carried out with various PV array interconnections, including
SP, HC and TCT. In the adopted PV array interconnections, power at GMPP of existing setups
(SP, HC and TCT) is found as 4.39 kW, 4.44 kW and 4.72 kW, respectively. It is observed that the
TCT configuration has a higher rating compared to conventional configurations. The authors
of [13] presented a comprehensive study to mitigate shading effects, a novel LS-puzzle-based
configuration compared to the TCT configuration. Locations of GMPP for shading pattern-1
exist as 1976 W and 2279 W. During all shading cases, Latin square—TCT (LS-TCT) has the
best performance compared to TCT configuration. The Futoshiki puzzle (FP) is investigated
in [14] and obtained results show that the power produced by the FP configuration is highest
and minimized ML under various shading instances. Power generated as 40.07 W, 53.93 W
and 53.93 W in TCT, EAR and Futoshiki configurations for a short wide (SW) shading
scenario. For a long narrow (LN) shading condition, the generated power at GMPP is 59.41 W,
60.56 W and 60.56 W. In [15], the authors developed a novel method to reconfigure the PV
module’s interconnection and compared it to the TCT configuration. The behavior of the P-V
characteristic generated from the reconfigured PV array is found to be smoother than that of
TCT-configured PV arrays under-considered PSCs. The half-reconfigured PV array (HRPVA)
and full-reconfigured PV array (FRPVA) have increased the coherence between the obtained
GMPP. With a performance ratio of 0.93, the generated power increased by 14.75% in HRPVA.
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Furthermore, with a unity performance ratio, FRPVA enhanced generated power by 23.3%.
The proposed MS configuration in [16] is tested using a 3 × 3 PV array coupled to the TCT
pattern under SN, LW, LN and SW shadowed conditions. TCT and MS configurations are
investigated under SN shading scenarios, with GMPP locations of 1.8576 kW and 2.3734 kW
being observed, respectively. For the shading pattern subjected to LN, the GMPP locations are
assessed as 2.4278 kW and 2.8849 kW, respectively. The authors of [17] investigated the PV
array arrangements, e.g., SP, TCT, BL, HC and hybrid series parallel-total cross tied (SP–TCT)
and BL–TCT, and game-puzzle-based configurations such as nonsymmetrical-1, 2 (NS-1 and
NS-2) are reported. The shading pattern-3 subjected to TCT array configuration has power at
GMPP as 5260 W, 4545 W, 4332 W, 4182 W for four distinguished shading cases, respectively.
In a similar shading scenario, the NS-2 configuration has power levels at GMPP locations of
5260 W, 5013 W, 4811 W and 4182 W, which are higher than conventional methods.

In [18], the performance of PV array designs of 4 × 4 sizes, i.e., MATLAB/Simulink
is used to investigate TCT, hybrid SP-TCT, BL-TCT, BL-HC and MS, RSP-TCT, RBL-TCT
and RBL-HC. The power at GMPP is observed as 2279 W, 1976 W, 2279 W, 1976 W, 2197 W,
1976 W, 2233 W, 1976 W and 2255 W for the respective topologies. The authors of [19] ana-
lyzed TCT configuration for performance improvement under PSCs. The power at GMPP
under shading case-4 is observed as 377.2 W, 468.9 W and 468.9 W for TCT, Optimal TCT
and Novel TCT configurations, respectively. Performance indices such as FF are observed
at 40.46%, 60.26% and 60.28%, respectively. The authors of [20] discussed the result and test
conducted on a 4 × 5 size PV array configuration with distinguishing shading scenarios.
The power at GMPP for shading scenarios is observed as 797.24 W, 823.75 W, 819.22 W,
850.25 W, 851.57 W for SP, BL, HC, TCT and Novel PV array topologies. Furthermore,
the calculated PL are found as 1.88%, 4.13%, 2.32%, 2.59% and 1.30%, respectively. The
authors of [21] proposed a shade dispersion scheme (SDS) arrangement compared to other
conventional PV module interconnections such as SP, BL and TCT under realistic shading
patterns. The power at GMPP of PV array for SP, BL, TCT and SDS configurations is
1644.36 W, 1689.84 W, 1721.55 W and 1746.33 W, respectively. Also, results in PL for the
same are 301.40 W, 256.12 W, 224.41 W and 199.63 W. The SDS configuration has a higher
performance among all the PV array configurations. In [22], the recently developed cross
diagonal view (CDV) configuration is proposed and compared to the conventional SP and
TCT configuration for a 9 × 9 size PV array module. The power at GMPP is observed for
SP, SDK, TCT and TCT-CDV as 6307.5 W, 6307.5 W, 4861.2 W and 7492.5 W. In [23], new
physical PV array setups are introduced to reduce the shading impact and generated power
at GMPP for SP, TCT and modified TCT (M-TCT) configurations under the considered
shading conditions 174.60 W, 185.33 W, 215.74 W and 523.80 W, respectively.

Interconnection methods are proposed in [24] to reduce PL during PSCs. The TCT
and proposed configurations have increased the power output by 7.8% and 6.9% com-
pared to the conventional SP arrangement. The GMPP locations are found as 4065.3 W,
4419.3 W and 4393.1 W for SP, TCT and proposed topologies, respectively. The authors
of [25] calculated the comparative result in terms of maximum power for parallel and
series configurations under distinguished shading effects as 544.2 W, 492.45 W, 381.1 W
and 446.5 W. For minimizing the shadowing effect, the parallel configuration is conve-
nient. In [26], SDK arrangement was compared to TCT and validated experimentally on a
5 × 5 size array. Power of 266.4 W and 280.2 W was generated for the proposed Su-Do-Ku
and TCT configuration subjected to two types of PSCs. People who came up with this
idea say it makes P-V curves more even and eliminates the MPPT algorithm as well as
the financial risk. In [27], the authors proposed a column-index-based topology for PV
reconfiguration scheme. The generated power at GMPP for PV array topologies was such
as proposed, DS, TCT and SP are 5338 W, 5101 W, 5066 W and 4815 W under LN-based
shading pattern. The proposed technique was tested on a 9 × 9 size PV array and the
results showed that it increased the global maximum power when compared to DS, TCT
and SP array configurations.
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In [28], the I-SDK arrangement enhanced the global power peaks (28.6%, 22.1%, 22.8%,
17.2%, 6.2% and 5.2%) compared to conventional (SP, BL, HC, TCT) and puzzle-based (SDK
and optimal SDK) PV array setups under a realistic shading scenario. The authors of [29]
designed 6 × 4 size PV array setups for performance investigation under shading scenarios.
The SP, TCT, BL, HC, BL-HC, BL-TCT and SP-TCT arrangements were adopted for perfor-
mance investigation and the generated power at GMPP was observed as 2177 W, 2394 W,
235.2 W, 2235 W, 2187 W, 2389 W, 2306 W and 2298 W, respectively. Moreover, TCT and
BL-TCT configurations have shown a better response in terms of the highest power at GMPP,
minimum PL and improved FF. The authors of [30] reviewed the performance of the proposed
SRBL-TCT configuration compared to SP, TCT, BL, HC and BL-TCT results obtained under the
realistic moving clouds phenomenon. At each of the five shading instants, the obtained GMPP
location of the SRBL-TCT configuration was found to be superior to the SP, TCT, BL, HC and
BL-TCT configurations. The obtained power at GMPP for the BL-TCT PV array configuration
subjected to all five shading scenarios was 39.57 W, 23.89 W, 38.85 W, 38.05 W, 26.5 W. In
the SRBL-TCT PV array configuration, the power at GMPP for all five considered shading
scenarios as 44.31 W, 38.63 W, 42.44 W, 41.04 W and 40.93 W, respectively. The skyscraper
methodology was simulated along with its application to a 9 × 9 size PV array and was
matched to the TCT, DS and SDK arrangement using MATLAB/Simulink in [31]. Under PSCs,
the PL for skyscraper, TCT, DS and SDK was 0.305%, 0.35%, 0.325% and 0.316%.

1.2. Novelty of Work

The I-SDK PV array enhances PV system performance in terms of a higher GMPP, FF
and minimal PL. Furthermore, the I-SDK PV array arrangement is a viable solution for a
number of reasons:

• The suggested I-SDK configuration improves performance compared to standard
setups because it more evenly disperses the shadow impact throughout the PV array.

• The utility and functionality of the proposed I-SDK configuration are tested by a
comprehensive experimental study under distinctive shading scenarios and validated
the MATLAB/Simulink results, i.e., GMPP locations, PL, ER and FF.

2. PV Modelling and Array System
2.1. PV Cell Modeling

The PV module’s mathematical analysis was used for MATLAB/Simulink modeling
of the PV cell and electrical equivalent circuit of a single diode model, as shown in Figure 1.
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Figure 1. PV cell: electrical equivalent model [32].
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The output current of a solar PV cell is given in Equation (1) [19] as

IPV = Npp

{
IPVn − IO

[
exp

(
VPV + IPV RS

VtNSS

)
− 1
]}

−
(

VPV + IPV RS
RP

)
(1)

where ‘IPV ’—PV cell current, ‘Rp’—parallel resistance, ‘S’—series resistance, ‘IO’—reverse
saturation current, ‘Vt’—thermal voltage, ‘NSS’ and ‘Npp’ are the number of cells connected
in systematic order (series and parallel).

2.2. PV Array Configurations: Conventional

(a) Series-parallel configuration

In a PV array, a finite number of PV modules are arranged in parallel strings to
increase the voltage and current to meet the required load power demand. The electrical
arrangements are used to show the 6 × 6 size SP configuration in Figure 2 as
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(b) Total-cross-tied configuration

The TCT electrical arrangement is an extended modification of the SP configuration
by means of fixing ties across the parallel strings. This cross-tied-based modification is
responsible for enhancing the current through each parallel string and constant voltage
during PSCs. Mathematically; voltage analysis is expressed for the PV array in Equation (2).

Varray = ∑6
k=1 Vmk (2)

where Vmk refers to the voltage (maximum) at the kth row. Each string of the PV modules
is linked in parallel; therefore, the total current drawn by the PV array is the sum of the
individual currents drawn by each module in the array. Furthermore, a mathematical
approach is applied to each node using Kirchhoff’s current law. As a consequence, the
array current

(
Iarray

)
can be expressed in Equation (3) as

Iarray = ∑6
q=1

(
Ikq − I(k+1)q

)
= 0, p = 1, 2, 3, . . . 9 (3)

where k and q are the number of rows and columns in the considered 6 × 6 size PV array.
Figure 3 depicts the TCT array’s electrical configuration of PV modules.
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2.3. Game-Theory-Based PV Array Configurations

(a) SDK and I-SDK configurations

As the shadow is diffused over the array, the game-theory-based SDK layout guaran-
tees that mismatch losses are minimized. The wiring connections are completed once the
panels have been properly arranged and they stay unmodified. This decreases computing
difficulties while also preventing the overuse of sensors and switches [33].

The SDK change in columns 2–6 is known as the I-SDK puzzle. By repositioning the
PV modules without disturbing the electrical arrangement, the suggested I-SDK layout is
implemented in the TCT PV array. In this game puzzle, higher dispersion is found based
on the optimal placement of all the integer numbers in an array. This integer placement
modification is responsible for higher shade dispersion. The SDK and I-SDK puzzles and
approach are depicted in Figure 4a–d as
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The summation of all the items in each particular row/column, according to SM char-
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(b) Symmetric matrix-based configurations

Cyclic arrangement of integer numbers from 1 to 6 is carried out to establish the SM
game-theory-based arrangement. The summation of the considered integer numbers in
each row and column is found to be equal as per SM development guidelines. In addition
to that, either of the diagonal elements keeps repeating within it. Figure 5a depicts all of
the assets of the 6 × 6 size SM as
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The summation of all the items in each particular row/column, according to SM
characteristics, is 21. Furthermore, in Figure 5b, there is a repetition of 3 × 3 size square
submatrices.

To represent the row-column summation rules, mathematical assumptions are made.
In this context, the SM size is considered in the order of p × q. Moreover, the nth element
can be placed corresponding to the pth and qth row-column, respectively. So, the location
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of the PV module (npq) in an array can be written in a generalized way and expressed in
Equation (4) as

npq, where
{

p = no. of row (p = 1, 2, . . . . 6)
q = no. of column (q = 1, 2, . . . . 6)

(4)

In Figure 5a,b, we see the mathematical equations for four distinct cases of row-wise
summing and that are accomplished using Equation (5) as follows:

6

∑
p=1

npq(Summation for pthrow) =
6

∑
q=1

npq(Summation for qthcolumn) (5)

The above Equations (4) and (5) are involved in the guidelines to achieve the 6 × 6
size SM setup, and the scientific method to establish the SM is shown in Figure 6 as
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Figure 6. Methodology to achieve SM game theory.

In SM, there are six rows and columns in a 6 × 6 PV array, respectively. As per the
nomenclature shown in Figure 7a, the first digit of each individual PV module depicts the
row count, while the second digit depicts the column count. It is an easier nomenclature-
based methodology to understand the electrical arrangements of PV modules in an array.
In Figure 7b, the PV module locations are migrated using the recommended SM structure
but the electrical contacts of the PV panels within PSCs remain unchanged.
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2.4. Experimental Setup

MATLAB/Simulink modeling and experimentation utilize a commercially available
5 W PV module, as shown in Table 1.

Table 1. PV module specifications (Manf. Universal solar: 5 W, poly-crystalline).

Parameters Values

Maximum power (Pm) 5 W
Maximum current (Im) 0.52 A
Maximum voltage (Vm) 9.62 V

Open circuit voltage (VOC) 11.25 V
Short circuit current (ISC) 0.55 A

For performance validation, an experimental setup is established with 6 × 6 size PV
array configurations with the assistance of an embedded-based data acquisition system
(DAS) for logging real-time electrical parameters. The performance characterization in
terms of I-V and P-V curves is performed for extensive performance analysis in different
realistic shading scenarios. The above experimental setup comprises mainly four sec-
tions such as (a) PV system (6 × 6 size), arranged in SP, SDK and I-SDK configurations;
(b) variable resistive load (Rheostat: 800 Ω, 6 A); (c) self-developed DAS. The developed
experimental setup is shown in Figure 8.

Using the AT-mega microcontroller (8051), a self-designed data logger is utilized,
which includes analog voltage and current sensors for electrical data investigation. Re-
alistic electrical performance parameters in terms of voltage and current are stored in a
micro-SD card. These recorded data are used for I-V and P-V characterization and rigor-
ous investigation of performance parameters. Figure 9 also depicts the working of the
constructed data logger. The code has processes for measuring electrical characteristics
that have been fine-tuned based on an assessment and data gathering that use a simple
algorithm.
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3. Performance Parameters and Shading Scenarios

This unique MPP is due to P-V curves and PSCs in PV modules in an array. The
MPP tracking device function refuses to give the maximum power to the load because of
redundant GMPP and LMPP. In the performance assessment under standard test conditions,
maximum power and voltage were found to be 180.2 W and 58.09 V, respectively. Figure 10
shows the performance characteristics under uniform irradiances as a result of the P-V and
I-V curves.
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3.1. Power and Voltage at GMPP

During the PSCs, multiple power points, i.e., GMPP and LMPP, were observed on the
P-V curve. The higher power value is known as “power at GMPP (P GMPP)”. Furthermore,
at which value of voltage, the higher power at GMPP is also called the “voltage at GMPP
(V GMPP)”.

3.2. Power Mismatch Loss

The power ML is represented as ∆PL and it is calculated based on the maximum power
generated during the ideal irradiance scenario and PSCs [34]. The theoretical assessment of
power ML is expressed in Equation (6) [17].

%∆PL =
Puni f orm irradiance − PPSC

Puni f orm irradiance
× 100 (6)

3.3. Power Loss

Theoretically, the evaluation of PL is measured by the difference in maximal power
produced between perfect and nonuniform irradiation. The calculated PL is expressed in
Equation (7) [17] as

PL = Pmax at Ideal Irradiance − PGMPP at PSCs (7)

3.4. Fill Factor

The FF is defined in Equation (8) [17] as the ratio of the generated GMPP at PSCs to
the maximum rated capacity of the PV facility

FF =
Vmpp × Impp

Voc × Isc
(8)

3.5. Performance Ratio

This is a quality factor that indicates how much solar energy is efficiently used. It
compares the actual and theoretical power production of a PV installation. The closer the
PR is to 100%, the more efficient the PV plant. This nondimensional factor is defined in
Equation (9) [18] as

PR =
Yfinal
Yref

(9)
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where Yfinal uses the following formula shown in Equation (10) to express the relationship
between the total energy produced by an array (EA) and the absolute power produced by a
PV panel PDC as

Yfinal =
EA
PDC

(10)

Whereas the “Yre f ” calculated by dividing the amount of insolation (HA) received by
a panel over a given time period by the amount of irradiance received over the same time
period at STC as shown in Equation (11) as

Yre f =
HA
G

(11)

3.6. Execution Ratio

This is the ratio between the power at GMPP achieved at PSCs (P GMPP) and power
achieved at STCs (P m). The mathematical representation of ER is given in Equation (12) [18] as

%ER =
Pm at PSCs

PSTC
× 100 (12)

3.7. Power Enhancement

The power enhancement of game-puzzle-based configurations is evaluated with
respect to the existing TCT scheme and expressed in Equation (13) [18] as

%PE =
PGMPP(SM/SDK/I-SDK)− PGMPP(TCT)

PGMPP(SM/SDK/I-SDK)
× 100 (13)

3.8. Shading Patterns Analysis

The obtained P-V and I-V curves during PSCs are described using MATLAB/Simulink
modeling and experimentation studies.

(a) Shadowing pattern-I

Based on the different methodologies and placement of integer numbers, these are
responsible for developing the game puzzle with shade dispersion capability as shown
in Figure 11a–e. With the consideration of nonuniform shade profiles from a minimum
to maximum irradiance range such as 200 W/m2, 400 W/m2, 600 W/m2, 800 W/m2

and 1000 W/m2, an inclusive study was carried out with conventional (SP, TCT) and
game theory (SDK, I-SDK and SM) based configurations. The considered shading pattern
showed a highly nonuniform nature in irradiance. Furthermore, the game-theory-based
reconfigurable methodologies are beneficial in terms of performance improvement due to
the higher shade dispersion factor.
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To understand the feasibility of considered reconfiguration methodologies, a theoreti-
cal valuation of row-wise current was performed. The theoretical valuation of the produced
row-wise current for the conventional SP configuration is expressed in Equations (14)–(16).
Table 2 depicts the theoretical current assessment of other game-theory-based PV array
systems.
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Table 2. Theoretical assessment: PV performance under shading pattern-I.

Row 1 2 3 4 5 6

SP

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 6Im 6Im 6Im 4Im 3.8Im 3.8Im
P (W) 6ImVm 12ImVm 18ImVm 16ImVm 19ImVm 22.8ImVm

TCT

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 6Im 6Im 6Im 4Im 3.8Im 3.8Im
P (W) 6ImVm 12ImVm 18ImVm 16ImVm 19ImVm 22.8ImVm

SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.59Im 4.59Im 4.59Im 4.59Im 5.19Im 4.38Im
P (W) 4.59ImVm 9.18ImVm 13.77ImVm 18.36ImVm 25.95ImVm 26.28ImVm

I-SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.19Im 4.59Im 4.38Im 5.19Im 5.19Im 5.0Im
P (W) 5.19ImVm 9.18ImVm 13.14ImVm 20.76ImVm 25.95ImVm 30.06ImVm

SM

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.38Im 5.0Im 5.38Im 5.59Im 4.78Im 4.38Im
P (W) 4.38ImVm 10.0ImVm 16.14ImVm 22.36ImVm 23.9ImVm 26.28ImVm
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(b) Shadowing pattern-II

Based on the different methodologies and placement of integer numbers, these are
responsible for developing the game puzzle with shade dispersion capability as shown
in Figure 12a–e. With the consideration of nonuniform shade profiles from minimum to
maximum irradiance ranges such as 300 W/m2, 600 W/m2, 700 W/m2 and 900 W/m2, a
comprehensive study was carried out with existing and game-theory-based arrangements.
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To understand the feasibility of the considered reconfiguration methodologies, a
theoretical assessment of row-wise current was performed. The theoretical row-wise
current generated by the usual SP design is expressed in Equations (17)–(20). Table 3
depicts the theoretical current assessment of other game-theory-based PV array systems.
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Table 3. Theoretical assessment: PV performance under shading pattern-II.

Row 1 2 3 4 5 6

SP

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.38Im 5.38Im 5.38Im 5Im 4.38Im 3.19Im
P (W) 5.38ImVm 10.76ImVm 16.14ImVm 20ImVm 21.9ImVm 19.14ImVm
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Table 3. Cont.

Row 1 2 3 4 5 6

TCT

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.38Im 5.38Im 5.38Im 5Im 4.38Im 3.19Im
P (W) 5.38ImVm 10.76ImVm 16.14ImVm 20ImVm 21.9ImVm 19.14ImVm

SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.09Im 4.90Im 4.5Im 4.30Im 5.0Im 5.0Im
P (W) 5.09ImVm 9.80ImVm 13.5ImVm 17.2ImVm 25ImVm 30ImVm

I-SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.59Im 4.28Im 4.59Im 4.88Im 5.19Im 5.19Im
P (W) 4.59ImVm 8.56ImVm 13.77ImVm 19.52ImVm 25.95ImVm 31.14ImVm

SM

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.88Im 5.09Im 4.61Im 4.28Im 4.0Im 5.0Im
P (W) 4.88ImVm 10.18ImVm 13.8ImVm 17.12ImVm 20.0ImVm 30.0ImVm

(c) Shadowing pattern-III

Based on the different methodologies and placement of integer numbers, these are
responsible for developing the game puzzle with shade dispersion capability as shown
in Figure 13a–e. With the consideration of nonuniform shade profiles from minimum to
maximum irradiance ranges such as 400 W/m2, 800 W/m2 and 900 W/m2, a compre-
hensive study was carried out with conventional and game-theory-based configurations.
Furthermore, the game-theory-based reconfigurable methodologies are beneficial in terms
of higher GMPP under shading profiles.
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The theoretical row-wise current generated by the usual SP design is expressed in
Equations (21)–(23). Table 4 depicts the theoretical current assessment of other game-theory-
based PV array systems.
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Table 4. Theoretical assessment: PV performance under shading pattern-III.

Row 1 2 3 4 5 6

SP

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.38Im 5.38Im 5.38Im 5.19Im 3.19Im 3.19Im
P (W) 5.38ImVm 10.76ImVm 16.14ImVm 20.76ImVm 15.95ImVm 19.14ImVm

TCT

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.38Im 5.38Im 5.38Im 5.19Im 3.19Im 3.19Im
P (W) 5.38ImVm 10.76ImVm 16.14ImVm 20.76ImVm 15.95ImVm 19.14ImVm

SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.38Im 4.78Im 4.78Im 4.28Im 4.78Im 4.78Im
P (W) 4.38ImVm 9.56ImVm 14.34ImVm 17.12ImVm 23.9ImVm 28.68ImVm

I-SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.69Im 4.78Im 4.38Im 4.69Im 4.78Im 4.38Im
P (W) 4.69ImVm 9.56ImVm 13.14ImVm 18.76ImVm 23.9ImVm 26.28ImVm

SM

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.38Im 4.38Im 4.30Im 4.69Im 5.19Im 4.78Im
P (W) 4.38ImVm 8.76ImVm 12.90ImVm 18.76ImVm 25.95ImVm 28.68ImVm

(d) Shadowing pattern-IV

Based on the different methodologies and placement of integer numbers, these are
responsible for developing the game puzzle with shade dispersion capability as shown
in Figure 14a–e. With the consideration of nonuniform shade profiles from minimum to
maximum irradiance ranges such as 300 W/m2, 535 W/m2 and 840 W/m2, a comprehensive
study was carried out with conventional and game-theory-based configurations. The
shading pattern appears to be building a corner shading on the PV array system.
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Equations (24)–(26) give a theoretical evaluation of the generated row-wise current
for the typical SP configuration. Table 5 depicts the theoretical current assessment of other
game-theory-based PV array systems.
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Table 5. Theoretical assessment: PV performance under shading pattern-IV.

Row 1 2 3 4 5 6

SP

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.03Im 5.03Im 5.03Im 4.42Im 4.11Im 3.34Im
P (W) 5.03ImVm 10.06ImVm 15.09ImVm 17.68ImVm 20.55ImVm 20.04ImVm

TCT

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 5.03Im 5.03Im 5.03Im 4.42Im 4.11Im 3.34Im
P (W) 5.03ImVm 10.06ImVm 15.09ImVm 17.68ImVm 20.55ImVm 20.04ImVm

SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.42Im 4.73Im 4.19Im 4.19Im 4.73Im 4.73Im
P (W) 4.42ImVm 9.46ImVm 12.57ImVm 16.76ImVm 23.65ImVm 28.38ImVm
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Table 5. Cont.

Row 1 2 3 4 5 6

I-SDK

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.73Im 4.19Im 3.68Im 4.73Im 5.03Im 4.42Im
P (W) 4.73ImVm 8.38ImVm 11.04ImVm 18.92ImVm 25.15ImVm 26.52ImVm

SM

V (V) Vm 2Vm 3Vm 4Vm 5Vm 6Vm
I (A) 4.42Im 4.42Im 4.5Im 4.5Im 4.73Im 4.42Im
P (W) 4.42ImVm 8.84ImVm 13.5ImVm 18ImVm 23.65ImVm 26.52ImVm

4. Results and Discussion

The suggested PV array configurations were used to estimate performance in all four
shading circumstances. The preferred PV array setups were used to estimate performance
under all four distinct shading scenarios. An investigation into the PV system’s perfor-
mance was carried out using MATLAB/Simulink, while experimentation was used to
verify the results.

4.1. MATLAB/Simulink Study: P-V and I-V Curves under Shading Case I–IV

A thorough examination of the achieved performance of SP, TCT, SDK, I-SDK and SM
arrangements was considered. The behavior of the characterized P-V and I-V curves for PV
array topologies under shading scenarios I-IV is depicted in Figures 15 and 16.
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Shade losses are greater in the SP and TCT configurations due to a lack of coherence
between the maximum power of the module and the GMPP of the PV array. The SP and
TCT configurations, GMPPs are 108.7 W and 121.3 W for shading case-I at nonuniform
irradiation levels: 1000 W/m2 -200 W/m2, respectively. Moreover, for other reconfigured
PV arrays such as SDK, I-SDK and SM, the GMPPs are investigated as 139.9 W, 143.5 W
and 136.3 W.

During the shade case-II, the SP and TCT electrical arrangements had inferior power per-
formance at GMPPs of 113.2 W and 115.9 W, respectively. SDK, I-SDK and SM configurations
feature different GMPP sites for equivalent climatic conditions, including 139.1 W, 141.7 W
and 136.9 W, respectively, in terms of uniform irradiance levels (1000 W/m2 -200 W/m2).

P-V curves with several maximum points show that GMPP power is present. Under the
shading case-III, the TCT, SDK and SM models performed better than the SP configuration
in terms of GMPP, with values of 103.4 W, 134.1 W and 133.3 W, respectively. Because of its
shade dispersion characteristics, the I-SDK design had the maximum power among the
examined PV array topologies at GMPP of 138.1 W.

The SP setup had a low power output at GMPP of 108.1 W when using shading case-IV.
For identical environmental needs, TCT, SDK, I-SDK and SM setups with multiple GMPP
locations such as 108.8 W, 124.8 W, 129.3 W and 123.1 W are available.

In Case-I, the I-SDK configuration had smoother I-V characteristics than the SP, TCT,
SDK and SM versions. When compared to other configurations, the ISC for the I-SDK
configuration was judged to be 2.90 A after the examination. The values for ISC for all
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PV array configurations were SP (3.29 A), TCT (3.29 A), SDK (2.87 A) and SM (2.96 A)
arrangements.

For shading case II, the I-V characteristic of the I-SDK setup exhibited smooth behavior,
achieving ISC and VOC of 2,80 A and 66.65 V, respectively. For the SP, TCT, SDK and SM
models, the ISC values were 2.96 A, 2.96 A, 2.80 A and 2.77 A, respectively. When compared
to other settings, the shading effects of SP and TCT settings enhanced volatility.

During shading case-III, the nature of the I-V curve for I-SDK was confirmed to be
smoother and reported as 2.63 A when compared to SP, TCT, SDK and SM arrangements.
The ISC was 2.97 A (SP), 2.97 A (TCT), 2.63 A (SDK) and 2.85 A for other setups (SM).

The nature of the I-V curves was investigated in shading case-IV. In this scenario, the
I-SDK setup exhibited smooth behavior to achieve ISC and VOC in the 2.60 A and 65.5 V
ranges. In addition, the ISC values for the 2.77 A, 2.77 A, 2.77 A and 2.77 A configurations
were obtained.

The MATLAB and simulation study was analyzed from a critical perspective. The
efficiency of solar photovoltaic systems decreased dramatically when realistic shading
patterns were used. Voltage and power at GMPP, PL and FF can be calculated using P-V
and I-V curves. Table 6 provides the quantitative findings of the MATLAB/Simulink study
for shading profiles I–IV.

Table 6. MATLAB/Simulink quantitative study of shading scenarios I–IV.

Performance
Parameters

Case-I Case-II

SP TCT SDK I-SDK SM SP TCT SDK I-SDK SM

PGMPP (W) 108.7 121.3 139.9 143.5 136.3 113.2 115.9 139.1 141.7 136.9
VGMPP (V) 60.35 59.82 58.82 58.81 59.73 50.15 49 58.71 57.81 58.73

Im (A) 1.80 2.027 2.378 2.44 2.28 2.25 2.36 2.36 2.45 2.33
VOC (V) 65.9 66.3 66.5 66.5 66.5 66.2 66.2 66.55 66.55 66.55
ISC (A) 3.299 3.299 2.87 2.90 2.96 2.969 2.969 2.80 2.80 2.77
PL (W) 71.5 58.3 41 36.7 43.9 67 64.9 41.1 38.5 43.3
Ploss (%) 39.6 32.35 22.75 20.36 24.36 37.18 36.01 22.80 21.36 24.02
FF (%) 50.13 55.45 73.30 74.61 69.24 57.76 58.97 74.64 76.10 74.21
PR (%) 60.32 67.31 77.63 79.63 75.63 62.81 64.31 77.19 78.63 75.97

PE (%) w.r.t TCT - 11.59 28.70 32.62 25.39 - 2.38 22.87 25.17 20.93

Best topology I-SDK I-SDK

Performance
Parameters

Case-III Case-IV

SP TCT SDK I-SDK SM SP TCT SDK I-SDK SM

PGMPP (W) 101.3 103.4 134.1 138.1 133.3 108.1 108.8 124.8 129.3 123.1
VGMPP (V) 37.6 37.6 58.18 58.17 58.10 50.55 61.0 59.08 58.43 59.04

Im (A) 2.69 2.75 2.30 2.37 2.29 2.15 1.75 2.11 2.21 2.08
VOC (V) 65.5 65.5 66.1 66.1 66.1 65.4 65.5 65.5 65.5 65.5
ISC (A) 2.97 2097 2.63 2.63 2.85 2.77 2.77 2.77 2.60 2.77
PL (W) 78.9 76.8 46.1 42.1 46.9 72.1 71.4 55.4 50.9 57.1
Ploss (%) 43.78 42.61 25.58 23.36 26.02 40.01 39.62 30.74 28.24 31.68
FF (%) 52 57.4 77.1 79.4 70.7 59.6 59.96 68.78 75.92 67.8
PR (%) 56.21 57.38 74.41 76.63 73.97 59.98 60.37 69.25 71.75 68.31

PE (%) w.r.t TCT - 2.07 32.37 36.32 31.58 - 0.64 15.44 19.61 13.87

Best topology I-SDK I-SDK

4.2. Power and Voltage at GMPP

GMPP’s power evaluation results are given in Figure 17. The I-SDK arrangement
delivered the greatest power at GMPP of 143.5 W, 141.7 W, 128.3 W and 129.3 W.

Power distribution to the load side involves many factors, including voltage at GMPP.
The voltage at GMPP has distinct values in the MATLAB/Simulation research for SP, TCT,
SDK, I-SDK and SM setups under shading case-I (60.35 V, 59.82 V, 8.82 V, 58.81 V and 59.73
V), case-II (50.15 V, 49 V, 58.71 V, 57.81 V and 58.73 V), case-III (37.6 V, 37.6 V, 58.18 V, 58.17 V
and 58.10 V) and case-IV (50.55 V, 61 V, 59.08 V, 58.43 V and 59.04 V).
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Figure 17. (a) Power; (b) voltage at GMPP. 

4.3. PL and FF Analysis  
Power losses due to shade on PV systems such as SP, TCT, SDK, SM and I-SDK con-

figurations were observed in the MATLAB/Simulink study. In order to do this, the I-SDK 
configuration had a minimum PL of 20.36%, 21.36%, 23.36% and 28.24% under shading 
cases I–IV, respectively.  

Deviation in the FF due to different shadowing scenarios are given in Figure 18 when 
comparing SP, TCT, SDK, SM and I-SDK layouts. Shade instances I-IV in the 
MATLAB/Simulink study, according to I-SDK, demonstrated the greatest gains in shading 
efficiency in terms of FF at 74.61%, 76.10%, 79.4% and 75.72%, respectively. 

Figure 17. (a) Power; (b) voltage at GMPP.

4.3. PL and FF Analysis

Power losses due to shade on PV systems such as SP, TCT, SDK, SM and I-SDK
configurations were observed in the MATLAB/Simulink study. In order to do this, the
I-SDK configuration had a minimum PL of 20.36%, 21.36%, 23.36% and 28.24% under
shading cases I–IV, respectively.

Deviation in the FF due to different shadowing scenarios are given in Figure 18
when comparing SP, TCT, SDK, SM and I-SDK layouts. Shade instances I-IV in the MAT-
LAB/Simulink study, according to I-SDK, demonstrated the greatest gains in shading
efficiency in terms of FF at 74.61%, 76.10%, 79.4% and 75.72%, respectively.
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shade dispersion capabilities. 

I-V characteristics of the I-SDK configuration were smoother than those of the SP, 
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ISC values were discovered to be 2.61 A for the I-SDK configuration. Furthermore, the 𝐼  
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4.4. PR and PE Analysis

The PR and PE analysis was performed using MATLAB/Simulink, as illustrated in
Figure 19. When compared to SP, TCT, SDK and SM arrangements, I-SDK had the highest
PR of 79.63%, 78.63%, 76.63% and 71.75% in shading patterns I-IV.

In addition to this, the PE was investigated under shading scenarios I-IV, though
MATLAB/Simulink analysis was observed to be highest as 32.62%, 25.17%, 36.32% and
19.61% compared to TCT (11.59%, 2.38%, 2.07% and 0.64%), SDK (28.17%, 22.87%, 32.37%,
15.44%) and SM (25.39%, 20.93%, 31.58%, 13.87%) configurations.
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4.5. Experimental Study: P-V and I-V Curves under Shading Case-IV

This research investigated the effect of shading on the electrical performance of typical
SP, TCT, SDK, SM and I-SDK puzzle-based designs. The P-V curve for each of the four PV
array installations is given in Figure 20a,b for shading scenarios I–IV.

The presence of numerous power maximum points on P-V curves defined the posi-
tion of the GMPP. In terms of shading case-IV, the GMPP for the SP, TCT, SDK and SM
models were 104.2 W, 105 W, 122.1 W and 120.3 W, respectively. The I-SDK-based setup
outperformed the other PV topologies in terms of power at GMPP (127.9 W) due to its
shade dispersion capabilities.

I-V characteristics of the I-SDK configuration were smoother than those of the SP,
TCT, SDK and SM puzzle-based setups. Under the scrutiny of shading scenario-IV, the
ISC values were discovered to be 2.61 A for the I-SDK configuration. Furthermore, the
ISC values for all PV arrays based on SP, TCT, SDK and SM configurations were 2.8 A,
2.8 A, 2.62 A and 2.62.A, respectively. In addition, the quantitative observation during
experimentation is reported in Table 7.
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Table 7. Quantitative analysis with experimental shading study- IV.

Performance
Parameters

Case-IV

SP TCT SDK I-SDK SM

PGMPP (W) 104.2 105 122.1 127.9 120.3
VGMPP (V) 52.90 59.97 59.36 58.34 58

Im (A) 1.96 1.75 2.05 2.19 2.06
VOC (V) 66.1 66.2 66.3 66.3 66.1
ISC (A) 2.8 2.8 2.62 2.61 2.62
PL (W) 76 75.2 58.1 52.3 59.9
Ploss (%) 42.17 41.73 32.24 29.02 33.24
FF (%) 56.29 56.64 70.29 73.91 69.46
PR (%) 57.82 58.26 67.75 70.97 66.75

PE (%) w.r.t TCT - 0.767 17.17 22.74 15.45

Best topology I-SDK

A transient analysis of electrical performance characteristics was monitored during
experimental activities to verify the results. Under shading pattern-I, the maximum current,
voltage and power were settled from ideal/rated power (180 W) to 104.2 W (SP), 105 W
(TCT) and 122.1 W (SDK), 127.9 W (I-SDK) and 120.3 W (SM), respectively, and are shown
in Figure 21 as
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Figure 21. (a–e) Steady-state analysis of PV array configurations under shading case-IV. 
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Figure 21. (a–e) Steady-state analysis of PV array configurations under shading case-IV.

4.6. Power and Voltage at GMPP

In addition, when compared to traditional SP, TCT, SDK and SM configurations, I-SDK
setups produced more power at GMPP of 127.9 W.

Under shading case-IV, the SP, TCT, SDK, I-SDK and SM setups had different voltages
at GMPP (52.90 V, 59.97 V, 59.36 V, 58.34 V and 58 V). Figure 22 is a bar chart depicting the
power and voltage at GMPP.
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4.7. PL and FF Analysis

According to a recent experimental investigation, the I-SDK configuration had the
lowest PL of 29.02% for performance evaluation during shading case-IV. I-SDK had lower
PL values than the SP, TCT, SDK and SM setups according to the bar chart analysis in
Figure 23.
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Experimental research was carried out under comparable lighting conditions as in
Case-IV. As a result, the I-SDK setup had a higher FF of 73.91%, validating the MAT-
LAB/Simulink study results.

4.8. PR and PE Analysis

The experimental study was conducted for PR assessment. When compared to SP, TCT,
SDK and SM arrangements, I-SDK had the highest PR of 70.97% in shading patterns IV.

The experimental value of PE was detected and certified as 22.74% during the shading
case-IV experimental investigation. For experimental research, PR and PE analysis are
depicted as a bar chart in Figure 24.
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4.9. Comparison of Simulation and Experimental Results under Shading Case-IV

The key performance parameters were investigated during the MATLAB/Simulink
study and validated through an experimental study under shading case-IV. Table 8 was
explored to show the difference between the key parameters during both the studies under
shading case-IV as
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Table 8. Parameters for Simulink and experimental studies under shading case-IV.

Parameters Simulink Study Experimental Study

GMPP (W) 129.3 127.9

FF (%) 75.92 73.91

PR (%) 71.75 70.97

PL (W) 50.9 52.3

5. Conclusions

An I-SDK shade dispersion configuration approach was proposed in this study to
increase a PV array’s power generation under PSCs. A MATLAB/Simulink model was
used to assess the performance of several 6 × 6 size PV array configurations, such as TCT,
SDK, I-SDK and SM, for various parameters such as power at GMPP, FF, PL and PE.

• In shading scenario-I, the minimized PL for I-SDK configuration was quite a bit
less as 36.7 W compared to SP (71.5 W), TCT (58.3 W), SDK (41 W) and SM (43.9)
configurations. Furthermore, the maximum FF was found to be 74.61% for the I-SDK
configuration, which is more than the SP (50.13%), TCT (55.45%), SDK (73.30%) and SM
(69.24%) configurations, respectively. The power at GMPP of the I-SDK configuration
was found to be highest compared to conventional configurations, at 143.5 W

• In shading scenario-II, the PL in the I-SDK configuration was observed to be smaller,
at 38.5 W, compared to SP (67 W), TCT (64.9 W), SDK (41.1 W) and SM (43.3 W)
configurations. In the I-SDK configuration, the FF also had a maximum value of
76.10%, which is more than other existing PV array configurations.

When compared to the SP, TCT, SDK and SM configurations under different shading
patterns, the improved I-SDK configuration enhanced the global maximum power, uni-
formly dispersed the shading influence and minimized the PL. In addition, an experimental
inquiry was conducted to analyze the data and determine the practicality of the proposal.
Using machine learning and artificial intelligence techniques, new puzzle-solving algo-
rithms can be developed for dealing with realistic shading situations on a more generic
scale. More research and development into reconfigurable PV array technology is needed
to get us closer to commercial viability in the future using metaheuristics techniques to
enhance the shade dispersion factor.
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