
Citation: Forcellini, D. The Role of

Redundancy of Infrastructures on the

Seismic Resilience (SR) of Sustainable

Communities. Sustainability 2023, 15,

11849. https://doi.org/10.3390/

su151511849

Academic Editors: Eren Erman

Ozguven and Tian Tang

Received: 5 July 2023

Revised: 30 July 2023

Accepted: 31 July 2023

Published: 1 August 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

The Role of Redundancy of Infrastructures on the Seismic
Resilience (SR) of Sustainable Communities
Davide Forcellini

Faculty of Civil and Environmental Engineering, University of San Marino, via Consiglio dei 60, n. 99,
47899 Serravalle, San Marino; Davide.forcellini@unirsm.sm

Abstract: Infrastructures are fundamental links in sustainable communities, and they need to remain
at a level of functionality during and after natural events. In particular, assessing the seismic resilience
of infrastructures has become an interesting topic in earthquake engineering. The estimation of indi-
rect losses due to seismic events is still a topic under discussion, especially for infrastructures. In this
regard, the paper focused on including the level of redundancy inside an analytical formulation of the
seismic resilience (SR). The main idea is to explore the possibility of alternative infrastructures that
allow the circulation of services and people when the flow on the original infrastructure is interrupted
or reduced. This goal is fundamental for preserving the resilience for sustainable communities. There-
fore, the proposed formulation consists of considering the reduction in losses when the infrastructure
is redundant by introducing the concept of the level of redundancy. In particular, indirect costs were
herein defined with a new formulation that includes the level of redundancy inside the calculation of
SR. The paper presented a case study that implements the formulation with the aim to demonstrate
the efficiency of the proposed methodology. Several levels of infrastructural redundancy have been
applied in the calculation of the SR of an infrastructure subjected to an ensemble of 100 seismic
motions in order to scope the role of redundancy in improving the SR of the system.
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1. Introduction

The definition of losses after the impacts of natural hazards is fundamental in defining
the resilience of infrastructures that is a fundamental issue for sustainable communities.
In this regard, many methodologies consider the calculation of the direct losses, such as
the physical damages without accounting for the losses associated with traffic flow. As
shown in [1], realistic assessments of the losses need to include both direct and indirect
costs. Adey et al. [2], defined direct costs as those losses that the owners sustain to recover
the infrastructure. For example, they may consist of the material and labor costs due to
recovering procedures (e.g., deck replacement, column protection, etc.). Indirect costs
consists of the losses that the users experience due to the closure of the infrastructure
(e.g., travel time and vehicle operating costs). In particular, the main source of indirect
losses consists of the network conditions and the preparedness of the community and
the surrounding region. In this regard, the most significant indirect losses consist of time
delays, interruptions of goods and services, as shown in [3]. In particular, redundancy has
several definitions depending on which level is considered. For example, infrastructure
redundancy is defined as the chance of connection loss and, thus, it significantly affects
the economic losses when travelling is reduced and/or not possible on that particular
infrastructure [3].

On the other side, structural redundancy is defined by the ASCE standard for Mit-
igation of Disproportionate Collapse Potential in Buildings and Other Structures, as the
availability of alternative load paths that would allow for a load to be transferred from the
point(s) of application to the point(s) of resistance in the event of structural compromise
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of the primary load path by a hazard scenario [4]. Before this, the definition of redun-
dancy was built up to consider the different characteristics of structural systems [5–9].
In this regard, ref. [5] describes the progressive collapse of bridges in the several aspects
of analysis and design. Moreover, disproportionate collapses have been discussed in [6],
with particular attention to the terminology and procedures. The redundancy of bridges
configurations has been described in [7–9]. In particular, ref. [7] considered the role of
redundancy and robustness in the design and evaluation of European and North American
bridges. Considering redundancy of single structures, the alternative load paths may
prevent failures since they may allow redistributions of the original forces that the failed
components need to carry [10]. In this regard, the vulnerability of bridges is particularly
important for the assessment of the indirect losses of infrastructures, and many techniques
(e.g., [11,12]) have been proposed in order to ensure their redundancy. As shown in [13],
indirect losses need to be estimated by expert judgments by considering the socio-economic
consequences on the infrastructures. In particular, ref. [14] estimated indirect losses for
highway bridges, while [15] considered that they may range between 5% and 15%.

In addition, ref. [3] showed that the role of interdependency is fundamental in the
assessment of the resilience of infrastructures and thus to ensure the sustainability of
communities. In particular, redundancy is affected by the level of interdependency be-
tween infrastructures, their geographical proximity, or the sharing of their functions and
operations. Therefore, there could be interactions between the impacts due to the natural
events on the infrastructures and, thus, the assessment of the redundancy is of fundamental
importance in the evaluation of the resilience of the various systems. For example, when
a disruption or a failure in the main infrastructure occurs, it may compromise the deliv-
ery and the transportation of products, services and people on the other interconnected
infrastructures. Moreover, because of the level of interconnectivity, the functionality of the
linked infrastructure may reduce and be degraded. This may cause problems to the whole
community in terms of indirect losses (loss of connectivity and prolongation of time, as
discussed in [3]).

In this background, resilience calculation is based on the definition of the Loss Model
that consists of calculating the losses due to a natural event, such as earthquakes, floods,
fires, etc. In this paper, a new formulation for the Loss Model was proposed to account the
role of redundancy over the time in the case of infrastructures subjected to earthquakes. In
particular, the possibility to alternative routes that allow to substitute the damaged infras-
tructure was included in the general formulation that relates the losses to the functionality
of the system. It is important to note that [16] proposed the 4R framework that considered
the role of four factors: Robustness, Redundancy, Resourcefulness and Rapidity. The loss
model particularly depends on two performance criteria: robustness and redundancy.
While the effects of robustness in reducing the losses have been investigated by several
contributions, the novelty of this paper is to concentrate on the role of redundancy. In
particular, ref. [17] considered the loss model at the level of the community, while other
studies concentrated on several typologies of infrastructures, such as tunnels [18], HP/HT
unburied subsea pipelines [19] and bridges [20]. Apart from earthquake engineering, the
quantification of community resilience (CR) has been proposed by few methodologies,
such as [21,22]. In particular, indirect losses were assessed by considering the contribution
of [23], which proposed two sources: economic costs and losses due to casualties. Further-
more, ref. [24–27] applied the methodologies to assess indirect costs of natural hazards.
In particular, ref. [25] considered the microinsurance for natural disasters in developing
countries, ref. [26] investigated role of embodied technical change in cases of natural haz-
ards and [27] discussed how natural disasters may impact a macroeconomic model with
endogenous dynamics.

The main novelty of the paper consists in including the level of redundancy inside an
analytical formulation of the seismic resilience (SR). The proposed formulation describes
the reduction in losses when the network is redundant by introducing the concept of
the level of redundancy. The functionality and the losses have been defined with a new
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formulation that allows to include the level of redundancy inside the calculation of SR.
The originality is to include redundancy inside the definition of the indirect losses, that
together with the direct losses define the loss model. In order to demonstrate the efficiency
of the proposed methodology, the formulation is applied to a case study that compares
several levels of infrastructural redundancy by calculating the resilience of the system at
100 seismic motions.

The paper is divided in five sections. The description of the seismic resilience (SR)
of infrastructures is presented in Section 2, which introduces the principal variables and
parameters considered in the paper. The loss model is detailed in order to introduce the
concept of redundancy that is defined and described in detail in Section 3. In particular, a
new formulation to describe infrastructure redundancy is proposed in terms of functionality
Q and the losses L. A case study is presented in Section 4 in order to demonstrate the
efficiency of the proposed formulation to represent the role of redundancy on the SR of
infrastructures. Finally, the summary and key conclusions made in the study are discussed
in Section 5.

2. Seismic Resilience of Infrastructures

The resilience of infrastructures has been the object of many publications (e.g., [28–35]),
being a fundamental property for assessing the vulnerability of an infrastructure. In this
regard, sustainable communities are particularly affected by the failure of infrastructures
since their economy depends on the state of the infrastructures. Two perspectives can be
considered when the resilience of infrastructure is considered. Firstly, resilience may be con-
sidered the ability to maintain a certain level of functionality after that an event occurs. In
particular, the events may cause disruptions or failure of the infrastructure itself. Therefore,
the second definition of resilience takes into consideration the time and resources required
to repair or restore a suitable level of functionality. In this regard, when earthquakes are
considered, the disruption occurs at one time and, thus, the losses are defined simply as
the difference between the original functionality and the functionality after the occurrence
of the event. Other natural hazards (e.g., floods or hurricanes) are disruptions potentially
last for longer periods of time and, thus, it is not correct to concentrate all the losses on the
vertical axes.

Following [21], which introduced the formulation to calculate the resilience of a system,
the seismic resilience (SR) is calculated herein calculated by defining two models: the loss
model and the recovery model (Figure 1).

SR =
∫ T0E+RT

T0E

Q(t)
RT

dt (1)

where

T0E is the time of occurrence of the event E;
RT is the repair time due to system for the recovery process;
Q(t) is the variation of the functionality over the time: it models the recovery process to
reach a new level of functionality.

Both RT and Q(t) describes the process of recovery from the instant when the event
occurs until the system has recovered a suitable level of functionality. The recovery process
is described with an analytical formulation and the area below the curve first describes
the resilience (Formula (1)). The loss model is represented by the reduction in Q at the
time of occurrence (see Figure 1). It is worth noting that, herein, the losses are considered
equal to the inoperability (1 − (t)). This assumption is a simplification because a more
developed relationship between the losses and the inoperability should be defined. Loss
model depends on two sources of losses: direct and indirect [3] and, thus, on the definition
of the redundancy of infrastructures.
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Figure 1. Definition of Seismic Resilience (SR, t = time, L = losses; Tf = time of finishing the repair
work; Q = functionality; T0E = time of occurrence of the earthquake).

3. Infrastructure Redundancy

As shown in [29,33], redundancy may be considered a dimension on which resilience
depends. In particular, Bruneau et al. [16] firstly proposed a R4 framework that considers
four properties of resilience: robustness, redundancy, resourcefulness and rapidity. In
addition, as described in [36], infrastructure resilience depends on the possibility of main-
taining the circulation of services and movements of people, valuable goods and services
across the network. Road redundancy consists of being joined, linked and/or fastened
together in alternative ways and it becomes fundamental when one or more infrastructures
fail. Such property may be called redundancy and it may be considered the possibility to
provide alternative paths for traffic, so that service can keep working even in the event
of failure. In other words, redundancy means more reliability of the infrastructure by
reducing the probability that a failure may take the infrastructure down. However, the
level of redundancy is relatively challenging to be defined, since it depends on the ways in
which networks are interconnected [37], the topological structure of the network and the
flow patterns of traffic. As shown in [38], the definition of the level of redundancy requires
measurements of the infrastructure performance in order to estimate the network recovery
time and long-term reliability.

The level of redundancy is particularly important in the case of interdependent infras-
tructures, such as road networks. For example, integrated systems in urban regions, such
as metro and bus service network, intermodal transport network, etc. Redundancy is the
parameter that measures the level of interconnection between intermodal transportation
since the traffic demand may be transferred from different transportation modes in case of a
congestion or a disruption occurs in one mode of the network. On the contrary, complexity
of the network may be caused by high interdependence among different infrastructures or
modal systems, leading to problem of management during the eventuality of damage or
failures (e.g., cascading effects). In this regard, the level of redundancy needs detailed esti-
mations, and future research is necessary to examine the methods to define such parameter
on the basis of scientific criteria.

A formulation that relates the losses with infrastructure redundancy (Q(r)) is herein
proposed with the aim to investigate the role of redundancy on the seismic resilience
of infrastructures. In particular, the main idea is that there is a limit r0 above that the
functionality of the infrastructure does not vary with the redundancy. For values of
redundancy smaller that r0, the losses vary from zero to one (100%) with a crescent function
that depends on the exponent c:

Q(r) =
( r

r0

)1/c
(2)

where
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r is the level of redundancy (variable);
r0 is the limit level of redundancy;
c is the exponential that represents the trend of grown of the functionality with the level of
redundancy. In particular, for c bigger than 1, there is a grown of the functionality that is
bigger than linear, while for 0 < c < 1, the growth is less than linear (Figure 2).
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Figure 2. Definition of redundancy (r) based on Equation (2).

Considering that the losses depend on the functionality as the complement to 1 (100%),
Equation (2) may be used to derive the indirect losses due to the lack of redundancy. In
other words, redundancy modifies the losses of the infrastructure: the more redundant the
infrastructure is, the less the losses become.

L = 1 − Q = 1 −
( r

r0

)1/c
(3)

In particular, for c bigger than 1, there is a grown of the functionality that is bigger than
linear, while for 0 < c < 1, the grown is less than linear (Figure 3). Figure 4 shows the flow
chart for the implementation of the level of redundancy inside the framework. In particular,
once the redundancy of the infrastructural system is assessed, both the loss model and the
recovery model need to consider its role on the SR. Therefore, Equation (2) is implemented
inside the framework, respectively, by calculating the losses (Equation (3)) and the trend
which describes the recovery process. The calculation of SR is the consequence of such
implementation. In the next section, a case study is presented in order to implement
Equation (3) to calculate the SR of a infrastructure where is characterized by the presence
of a bridge.
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4. A Case Study

In this section, a case study (Figure 5) is considered on the basis of the previous
paper [36]. The present paper considers infrastructure 1 that consists of a road network
built up with the previous typology of bridge named B1 (number of total of bridges: 3),
as shown in Figure 4. PGA (Peak Ground Acceleration) is considered since this Im does
not depend on the structural properties (such as modal shapes), more details in [36].
The hypothesis herein is that the functionality ratio is considered 1, meaning that the
infrastructure is fully operating. Also, the costs (direct and indirect) were calculated by
considering the losses due to the bridges (other losses neglected), as in [36].
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Figure 5. Scheme of the road infrastructure considered in the case study.

4.1. Benchmark Bridge

The scheme of the bridge was the same studied in [36] with the name B1 (Figure 6). It
consisted of a benchmark scheme that represent the ordinary standard bridges (OSBs) used
in the Californian highways and designed by considering the Caltrans Seismic Design Cri-
teria [39]. The connections between the deck and the abutments were realized with sliding
isolators that were modeled with the simplified two-spring model (more details in [36]) in
the longitudinal direction. The vertical and transversal directions of the abutments and the
connection between the column and the deck were fixed in all directions. Since the isolation
was assumed to perform correctly, the deck (length: 90.00 m; width: 11.90 m; depth: 1.83 m;
cross area: 5.72 m2, transversal inertia: 2.81 m4 and vertical inertia: 53.9 m4, weight per unit
length: 130.3 kN/m) and the column (height: 6.71 m) were herein modeled with non-linear
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beam column elements and considered fixed at the base (soil structure interaction effects
were neglected). More details can be found in [36].
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4.2. Seismic Scenario

The selected seismic scenario consisted of an ensemble of 100 input ground motions
retrieved from the NGA database that can be seen in Table 1, in terms of their duration and
the peak ground acceleration (PGA). The input ground motions were selected as the most
representative ones of a wide range of intensities, with PGA values ranging between 0.05 g
and 0.89 g, as already performed in [20]. The input ground motions were applied at the
base of the structure, along the longitudinal direction. The nodes at the base of the structure
were considered fixed and, thus, there was no need to introduce links of elements and to
consider the effects due to the presence of the soil. In order to avoid convergence problems,
the nonlinear dynamic analyses were performed by considering the approach adopted in
Forcellini [40], which consisted of three steps: (1) linear properties of the structural material
were considered; (2) the associated loads were applied to the structure and the properties
were changed into non-linear. Modelling non-linearity is particularly challenging and, thus,
it was necessary to divide this step into twenty-five load steps to guarantee numerical
convergence. Finally, Step 3 consisted of the input ground motion application at the base of
the model as longitudinal acceleration time history. The NewtonLineSearch algorithm was
used to perform these analyses as proposed by Mazzoni et al. [41].

Table 1. Selected input ground motions.

Number Earthquake Station Duration (s) PGA (g)

1 A-ELC 1968 Borrego Mountain 40.00 0.13
2 A2E 1989 Loma Prieta 39.96 0.18
3 FMS 1989 Loma Prieta 39.76 0.20
4 HVR 1989 Loma Prieta 39.96 0.14
5 SJW 1989 Loma Prieta 39.96 0.10
6 SLC 1989 Loma Prieta 39.58 0.20
7 BAD 1989 Loma Prieta 35.00 0.11
8 CAS 1994 Northridge 39.80 0.10
9 CEN 1994 Northridge 30.00 0.49

10 DEL 1994 Northridge 35.36 0.15
11 DWN 1994 Northridge 40.00 0.17
12 JAB 1994 Northridge 35.00 0.11
13 L01 1994 Northridge 32.00 0.09
14 LOA 1994 Northridge 40.00 0.09
15 LV2 1994 Northridge 32.00 0.10
16 PHP 1994 Northridge 60.00 0.07
17 PIC 1994 Northridge 40.00 0.11
18 SOR 1994 Northridge 36.48 0.07
19 SSE 1994 Northridge 35.00 0.14
20 VER 1994 Northridge 30.00 0.13
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Table 1. Cont.

Number Earthquake Station Duration (s) PGA (g)

21 AGW 1989 Loma Prieta 40.00 0.18
22 CAP 1989 Loma Prieta 39.96 0.55
23 G03 1989 Loma Prieta 39.96 0.59
24 G04 1989 Loma Prieta 39.96 0.45
25 GMR 1989 Loma Prieta 39.96 0.24
26 HCH 1989 Loma Prieta 39.10 0.27
27 HAD 1989 Loma Prieta 39.64 0.29
28 SVL 1989 Loma Prieta 39.26 0.21
29 CNP 1994 Northridge 25.00 0.39
30 FAR 1994 Northridge 30.00 0.30
31 FLE 1994 Northridge 30.00 0.17
32 GLP 1994 Northridge 30.00 0.37
33 LOS 1994 Northridge 20.00 0.44
34 NYA 1994 Northridge 30.00 0.20
35 PEL 1994 Northridge 40.00 0.25
36 RO3 1994 Northridge 30.28 0.31
37 Z-PEL 1954 Ferndale 28.00 0.22
38 B-ICC 1987 Superstition Hills 40.00 0.38
39 B-IVW 1987 Superstition Hills 44.00 0.17
40 B-WSM 1987 Superstition Hills 40.00 0.18
41 H-PVB 1983 Coalinga 39.96 0.40
42 H-AEP 1979 Imperial Valley 11.16 0.36
43 H-BCR 1979 Imperial Valley 37.62 0.63
44 H-CXO 1979 Imperial Valley 37.82 0.29
45 H-E05 1979 Imperial Valley 39.30 0.55
46 H-ECC 1979 Imperial Valley 40.00 0.23
47 H-SHP 1979 Imperial Valley 15.72 0.30
48 I-ELC 1979 Imperial Valley 40.00 0.33
49 G02 1989 Loma Prieta 39.96 0.39
50 GOF 1989 Loma Prieta 39.96 0.30
51 Z-HVR 1984 Morgan Hill 39.98 0.17
52 637 1994 Northridge 47.78 0.81
53 JEN 1994 Northridge 28.62 0.62
54 NWH 1994 Northridge 40.00 0.63
55 RRS 1994 Northridge 19.92 0.89
56 SCS 1994 Northridge 40.00 0.66
57 SYL 1994 Northridge 40.00 0.65
58 C08 1966 Parkfield 26.12 0.24
59 A-JAB 1987 Whittier Narrows 34.30 0.24
60 A-SOR 1987 Whittier Narrows 28.72 0.15
61 B-ELC 1968 Borrego Mountain 40.00 0.07
62 H-C05 1983 Coalinga 40.00 0.16
63 H-C08 1983 Coalinga 32.00 0.10
64 H-CC4 1979 Imperial Valley 28.54 0.12
65 H-CMP 1979 Imperial Valley 36.00 0.20
66 H-DLT 1979 Imperial Valley 99.92 0.24
67 H-NIL 1979 Imperial Valley 40.00 0.12
68 H-PLS 1979 Imperial Valley 18.76 0.05
69 H-VCT 1979 Imperial Valley 40.00 0.13
70 A-STP 1980 Livermore 33.00 0.05
71 SJB 1984 Morgan Hill 28.00 0.05
72 Z-CAP 1984 Morgan Hill 36.00 0.11
73 Z-HCH 1984 Morgan Hill 28.34 0.08
74 H06 1986 North Palm Springs 40.00 0.07
75 INO 1986 North Palm Springs 30.00 0.07
76 A-BIR 1987 Whittier Narrows 28.62 0.26
77 A-CTS 1987 Whittier Narrows 39.96 0.05
78 A-HAR 1987 Whittier Narrows 40.00 0.06
79 A-SSE 1987 Whittier Narrows 22.94 0.05
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Table 1. Cont.

Number Earthquake Station Duration (s) PGA (g)

80 A-STC 1987 Whittier Narrows 40.00 0.17
81 H-CAL 1979 Imperial Valley 39.54 0.14
82 H-CHI 1979 Imperial Valley 40.00 0.29
83 E-E01 1979 Imperial Valley 39.04 0.15
84 H-E12 1979 Imperial Valley 39.02 0.15
85 H-E13 1979 Imperial Valley 39.52 0.12
86 H-WSM 1979 Imperial Valley 40.00 0.08
87 A-KOD 1980 Livermore 20.98 0.17
88 A-SRM 1980 Livermore 40.00 0.06
89 Z-AGW 1984 Morgan Hill 59.96 0.03
90 Z-G02 1984 Morgan Hill 29.98 0.17
91 Z-G03 1984 Morgan Hill 39.98 0.21
92 Z-GMR 1984 Morgan Hill 29.98 0.20
93 PHN 1946 Point Mugu 23.20 0.12
94 BRA 1966 Westmore 28.42 0.17
95 NIL 1966 Westmore 40.00 0.11
96 A-CAS 1987 Whittier Narrows 31.18 0.36
97 A-CAT 1987 Whittier Narrows 32.92 0.05
98 A-DWN 1987 Whittier Narrows 40.00 0.24
99 A-W70 1987 Whittier Narrows 31.94 0.21
100 A-WAT 1987 Whittier Narrows 29.70 0.11

4.3. Calculation of Resilience

Following the previous studies [42,43], The Pacific Earthquake Engineering Research
(PEER) Centre methodology, ref. [44], was applied to assess the recovery time (RT). In
particular, the direct losses were calculated by applying the Caltrans Comparative Bridge
Costs database [39] and by implementing the LLRCAT methodology (more details in [44]).
Indirect losses were calculated herein by implementing Equation (3) and by considering
that indirect losses were the 10%, as the mean value between those indicated in [15]. The
recovery curve was considered linear, since no information on the recovery process was
available. The results were herein expressed in terms of RT (unit: crew working days,
CWD). In particular, Figure 7 shows that at lower intensities (PGA < 0.68 g), RT values
were less than 60 CWD, while most of the damage (and, thus, the costs) at PGA = 0.68 g,
after which the losses were almost constant. In particular, several values of exponential c
(0.5, 1.0 and 2.0) were considered and three levels of r/r0 (0.25, 0.50 and 0.75). The values
of L are shown in Table 2 (compare with Figure 2).
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Table 2. Values of the indirect losses calculated with Equation (3) for different values of the coefficient
c (0.50, 1.00 and 2.00) and three levels of r/r0 (0.25, 0.50 and 0.75).

r/r0 c = 0.5 c = 1.0 c = 2.0

0.25 0.938 0.750 0.500
0.50 0.750 0.500 0.293
0.75 0.438 0.250 0.134

Figures 8–10 show the role of redundancy (r/r0 = 0.25, 0.50 and 0.75) for the various
coefficients c (0.5, 1.0 and 2.0, respectively Figures 7–9). It is worth noting that SR decreased
with the intensities. For low intensities (PGS < 0.20 g), all the systems were resilient, with
SR values around 85–95%. Between 0.20 g and 0.40 g, there was big reduction (around 1/3
of the previous values) in SR for all the systems, followed by a plateau between 0.42 g and
0.68 g. For high intensities (PGA > 0.70 g), SR was significantly reduced. Overall, the results
demonstrate that the redundancy had positive effects on the SR of the entire infrastructure,
since the biggest values of SR were obtained for SR-0.75–2.0 (c = 2.0 and r/r0 = 0.75).
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5. Summary and Conclusions

The paper proposed a novel approach to assess the redundancy inside the calculation
of the seismic resilience (SR) of infrastructures. In this regard, the role of redundancy was
assessed by proposing two formulations for the functionality and the losses that enable to
calculate the SR. In this regard, the resilience may be used as a key parameter to consider the
performance of infrastructures during seismic events and, thus, to ensure the sustainability
of the community. Two parameters were used to describe the role of redundancy on SR:
the level of redundancy and the coefficient of grown of the functionality because of the
present of redundancy. Several values were selected and tested within a case study of
an infrastructure built up with three bridges with same characteristics of a benchmark
one. The results confirmed that the redundancy had a positive effect on improving the
SR of the selected infrastructure. In addition, the proposed formulation may help the
decision makers to study the role of redundancy on the evaluation of the seismic resilience
of infrastructures. Overall, this paper may be considered a first attempt to include the
concept of redundancy inside the assessment of SR. The limitations of the study relate
to the hypotheses that were herein assumed. In particular, (1) infrastructure redundancy
was considered only in the definition of the indirect losses and not in the determination
of the repair time, (2) redundancy was implemented inside the resilience to earthquakes
without consider other natural hazards, (3) the losses of the infrastructure were assumed
those connected with the structural damages of the bridges. (4) The relationship between
the losses and the inoperability will be the object of a more developed approach. Future
works are necessary to extend the presented methodology with the aim to propose a more
comprehensive framework to investigate the sustainability of communities.
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