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Primož Jelušič * and Tomaž Žula

Faculty of Civil Engineering, Transportation Engineering and Architecture, University of Maribor, Smetanova 17,
2000 Maribor, Slovenia; tomaz.zula@um.si
* Correspondence: primoz.jelusic@um.si

Abstract: An optimization model for reinforced concrete circular columns based on the Eurocodes is
presented. With the developed optimization model, which takes into account the exact distribution
of the steel reinforcement, which is not the case when designing with conventional column design
charts, an optimal design for the reinforced concrete cross section is determined. The optimization
model uses discrete variables, which makes the results more suitable for actual construction practice
and fully exploits the structural capacity of the structure. A parametric study of the applied axial load
and bending moment was performed for material cost and CO2 emissions. The results based on a
single objective function show that the optimal design of the reinforced concrete column cross section
obtained for the material cost objective function contains a larger cross-sectional area of concrete and
a smaller area of steel compared with the optimization results when CO2 emissions are determined
as the objective function. However, the optimal solution in the case where the material cost was
assigned as the objective function has much more reserve in axial load capacity than in the optimal
design where CO2 was chosen as the objective function. In addition, the multi-objective optimization
was performed to find a set of solutions that provide the best trade-offs between the material cost
and CO2 emission objectives.

Keywords: reinforced concrete columns; circular cross section; cost; CO2 emissions; multi-objective
optimization; genetic algorithm

1. Introduction

Column design charts are commonly used to determine the steel reinforcement re-
quired for a given axial loading and bending moment (Figure 1a). Each pair of axial load (N)
and bending moment (M) corresponds to a specific neutral axis position and can be plotted
as a point on an N-M graph. Connecting those points to a curve forms an envelope of col-
umn resistance against the axial load and bending moment. A stress state (caused by axial
and bending) outside the curve is not possible since the column resistance is overreached.
Alternatively, the area of steel reinforcement required is determined by non-dimensional
design charts such as those presented in Figure 1b. Steel reinforcement configuration affects
the column axial and bending resistances. As steel reinforcement increases the cross section,
the overall load-carrying capacity of the member increases, making it more resistant to
cracking and failure under applied loads. With more steel, the cross section also becomes
more ductile, allowing it to deform more before failure. This results in a more gradual and
favorable load–moment interaction diagram, as the capacity of the cross section is utilized
to a greater extent. In the design of reinforced concrete, a balanced steel reinforcement ratio
is often sought. This ratio is the point at which the concrete and steel simultaneously reach
their respective limits so that both materials can be used as efficiently as possible.
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Figure 1. Typical column design charts. (a) Axial and bending resistance, (b) non-dimensional design
charts.

Research on the optimization of reinforced concrete columns shows the evolution of
optimization methods, from linear programming to nonlinear programming [1] to genetic
algorithms [2] and particle swarm optimization [3]. Recent research has also introduced
multi-objective optimization methods that can simultaneously consider different objectives
and constraints, which enables cost-effective, environmentally friendly, and safe design
of reinforced concrete columns. The main objective of the optimization models is to find
the optimal cross-sectional dimensions and arrangement of steel reinforcement that can
support the applied loads with minimum cost, minimum CO2 emissions, and maximum
safety.

In the field of optimization and sustainability within structural engineering, re-
searchers have introduced various optimization techniques and objectives for different
types of structural elements. One such study, conducted by Zaforteza et al. [4], focused on
the application of the simulated annealing algorithm (SA) in optimizing reinforced concrete
frames. They considered two objective functions: the embedded CO2 emissions and the
economic cost. Another study, by Camp and Huq [5], utilized a hybrid algorithm called
big bang–big crunch (BB-BC) for the optimal design of reinforced concrete frames. Their
objective was to minimize either the total cost or the CO2 emissions associated with the
structures. Trinh et al. [6] employed a branch-and-reduce deterministic algorithm to opti-
mize the design of flat plate buildings based on carbon footprint. Alonso and Berdasco [7]
proposed a method to assess the carbon footprint of sawn timber products. Yeo and Gab-
bai [8] introduced a sustainable design approach for rectangular beams, aiming to minimize
both the embodied energy and cost. Zhang and Zhang [9] presented a study where a multi-
objective genetic algorithm was adopted for the sustainable design of reinforced concrete
members, considering both the embodied emissions and costs. Jayasinghe et al. [10] mini-
mized the embodied carbon in three different optimization approaches, namely theoretical
optimum shape finding, feasible optimum shape finding, and optimizing prismatic beams.
Sahebi and Dehestani [11] considered the objectives of cost and CO2 footprint in optimizing
the sustainable design of reinforced beams.

The work of Ahmed et al. [12] and Tayem and Najmi [13] concerned with the optimal
design of circular reinforced concrete columns using a nonlinear optimization approach to
minimize the material cost considering constraints on axial load capacity, bending capacity,
and maximum steel ratio. The hybrid optimization algorithm was also used to minimize the
total material cost and for predictive modeling of circular reinforced concrete columns [14].
Camp and Assadollah [15] also presented a hybrid optimization algorithm for the CO2 and
cost optimization of reinforced concrete foundations. The work of Zhao et al. [16] aimed to
optimize the design of reinforced concrete columns strengthened with square steel tubes
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and sandwiched concrete. Jelušič and Žlender [17] optimized the reinforced cross sections
of the geothermal energy piles using design column charts fitted with approximation
functions. Payá-Zaforteza et al. [18] proposed a multi-objective optimization approach to
optimize the cost and sustainability of reinforced concrete building frames considering
the constraints on structural performance, environmental impact, and economic feasibility.
Hong et al. [19] investigated an artificial-neural-network-based Lagrangian optimization
approach for a multi-objective optimization model in which both the cost and performance
of the reinforced concrete circular columns were optimized.

In this paper, a genetic algorithm is used to solve a multi-objective optimization prob-
lem, since it offers several advantages over other optimization techniques [20–22]. Genetic
algorithms preserve diversity within the population, which helps to explore a wide range
of solutions and avoid premature convergence to suboptimal solutions. This is important
in multi-objective optimization, where there may be multiple solutions that are equally
good but differ in terms of the tradeoffs between objectives. In addition, genetic algorithms
do not require differentiable functions, which is advantageous for complex nonlinear
functions that are common in multi-objective optimization. Finally, the genetic algorithm
can be easily parallelized to perform multiple evaluations simultaneously, allowing faster
convergence to optimal solutions. This is useful in multi-objective optimization, where
the evaluation of solutions can be computationally expensive. However, using genetic
algorithms for multi-objective optimization also has drawbacks, such as slow convergence
speed, non-deterministic results, and scalability issues. Tuning parameters or selecting ap-
propriate values such as population size, mutation rate, crossover probability, etc., can also
be challenging, and incorrect selection can affect the performance of the genetic algorithm.

The main objective of this paper is to present an optimization model based on mixed-
integer nonlinear programming solved by a genetic algorithm. The optimization model was
developed, and optimal designs were determined using MATLAB [23]. The development
optimization model is used to determine the difference in the design of reinforced concrete
circular columns in terms of the environmental and economic aspects.

Parametric optimization is performed separately for different combinations of applied
axial load and bending moments and for the two objective functions of material cost and
CO2 emissions, which are generated during the production of the reinforced concrete.
Furthermore, a multi-objective optimization was executed with the aim of identifying a
range of solutions that offer optimal balances between material cost and CO2 emission
objectives.

2. Optimization Model: Reinforced Circular Concrete Section (RCCS)

The optimization model, named the reinforced circular concrete section (RCCS), was
developed to minimize material cost, minimize CO2 consumption, or minimize both ma-
terial cost and CO2 consumption simultaneously through multi-objective optimization.
Therefore, the optimization model includes input data, two objective functions, and con-
straints derived from the structural analysis of a reinforced circular concrete section. The
structural analysis of the reinforced concrete section considers the relationship between the
axial force and the bending moment in the different positions of the neutral axis.

The input data represent the design and economic data (constants) for the optimization.
The design data comprise the design value of the applied axial load NEd (kN), the design
value of the applied bending moment MEd (kNm), the length of the column section L (m), the
characteristic value of the compressive strength of the concrete fck (MPa), the characteristic
value of the tensile strength of the steel fyk (MPa), the modulus of elasticity of steel Es (MPa),
the steel density ρsteel (kg/m3), the diameter of shear reinforcement Φlink (mm), a coefficient
taking account of sustained compression αcc, the safety factor for concrete γc, safety factor
for steel γs, and the concrete cover ccon. The input data also included all the defined values
of the necessary material cost and CO2 consumption coefficients included in the objective
functions, as well as all the other coefficients included in the objective function and the
structural analysis of a circular reinforced concrete section (see Table 1) and the discrete
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alternatives of the circular reinforced concrete column section (see Table 2). It should be
noted that the construction costs and the CO2 emissions that arise during the construction
of reinforced concrete are not included in the objective functions. The circular reinforced
concrete section has the following design variables: column diameter (Φ), location of
neutral axis (cx), steel reinforcement area (As,main), which is determined by the number of
rebars (n), and reinforcement diameter (Φmain), see Figure 2.
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2.1. Objective Functions of the Optimization Model RCCS

Material cost optimization refers to the process of reducing the cost of producing a
product or service by selecting the least expensive materials or minimizing the amount
of materials used. This process is primarily focused on reducing the financial cost of
producing a product. Optimizing the amount of CO2 generated by the use of materials, on
the other hand, refers to the process of reducing the greenhouse gas emissions generated
in the production of a product or service. This process is primarily aimed at reducing the
environmental impact of producing a product. Although these two concepts may overlap to
some degree, they are ultimately different. For example, it is possible to reduce the material
cost of a product by selecting a cheaper material, but this may result in a higher amount
of CO2 emissions during production. Conversely, it is possible to reduce the amount of
CO2 emissions by using more environmentally friendly materials, but this may result in
higher material costs. Ultimately, companies and investors need to find a balance between
optimizing the cost of materials and optimizing the amount of CO2 generated by the use
of materials in order to achieve their economic and environmental goals. Therefore, the
two objective functions are determined in the optimization model RCCS. The material cost
objective function is defined with Equation (1):

min : COST = ccon ·
(

π · Φ2/4
)
· L + csteel · ρsteel ·

(
π · Φmain

2/4
)
· L · n (1)

whereas the objective function for the quantity of CO2 emissions during the production of
reinforced concrete sections is defined by Equation (2):

min : CO2 = CO2,con ·
(

π · Φ2/4
)
· L + CO2,steel · ρsteel ·

(
π · Φmain

2/4
)
· L · n (2)

In Equation (1), ccon (€/m3) represents the unit price of concrete and csteel (€/kg) is
the unit price of the steel reinforcement, whereas in Equation (2), the CO2,con (kgCO2/m3)
represents the unit emissions of CO2 generated by the use of concrete and the CO2,steel
(kgCO2/kg) is the unit emissions of CO2 generated by the use of steel reinforcement.

2.2. Structural Analysis of a Reinforced Circular Concrete Section and Design Constraints

Both objective functions aim to minimize the amount of concrete and steel reinforce-
ment; however, the circular reinforced concrete cross section must be able to resist the
applied loads with a sufficient amount of material. The resistance of a circular reinforced
concrete section is calculated based on the location of the neutral axis. The neutral axis is
located at a distance cx below the compression face, where the cross section experiences
neither compression nor tension, resulting in zero strain at that level. Five main conditions
are defined in accordance with the Eurocode 2 [24] standard in the form of five inequality
constraints:

Condition 1: the design bending moment MEd in the circular reinforced concrete cross
section needs to be limited to under the design bending resistance MRd, see Equation (3).

MEd ≤ MRd (3)

Condition 2: the design axial load NEd applied to the circular reinforced concrete cross
section needs to be limited to under the design axial resistance or cross section NRd, see
Equation (4).

NEd ≤ NRd (4)

Condition 3: the minimum area of the main reinforcement must be provided, see
Equation (5).

As,total ≥ As,min (5)
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Condition 4: the distance between the neutral axis cx and the edge of the cross section
must always be positive, see Equation (6).

cx ≥ 0 (6)

Condition 5: the maximum area of the main reinforcement must not be exceeded, see
Equation (5).

As,total ≤ As,max (7)

The calculation procedure to determine the design bending resistance MRd and the de-
sign axial resistance NRd of the reinforced concrete circular cross section is presented
in Equations (8)–(50). First, the design compressive strength of the concrete fcd (see
Equation (8)) and the design tensile strength of the steel fyd (see Equation (9)) are cal-
culated:

fcd = αcc · fck/γc, (8)

fyd = fyk/γs (9)

In the proposed model, each rebar is assigned a unique identification number (ID)
along with its exact position in the coordinate system. The diameter of circle that joins the
centroid of the rebars can be calculated with Equation (10), and the circumference of this
internal circle is calculated by Equation (11):

Φin = Φ − 2·ccon − 2·Φlink − Φmain, (10)

Pin = π · Φin (11)

It should be noted that ccon represents the depth of concrete cover. The center to center
spacing between rebars that are evenly placed is calculated by using Equation (12):

smain = π · Φin/n (12)

The clear spacing between rebars sclear is therefore calculated by Equation (13); the
angle between each adjacent rebar θr is calculated by Equation (14):

sclear = s − Φmain, (13)

θr = smain/r (14)

where
r = Φin/2, (15)

s = 0.8 · cx (16)

The steel reinforcement of area As of a single rebar is calculated as:

As = π · Φmain
2/4 (17)

For each rebar (where i is from 1 to n), the position relative to the center of the circular
cross section can be defined with:

xnc,i = r · cos θcumm,i, (18)

ync,i = r · sin θcumm,i (19)
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where the cumulative angle from the vertical in a clockwise direction is determined as:

θcumm,i = (i − 1) · θr (20)

The location according to selected coordinate system (see, Figures 1 and 2) is therefore
defined with:

xn,i = Φmain/2 − xnc,i, (21)

yn,i = ync,i, (22)

To calculate the strain in each rebar εi at various locations of neutral axis,
Equations (23)–(31) are used:

xii = cx · (i − (i − 1)), (23)

Ti = xii − xn,i, (24)

Ui = xn,i − xii, (25)

Ai = 0.0035 · (Ti/xii), (26)

Bi = 0.0035 · (Ui/xii), (27)

Ci = fyd/Es, (28)

Di = min(Bi; Ci), (29)

zeroi = 0, (30)

εi =


Ai; Ti ≥ zeroi and s ≤ Φ

Di; Ti < zeroi
0.00175

(31)

The resistance force developed in rebars (NRd5,s,i) under compression (NRd3,s,i) or under
tension (NRd4,s,i) is determined by Equations (32)–(36):

NRd1,s,i = min
(

Es · εi · As; fyd · As

)
, (32)

NRd2,s,i = min
(
(Es · εi − (αcc/γc) · fck) · As;

(
fyd − (αcc/γc) · fck

)
· As

)
, (33)

NRd3,s,i =

{
NRd1,s,i; s ≤ xn,i

NRd2,s,i
, (34)

NRd4,s,i = −min
(

Es · εi · As; fyd · As

)
, (35)

NRd5,s,i =

{
NRd3,s,i; Ti > zeroi

NRd4,s,i
(36)

The design bending resistance of concrete and reinforcing bars is calculated by mul-
tiplying the developed resistance force by the lever arm from the center of the column
cross section, as determined in Figure 2. Since the cross section is symmetrical, the center
point is located at the center of the column cross section. The lever arm for concrete varies
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with the position of the neutral axis, but the lever arm for each rebar can be determined by
Equation (37):

ln,i = Φ/2 − xn,i (37)

Once the resistance force and the lever arm for each rebar is determined, the bending
moment resistance (MRd,s,i) for each rebar is calculated by Equation (38):

MRd,s,i = NRd5,s,i · ln,i (38)

Finally, the total axial load resistance (NRd,s,total) and the total bending moment re-
sistance (MRd,s,total) due to all reinforcing bars are calculated using Equation (39) and
Equation (40), respectively:

NRd,s,total = ∑n
i=1 NRd5,s,i, (39)

MRd,s,total = ∑n
i=1 MRd,s,i (40)

The distance from neutral axis and the center of the section hc is determined as:

hc =


Φ/2 − s ; s ≤ Φ/2

s − Φ/2; s ≤ Φ and s > Φ/2
0

(41)

To calculate the bending moment resistance due to the concrete resisting force, the
lever arm for the concrete force (cg,1 or cg,2) and the concrete area under compression (Ac)
are calculated using Equations (42)–(47), see Figure 2:

Ac =


θ

2 · π · π · Φ2

4 − 1
2 ·
(

Φ
2

)2
· sin θ; s ≤ Φ/2

(2 · π−θ)
2 · π · π · Φ2

4 + 1
2 ·
(

Φ
2

)2
· sin θ; s ≤ Φ and s > Φ/2

π · Φ2

4 ; s > Φ

(42)

where the inner angle θ is calculated as:

θ = 2 · cos−1
(

hc

(Φ/2)

)
, (43)

Ac1 =
1
2
· π · Φ2

4
, (44)

Ac2 =
θ

2 · π
· π · Φ2

4
− 1

2
·
(

Φ
2

)2
· sin θ, (45)

cg,1 =


4 · (Φ

2 ) · sin3( θ
2 )

3 · (θ−sinθ)
; s ≤ Φ/2

4 · (Φ
2 ) · sin3(π

2 )
3 · (π−sinπ)

, (46)

cg,2 =

{
4 · (Φ

2 ) · sin3( θ
2 )

3 · (θ−sinθ)
; s < Φ/2

0
(47)

Therefore, the bending moment resistance provided by concrete for any position of the
neutral axis (MRd,c) is determined by Equation (48), whereas the axial resistance of concrete
(NRd,c) is determined by Equation (49):

MRd,c =


Ac · fcd · cg,1; s ≤ Φ/2

Ac1 · fcd · cg,1 −
(

Ac1 · fcd · cg,1 − Ac2 · fcd · cg,2
)
; s ≤ Φ and s > Φ/2

0
, (48)
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NRd,c = fcd · Ac (49)

Summing the total axial resistance of all reinforcing bars (NRd,s,total) and the axial
resistance of the concrete (NRd,c) gives the design axial resistance or cross section (NRd)
according to Equation (50), whereas summing the total bending moment resistance of all
reinforcing bars (MRd,s,total) and the bending moment resistance of the concrete (MRd,c) gives
the design moment resistance or cross section (MRd) according to Equation (51).

NRd = NRd,c + NRd,s,total , (50)

MRd = MRd,c + MRd,s,total (51)

Once the design axial and bending moment resistance or cross section is available,
conditions 1 and 2 can be verified. However, for the verification of condition 3, the required
minimum area of steel reinforcement (As,min) and the total area of steel reinforcement
(As,total) must be calculated according to Equation (52) and Equation (53), respectively:

As,min = max

(
0.1 · NEd

fyd
; 0.002 · π · Φ2

4

)
, (52)

As,total = As · n (53)

The upper limit of the steel reinforcement area (As,max) is determined by Equation (54).

As,max = 0.04 ·
(

π · Φ2

4

)
(54)

The structural analysis of a circular reinforced concrete cross section also includes
design (in)equality constraints that ensure that the dimensions of the circular reinforced con-
crete cross section do not lie outside the specified limits. In addition, the
discrete/standardized values for the dimensions are used in the RCCS optimization model
(see Table 2). However, the diameter of the concrete cross section Φ (m) is limited by
Equation (55), the number of reinforcing bars n (-) varies between the lower and upper
limits, see Equation (56), and, finally, the diameter of the reinforcing bars Φmain (mm) is
limited by Equation (57).

ΦLO ≤ Φ ≤ ΦUP, (55)

nLO ≤ n ≤ nUP, (56)

ΦLO
main ≤ Φmain ≤ ΦLO

main (57)

Table 1. The input data involved in objective functions and structural analysis of a reinforced circular
concrete section.

Symbol Description Value

ccon unit price of concrete C30/37 115 EUR/m3

csteel
unit price of the steel
reinforcement S500 1.45 EUR/kg

CO2,con * unit emissions of CO2 for
concrete 308.2 kgCO2/m3

CO2,steel * unit emissions of CO2 for steel
reinforcement 0.87 kgCO2/kg



Sustainability 2023, 15, 11689 10 of 19

Table 1. Cont.

Symbol Description Value

ρsteel steel density 7850 kg/m3

L length of the column section 1 m

fck
the compressive strength of
the concrete 30 MPa

fyk tensile strength of the steel 500 MPa
Es modulus of elasticity of steel 200,000 MPa
γc safety factor for concrete 1.5
γs safety factor for steel 1.15

αcc
coefficient for sustained
compression 0.85

Φlink
diameter of shear
reinforcement 6 mm

ccon concrete cover 30 mm
* The carbon footprint emission factors used in the study are taken from the literature [25].

Table 2. Discrete alternatives for the dimensions of the circular reinforced concrete cross section.

Variable Discrete Alternatives

Φ (mm) 400, 450, 500, 550, 600, 650, 700, 750, 800, 850,
900, 950, 1000

n (-) 6, 8, 10, 12, 14, 16, 18, 20, 22
Φmain (mm) 12, 14, 16, 18, 20, 22, 24, 26, 28

2.3. Genetic Algorithm

In MATLAB [23], the genetic algorithm (GA) provides built-in functions for implement-
ing genetic algorithms. To use GAs for mixed-integer design problems, the following steps
were performed: First, the objective functions (COST and CO2 emissions) and constraints
(four conditions) were defined. The design variables were also defined. One variable is
continuous (neutral axis location), whereas the other three variables are discrete (number
of rebars, diameter of steel reinforcement, and diameter of column). The fitness function
was determined to evaluate the objective(s) of the optimization problem. This function was
included in the design variables and returns a scalar fitness value. Constraints that must be
satisfied are also defined, such as upper and lower bounds for the design variables. The
parameters of GA, such as population size, maximum number of generations, tolerance
threshold for the fitness function, mutation rate, and crossover proportion, are selected to
improve the optimization results. Once the best solution is found, the integer variables are
mapped to a discrete set. To map integer variables to a discrete set, the MATLAB toolbox
provides built-in options for integer constraints. These methods were used to constrain
integer variables to a finite set of values. The results of the optimization, including the
fitness value and the values of the design variables, are evaluated separately for each
objective function in the multiparametric optimization section and simultaneously for both
objective functions in the multi-objective optimization section, whereas the optimal solu-
tion is presented as a set of Pareto-optimal solutions. In the multi-objective optimization
problem presented, the main objective is to minimize the first objective function subject to
the condition that the value of the second objective function does not exceed the threshold.
This threshold represents the maximum allowable value for the second objective function
that the decision maker is willing to accept given the importance of the first objective and
the tradeoffs between the two objectives. The threshold values are implicitly determined
by the fitness scaling function and the selection criteria used in the genetic algorithm. The
fitness scaling function maps the objective values of the solutions in the population to
a common scale that allows the algorithm to compare solutions with different objective
function values. The selection criteria are used to select the solutions that will be used to
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generate the next generation of solutions. These criteria consider both the objective values
of the solutions and their dominance relationship with other solutions in the population.
The main options of the genetic algorithm were set as follows: a population size of 500, a
maximum number of generations of 200, a number of elites of 20, and a function tolerance
for the fitness function of 1 × 10−8. In the multi-objective optimization, a large population
size of 1000 was used to increase the diversity of the population and improve the chance
of finding better solutions; a maximum of 50 was used to limit the number of generations
without progress and 100 generations was used to set the maximum number of generations
for the execution of the GA. By setting these parameters correctly, it is possible to optimize
the GA for multi-objective optimization and obtain high-quality solutions. The obtained
solutions satisfy the optimization criteria, and the genetic algorithm has effectively explored
the search space, efficiently evaluated potential solutions, and found solutions that are
close to the best possible solution.

3. Multiparametric Optimization

The previously defined optimization model RCCS was used to obtain the optimal
designs for different combinations of applied axial load NEd and bending moments MEd
and for the two objective functions material cost and CO2 emissions separately. The
multiparametric optimization was therefore performed for 30 combinations between the
following different design parameters:

• Three different axial loads: 1000 kN, 3000 kN, and 5000 kN;
• Five different bending moments: 100 kNm, 300 kNm, 500 kNm, 700 kNm, and

1000 kNm;
• Two objective functions: material cost and quantity of CO2 emissions.

The results of the 30 individual optimizations performed are shown in Tables 3 and 4
and in Figure 3. Table 3 shows the optimal design variables and associated material costs,
as well as the amount of CO2 emissions generated for the case where the material cost
is set as the objective function. Table 4 also shows optimal solutions for various design
parameters, but the results correspond to the case where the objective function was the
amount of CO2 emissions caused by the production of the reinforced concrete member.
Figure 3 directly compares the material costs where the optimization function was the
material costs and where the optimization function was the CO2 emissions. Note that the
dotted curves represent the values for the CO2 emissions. It can be concluded that when
the material COST was used as the objective function, a different design for the concrete
cross section was obtained than when CO2 emissions were chosen as the objective function.
The optimal design of the reinforced concrete cross section obtained for the material cost
objective function contains a larger cross-sectional area of concrete and a smaller area of
steel compared with the optimization results when CO2 emissions are determined as the
objective function. In general, exploitation of condition 1 (bending moment resistance)
was the top priority in both optimization models, regardless of whether material cost or
CO2 emissions were chosen as the objective function. However, the optimal solution in the
case where the material cost was assigned as the objective function has much more reserve
in axial load capacity than in the optimal design where CO2 was chosen as the objective
function.

Table 3. Optimal design for the case where the material cost has been assigned as an objective
function.

NEd
(kN)

MEd
(kNm)

cx
(mm)

n
(-)

Φmain
(mm)

Φ

(mm)
NRd
(kN)

MRd
(kNm)

As,min
(cm2)

As,total
(cm2)

COST
(€/m)

CO2
(kg/m)

1000 100 274.13 6 12 400 1304.0 107.6 2.51 6.79 22.18 43.36
1000 300 345.24 6 12 600 2196.8 342.7 5.65 6.79 40.24 91.78
1000 500 420.77 8 12 700 3180.4 545.8 7.70 9.05 54.56 124.79
1000 700 412.14 6 18 750 3230.4 701.9 8.84 15.27 68.18 146.59
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Table 3. Cont.

NEd
(kN)

MEd
(kNm)

cx
(mm)

n
(-)

Φmain
(mm)

Φ

(mm)
NRd
(kN)

MRd
(kNm)

As,min
(cm2)

As,total
(cm2)

COST
(€/m)

CO2
(kg/m)

1000 1000 518.16 14 12 850 4795.6 1000.8 11.35 15.83 83.28 185.70
3000 100 484.11 8 12 500 3021.5 122.0 6.90 9.05 32.88 66.69
3000 300 433.11 8 12 600 3021.3 333.7 6.90 9.05 42.81 93.32
3000 500 457.15 8 12 700 3560.1 538.6 7.70 9.05 54.56 124.79
3000 700 470.55 6 18 750 3927.1 701.8 8.84 15.27 68.18 146.59
3000 1000 487.00 14 12 850 4385.9 1002.8 11.35 15.83 83.28 185.70
5000 100 670.25 6 18 600 5002.9 102.8 11.50 15.27 49.89 97.57
5000 300 670.67 6 16 700 5699.5 335.1 11.50 12.06 57.99 126.85
5000 500 623.14 6 16 750 5571.6 558.7 11.50 12.06 64.54 144.40
5000 700 559.91 6 16 800 5111.5 787.9 11.50 12.06 71.54 163.16
5000 1000 539.41 16 12 850 5091.3 1011.3 11.50 18.10 85.85 187.25

Table 4. Optimal design for the case where CO2 emissions were assigned as the objective function.

NEd
(kN)

MEd
(kNm)

cx
(mm)

n
(-)

Φmain
(mm) Φ (mm)

NRd
(kN)

MRd
(kNm)

As,min
(cm2)

As,total
(cm2)

COST
(€/m)

CO2
(kg/m)

1000 100 301.79 6 12 400 1483.3 100.9 2.51 6.79 22.18 43.36
1000 300 231.21 8 26 450 1080.1 300.0 3.18 42.47 66.64 78.02
1000 500 241.57 18 22 500 1064.8 502.3 3.93 68.42 100.46 107.25
1000 700 276.92 18 22 600 1387.2 703.7 5.65 68.42 110.40 133.87
1000 1000 353.53 18 26 650 2591.7 1000.5 6.64 95.57 146.94 167.54
3000 100 455.84 20 12 450 3001.1 100.2 6.90 22.62 44.04 64.47
3000 300 421.93 12 16 550 3067.8 301.2 6.90 24.13 54.79 89.70
3000 500 391.52 20 16 600 3015.0 501.2 6.90 40.21 78.29 114.60
3000 700 386.66 10 26 650 3015.2 700.6 6.90 53.09 98.59 138.53
3000 1000 387.00 14 26 700 3024.4 1002.7 7.70 74.33 128.86 169.37
5000 100 671.73 6 18 600 5011.1 100.9 11.50 15.27 49.89 97.57
5000 300 615.70 16 12 650 5063.0 300.4 11.50 18.10 58.76 114.63
5000 500 575.86 18 12 700 5001.6 501.3 11.50 20.36 67.43 132.51
5000 700 551.17 12 16 750 5003.8 702.2 11.50 24.13 78.27 152.64
5000 1000 524.82 20 16 800 5008.2 1000.8 11.50 40.21 103.58 182.38
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The performance of the genetic algorithm is illustrated in the case where CO2 emissions
were assigned as the objective function and the reinforced concrete section was subjected to
an axial load of NEd = 1000 kN and bending moments of MEd = 1000 kNm. The progress of
the genetic algorithm, in terms of the best score value and mean score value, is plotted out
in Figure 4a. The genetic algorithm stopped when the average relative change in the best
fitness function value over stall generations was less than or equal to the function tolerance
(see, Figure 4b). The maximum number of iterations for the genetic algorithm to perform
was assigned to 200. Figure 4c shows a histogram of the parents and a population size of
500 individuals. The score at each generation is plotted in Figure 4d.
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Figure 4. Performance of the genetic algorithm (objective function: CO2 emissions, NEd = 1000 kN
and MEd = 1000 kNm): (a) progress of the genetic algorithm; (b) stopping criteria; (c) population size;
(d) score histogram.

4. Multi-Objective Optimization

In the above optimizations, where a single objective function (material cost or
CO2 emissions) was used, the optimization problem is relatively simple where the ob-
jective is to find the optimal value of the chosen objective function. In a multi-objective
optimization, there is no unique optimal solution because the optimization problem in-
volves tradeoffs between the objectives of material cost and CO2 emissions. The objective
of the multi-objective function is to find a set of solutions that provide the best trade-offs
between the different objectives. In multi-objective optimization, the optimal solution is
represented as a set of Pareto-optimal solutions, where no solution can be improved in
one objective without making it worse in at least one other objective. The Pareto-optimal
solutions represent the best possible tradeoffs among the different objectives, and the goal
is to find the set of solutions that is most desirable given the decision maker’s preferences.
The main difference between the Pareto front in optimization with discrete variables and
optimization with continuous variables lies in the nature of the design variables. Discrete
variables can only take a limited number of values, whereas continuous variables can take
any value within a certain range. In this optimization model, RCCS, discrete variables are
used so that the Pareto front consists of a set of discrete points, each point representing
a combination of the design variables that gives an optimal solution. In contrast, when
continuous variables are used, the Pareto front is a continuous curve representing an infinite
number of optimal solutions. Moreover, optimization with discrete variables results in
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a Pareto front that is less smooth and more jagged than the Pareto front obtained with
continuous variables. The reason for this is that the set of feasible solutions is limited by the
discrete nature of the design variables. Figures 5–7 show the Pareto front for axial loads of
1000 kN, 3000 kN, and 5000 kN, respectively. From all figures, it can be seen that not many
solutions were found, which is due to the use of discrete variables. It can also be seen that
the curves are flat, which means that a small reduction in CO2 emissions is accompanied
by a high increase in material costs, especially for an axial load of 1000 kN.
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Figure 5. Pareto front for a reinforced concrete circular cross section loaded with an axial load of
1000 kN for different applied bending moments.
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Figure 6. Pareto front for a reinforced concrete circular cross section loaded with an axial load of
3000 kN for different applied bending moments.
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Figure 7. Pareto front for a reinforced concrete circular cross section loaded with an axial load of
5000 kN for different applied bending moments.

Since the above Pareto notation only shows the tradeoff between CO2 emissions and
material costs and not the optimal solutions of the design variables, the parallel coordinate
representation is provided. A parallel coordinate representation is a visualization tech-
nique that can be used to display multidimensional data in a compact and informative
manner. In a parallel coordinate plot, the data points are shown as connected lines and
the parallel axes represent the different variables (applied bending moment, number of
rebars, values of optimal CO2 emissions, and material costs) and the optimal dimensions
(rebar and column diameters). The data points are grouped based on the applied bending
moment and plotted in different colors. Figure 8 shows that five different combinations of
reinforcement number, rebar diameter, and section diameter for an axial load of 1000 kN
and CO2 emissions for a bending moment of 1000 kNm result in five different optimal
costs and CO2 emissions, whereas only one optimal solution was obtained for an ap-
plied bending moment of 100 kNm. Figures 9 and 10 show that for an applied bending
moment of 100 kNm, the choice of different optimal designs achieves only a small re-
duction in CO2 emissions but causes a significant increase in material costs. The parallel
plot can be read as follows, as in Figure 9, see blue lines: for an applied axial load of
NEd = 3000 kN and a bending moment of MEd = 100 kNm, two optimal solutions are
determined. The first option includes the following values for the design variables: number
of rebars n = 12, rebar diameter Φmain = 16 mm, cross-sectional diameter Φ = 450 mm,
CO2 emissions = 65.5 kgCO2/m, and production COST = 45.8 EUR/m. The second option
includes the following values for the design variables: number of rebars n = 8, rebar diame-
ter Φmain = 12 mm, cross-sectional diameter Φ = 500 mm, CO2 emissions = 66.7 kgCO2/m,
and production COST = 32.9 EUR/m. It can be seen that a small increase in CO2 emissions
(by 1.8%) leads to a significant reduction in production costs (by 28.2%). The general obser-
vation is also that when designing the reinforced concrete cross section in multi-objective
optimization, not many optimal solutions are found for the designer to choose from due to
the discrete set of variables. In this case, the multi-objective optimization of material cost
and CO2 emissions no longer causes difficulties for the designer due to the large number of
different optimal solutions.
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5. Summery and Conclusions

An optimization model for reinforced concrete circular columns based on the Eurcode
2 standard is presented. Discrete variables are used for the practical design of the cross
section, which is particularly important for the number of reinforcing bars included in
the cross section. The optimization model enables a comparison of the optimal solutions
for the objective function material costs and CO2 emissions. The genetic algorithm was
used to solve the optimization problem, and the entire model was created in MATLAB
software (R2021a). The parametric study of applied axial load and bending moment was
performed for material cost and CO2 emissions. The results based on a single objective
function show that the optimal design of the reinforced concrete column cross section
obtained for the material cost objective function contains a larger cross-sectional area of
concrete and a smaller area of steel compared with the optimization results when CO2
emissions are determined as the objective function. The utilization of bending moment
resistance was the top priority for both optimal solutions, regardless of whether material
cost or CO2 emissions were chosen as the objective function. However, the optimal solution
in which material cost was assigned as the objective function has much more reserve in
axial load carrying capacity than the optimal design in which CO2 was selected as the
objective function. Furthermore, the multi-objective optimization was performed to find a
set of solutions that provide the best trade-offs between the material cost and CO2 emission
objectives. The general observation that emerges from the multi-objective optimization is
that when designing the reinforced concrete cross section, due to the discrete set of variables,
there are not many optimal solutions that the designer can choose from. However, material
costs are much more sensitive to the choice of optimal design than CO2 emissions. The
mixed-integer nonlinear optimization model RCCS was developed in a general form that
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can provide an optimal solution for various design parameters including different concrete
strength properties. Based on numerical analysis, the following conclusions can be stated:

- The optimal design of the reinforced concrete cross section, considering the material
cost as the objective function, results in a larger cross-sectional area of concrete and a
smaller area of steel compared with the optimization results when CO2 emissions are
considered as the objective function;

- The optimal solution obtained with material cost as the objective function exhibits a
significantly higher reserve in axial load capacity than the optimal design when CO2
emissions are selected as the objective function;

- Analyzing the Pareto front reveals that a marginal decrease in CO2 emissions is
accompanied by a substantial increase in material costs;

- In addition, the model can be integrated into the design of structural elements such as
columns and piles.
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