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Abstract: In deep underground mine engineering, the critical warning signals before the sudden
failure of coal are crucial to predict coal or rock dynamic catastrophes and to help the coal industry
grow sustainably. Therefore, with the objective of accurately identifying the precursor signals of coal
fracture, a uniaxial compression test was adopted. Tests were performed on multiple sets of raw coal
samples, and acoustic emission (AE) technology was used to capture the deformation and destruction
courses of the coal samples. Furthermore, the signal intensity of AE energy was discussed. Based on
the critical slowing down theory, the AE energy sequence was processed. The results indicate that
there are significant discrepancies in the strength of coal affected by initial pore fissures. During the
whole loading process, the AE energy signals showed obvious stage characteristics, and there was a
high risk of rapid coal energy storage during the unstable rupture development (URD) stage, which
predicted the imminent destruction of the coal. The variance mutation point that was not affected
by the lag step selection was easier to identify than that of the autocorrelation coefficient, and the
precursor points were all in the URD stage, which is more accurate than using the AE cumulative
energy curve slope.

Keywords: uniaxial compression; acoustic emission; critical slowing down; precursor signals

1. Introduction

In recent years, China has promoted a green shift in its energy structure and encour-
aged the energy sector to follow a sustainable development path. As the basic power
of China, coal will still occupy a dominant position in China’s energy for a considerable
period of time in the future [1,2], and mining coal resources safely and efficiently is the
key to ensure the sustainable development of the coal industry [1]. With the increasing
of the number and capacity of deep coal mines in the last few years, the deep mining of
coal resources in China has become an inevitable trend. Coal or rock dynamic catastrophes
such as coal burst, roof pressuring, and coal and gas outburst are becoming increasingly
serious, causing an enormous threat to the safe production of coal mines [3,4] and seriously
hindering the sustainable development of the coal mining industry. Therefore, research of
effective coal or rock dynamic catastrophe monitoring methods has become an important
scientific issue that will be helpful to guarantee the sustainable development of coal as the
main energy source in the energy structure.

The extension of cracks in coal rocks is an extremely complex phenomenon that is
accompanied by the emergence, extension and penetration of microcracks during the
loading process, causing the deformation of coal rocks at the same time [5,6]. Numerous
studies have shown that strain is an important index of coal rock fracture evolution [5,7].
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Munoz proposed a non-contact optical uniaxial compressive strain measurement method
based on 3D DIC to measure the strain field formed by compressed sandstone more
accurately [8]. Ma et al. analyzed the evolution law of strain field on a loaded coal or rock
surface. It is believed that the evolution of microcracks in coal or rock is related to the
statistical index of strain field [9]. Hou et al. studied the practical micro-scale deformation
and crack evolution law of in situ coal seams through simulation experiments [10]. Based on
the relationship between strain and fracture development, many scholars have conducted
studies from another aspect.

During the process of loading coal or rock, there is the plastic deformation of
coal/rock [11,12], associated with the release of energy, part of which is released as elastic
waves, namely acoustic emission (AE) [13,14]. These acoustic emission signals provide
an effective index for the coal fracture process [15,16] because they reflect the location,
formed mechanism and releasing energy of coal rock micro-cracks [17,18]. As a means
of non-destructively monitoring and characterizing the development of internal fractures
in quasi-brittle materials [19], one of the areas of acoustic emission studies in the labo-
ratory is the time-varying parameters of damage generation [20,21], determining how
microcracks accumulate under external loading [22,23]. In the course of destroyed coal
or rock, AE means can capture a variety of parameters, including impact times, ringing
counts, energy, etc. [24,25], and the occurrence of coal or rock dynamics catastrophes can
be predicted [26,27]. Although the genesis of dynamic catastrophes can be forecast by AE
as a concomitant signal in coal or rock fracture, its effectiveness is not stable. In the last few
years, scientists have discovered that when complex dynamic systems approach a tipping
point before a mutation occurs, there is a phenomenon with predictive significance called
critical slowing down [28,29]. The critical slowing phenomenon has enormous potential
in disclosing whether a sophisticated dynamic system is susceptible to ruinous mutations.
Nowadays, it has been used to predict ecological problems [28], earthquakes [29] and
climate disasters [30,31]. Therefore, to further identify the precursors of disaster occurrence
accurately and effectively is a key issue in the future research field of coal engineering for
coal rock dynamics disasters.

Based on the previous research, acoustic emission technology has achieved many
excellent results with regard to early warning potential rupture indicators [32,33] in the
monitoring and application [34] of rock [35,36], but there are few research results on
the critical slowing down of coal specimens [37,38]. Therefore, the research on critical
slowing down of coal is particularly important for forewarning and prevention of dynamic
catastrophes in the coal mining industry. Through uniaxial compression experiments, AE
signals were captured during the fracture process of coal. The critical slowing down theory
was used as the basic principle, and the AE signal generated by coal failure was processed.
It was concluded that the variance and autocorrelation coefficient characterized the critical
slowing phenomenon appearing in the later stage of coal fracture. The sudden increase
phenomenon can be regarded as an effective precursor of coal instability destruction.

2. Experiment
2.1. Experimental System

The experimental system is shown in Figure 1 and is composed of the loading control
subsystem and the AE monitoring subsystem. In the loading control subsystem, the
experimental platform of impact mechanics at high and low frequency was used. The
output maximum force is 3000 kN, the output maximum impact force is 1000 kN, the
impact reaction time is <0.3 s, the precision of the test machine is 1%, the speed of piston
displacement is 1–50 mm/min, and the loading rate of the sample machine is 0.02–2% FS.
There are force and displacement control methods that can be used to carry out uniaxial
compression, tensile, cyclic loading and other mechanical experiments. In the acoustic
emission monitoring subsystem, a Micro-II Express acoustic emission monitoring and
data analysis instrument was adopted that could collect the AE data of 24 probes at the
same time.
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Figure 1. Experimental system. (a) Experimental equipment; (b) experimental composition.

2.2. Experimental Method

During the uniaxial compression loading process, the acoustic emission monitoring
data were collected simultaneously. The experimental loading method was force-controlled
loading (the loading rate of 50 N/s), in which the stress–strain was recorded automatically.
Six acoustic emission probes (model was NANO-30, peak frequency was 300 kHz) were
pasted on the surface of each coal sample to measure AE signal when it was damaged under
uniaxial compression. The amplification ratio of the pre-amplifier was set at 40 dB, and the
threshold was set at 40 dB. The signal sampling rate was 1 MHz and the sampling length
was 1024 points (the first 1/4 of which are pre-triggered) to ensure the coupling between
the sample and each AE probe. When the coal sample was placed on the experimental
platform, a stress of 0.5 kN could be preloaded first.

2.3. Experimental Material

To avoid the contingency of experimental phenomena, the uniaxial compression
experiments shown in Figure 2 had three groups of rectangular standard coal samples with
a length × width × height of 50 mm × 50 mm × 100 mm. The parallelism of both ends of
the samples was no more than 0.05 mm, and the axial deviation was no more than 0.25 mm.
In order to verify the validity of the precursors of coal fracture based on the critical slowing
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down theory for samples with different damage conditions, coal samples with different
internal fractures and damage conditions were selected for the test.
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3. Results
3.1. Mechanical Properties of Coal in Loading Process

The deformation and failure states of coal samples vary during loading due to their
own internal damage and primary fracture conditions [39,40]. Figure 3 shows the stress–
strain curve, which has typical compaction, elastic, strengthening and post-peak phases.
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The strength of coal is significantly different among raw coal samples taken from
the same coal source and is influenced by its pores and fissures. However, the better the
integrity of the coal samples, i.e., no obvious surface fissures, the higher the strength,
the longer the elastic phase, the more obvious the stress drop in the post-peak phase,
and the shorter the damage time. On the contrary, the more significant the softening
characteristics of the post-peak stress, the longer the damage time. The elastic modulus was
calculated according to the stress–strain relationship in the elastic phase, and the uniaxial
compressive strength was calculated at the time of coal destruction. The elastic modulus,
uniaxial compressive strength and size of breaking strain of the coal samples used in the
test affected by fissures were obtained statistically as shown in Table 1, and the statistical
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results show that the elastic modulus and uniaxial compressive strength increased with the
increase in coal body integrity and the breaking strain decreased with the increase in coal
body integrity.

Table 1. The mechanical properties of coal samples.

Uniaxial
Compressive

Resistance
Intensity/MPa

Elastic
Modulus/MPa Failure Strain

Sample 1 4.840 61.094 0.149
Sample 2 10.760 264.151 0.059
Sample 3 8.096 221.951 0.111

3.2. Evolution Laws of AE Energy

Compressive force was applied to the coal samples until they were destroyed. Figure 4
is the curve of AE energy, cumulative energy and stress with time. According to the
relation between AE energy and time, the AE signals can be assigned to five phases: pore-
fracture compaction (PFC) phase, elastic deformation (ED) phase, stable development of
microelastic fractures (SDMF) phase, unstable fracture development (UFD) phase and
posterior rupture (PR) phase.

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 18 
 

 

The acoustic emission law of sample 3 is affected by its internal pore cracks, and it is 
slightly different from the other two samples. The AE signal is more pronounced at the 
beginning of loading by the original damage. In the PFC phase, the stress accounts for 0–
16.7%; in the ED phase, stress accounts for 16.7–62.8%; in the SDMF phase, stress accounts 
for 62.8–76.9%; and in the URD phase, stress accounts for 76.9–100%. 

In summary, the AE signals caused by coal failure correspond well to the whole load-
ing process with their significant variation in features, and the accumulated energy of AE 
can more intuitively reflect these stage characteristics. 

 
(a) 

 
(b) 

Figure 4. Cont.



Sustainability 2023, 15, 11581 6 of 17
Sustainability 2023, 15, x FOR PEER REVIEW 7 of 18 
 

 

 
(c) 

Figure 4. Acoustic emission energy, accumulated energy and stress with time during coal failure. 
(a) Sample 1; (b) Sample 2; (c) Sample 3. 

3.3. Cumulative Acoustic Emission Energy Risk Index 
The cumulative AE energy is the cumulative value of AE rupture events, which can 

be used as a characteristic index of coal rupture AE events during the loading process [41]. 
The analysis of its variation law aims to analyze the evolutionary features of the energy 
accumulation in the loading course of the coal sample so as to provide a new index for the 
fracture precursor signal and offer a reference for the prediction of coal fractures. 

According to the change law of the cumulative AE energy curve (Figure 4), it can be 
seen that the fracture of coal under load is a process of energy accumulation and then 
release. The PFC and ED stage and SDMF and URD phase in fracture development are all 
part of the energy accumulation process. When the energy accumulation is up to a certain 
critical value, the energy releases as coal breaks. Based on the experience of previous stud-
ies [41,42], the cumulative AE energy can be used as an index to determine the risk of coal 
rupture. The slope of the cumulative AE curve of each stage was obtained by the linear 
fitting method and the definition of the risk index P1 is the ratio of PFC to ED slope in the 
cumulative curve (Figure 4) while P2 is the ratio of SDMF to ED slope in the cumulative 
curve and P3 is the ratio of URD to ED slope in the cumulative curve. The calculation 
formula of P1, P2 and P3 is: 

1
1

2

KP
K

=
 

(1) 

3
2

2

KP
K

=  (2) 
4

3
2

KP
K

=
 

(3) 

where K1 is the slope of the PFC stage; K2 is the slope of the ED stage; K3 is the slope of the 
SDMF stage; and K4 is the slope of the URD stage. 

The calculation results of P1, P2 and P3 are shown in Table 2. 
  

Figure 4. Acoustic emission energy, accumulated energy and stress with time during coal failure.
(a) Sample 1; (b) Sample 2; (c) Sample 3.

The AE energy of the three samples show the same variation characteristics in the
corresponding stages. The AE energy is weak at the incipience of loading, and the original
pores or damage inside the coal become compacted by the exterior load. With the increase
in stress, a little AE energy is generated, and the cumulative energy has a slow growth
trend. In this phase, the original damage or pores are compacted and begin to produce
new micro-cracks inside the samples. The AE energy grows steadily until a sudden change
occurs at some point, and similarly, there is a tendency for the accumulated AE energy to
grow abruptly. In this phase, new micro-cracks start to emerge, grow and expand inside
the samples, then connect with the original pores to form larger cracks. When the samples
reach the stress maximum, the peak AE energy appears, and then samples destabilize and
break. However, due to the existence of local micro-cracks in the destroyed coal, the AE
energy does not suddenly disappear, but gradually decreases until it tends to be stable.

When sample 1 is in the PFC phase, the stress in this phase accounts for 0–51.5% of
the peak stress, after which the coal enters the ED phase. In this phase, stress accounts
for 51.5–84.0% of the peak stress. The frequency of the AE signal is higher than that in
the PFC phase, and when entering the SMFD phase, the stress in this phase only accounts
for 84–90% of the peak stress. After a short time, the coal sample starts to enter the later
loading stage, which is called the URD stage. The stress in this stage reaches 90–100% of
the peak stress, and the peak stress is followed by the PR stage.

There are similar physical characteristics between sample 1 and sample 2, so the
generation of the acoustic emission signal also has a similar rule; in the PFC stage, stress
accounted for 0–55.3%; in the ED stage, stress accounted for 55.3–82.7%; in the SDMF stage,
stress accounted for 82.7–96.3%; and in the URD stage, stress accounted for 96.3–100%.

The acoustic emission law of sample 3 is affected by its internal pore cracks, and it
is slightly different from the other two samples. The AE signal is more pronounced at
the beginning of loading by the original damage. In the PFC phase, the stress accounts
for 0–16.7%; in the ED phase, stress accounts for 16.7–62.8%; in the SDMF phase, stress
accounts for 62.8–76.9%; and in the URD phase, stress accounts for 76.9–100%.

In summary, the AE signals caused by coal failure correspond well to the whole
loading process with their significant variation in features, and the accumulated energy of
AE can more intuitively reflect these stage characteristics.

3.3. Cumulative Acoustic Emission Energy Risk Index

The cumulative AE energy is the cumulative value of AE rupture events, which can
be used as a characteristic index of coal rupture AE events during the loading process [41].
The analysis of its variation law aims to analyze the evolutionary features of the energy
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accumulation in the loading course of the coal sample so as to provide a new index for the
fracture precursor signal and offer a reference for the prediction of coal fractures.

According to the change law of the cumulative AE energy curve (Figure 4), it can
be seen that the fracture of coal under load is a process of energy accumulation and then
release. The PFC and ED stage and SDMF and URD phase in fracture development are
all part of the energy accumulation process. When the energy accumulation is up to a
certain critical value, the energy releases as coal breaks. Based on the experience of previous
studies [41,42], the cumulative AE energy can be used as an index to determine the risk of
coal rupture. The slope of the cumulative AE curve of each stage was obtained by the linear
fitting method and the definition of the risk index P1 is the ratio of PFC to ED slope in the
cumulative curve (Figure 4) while P2 is the ratio of SDMF to ED slope in the cumulative
curve and P3 is the ratio of URD to ED slope in the cumulative curve. The calculation
formula of P1, P2 and P3 is:

P1 =
K1

K2
(1)

P2 =
K3

K2
(2)

P3 =
K4

K2
(3)

where K1 is the slope of the PFC stage; K2 is the slope of the ED stage; K3 is the slope of the
SDMF stage; and K4 is the slope of the URD stage.

The calculation results of P1, P2 and P3 are shown in Table 2.

Table 2. Loaded rupture risk determination indexes P1, P2 and P3.

K1 K2 K3 K4 P1 P2 P3

Sample 1 1.30 2.17 4.93 16.20 0.59 2.27 7.46
Sample 2 0.03 0.14 0.64 9.06 0.21 4.57 64.71
Sample 3 0.71 0.19 0.59 1.21 3.74 3.11 6.37

It can be seen from Table 2 that the range of risk index P1 is between 0.21 and 3.74,
that of P2 is between 2.27 and 4.57, and that of P3 is between 6.37 and 64.71. (1) When
P < 2.27, the PFC phase has similar fluctuation characteristics to the ED phase and has a
weak risk of rupture. (2) When 2.27 < P < 6.37, this indicates that the coal in the SDMF
phase has a medium risk of fracture, and the acoustic emission energy appears “convex” in
shape. (3) When P > 6.37, this is the time period of rapid energy storage of coal fracture.
At this time, the possibility of coal fracture is greatly increased and has a high risk of
fracture. Therefore, effective prediction should be carried out in the URD phase to reduce
the occurrence of disasters caused by coal fracture.

4. Discussion
4.1. Critical Slowing down Theory

In natural dynamic systems, if the phase state changes, i.e., when the system transitions
from the old phase to a new phase, a dispersion rise and fall phenomenon favoring the
formation of the new phase will occur near the proximity point, and this dispersion
rise and fall is characterized by increased amplitude, elongated time, slower recovery of
perturbations, and less ability to recover to the old phase, which is called the critical slowing
down phenomenon [38,43], In dynamic systems, this phenomenon is usually characterized
as a phenomenon of increasing variance and autocorrelation coefficients of the covariates.
Therefore, the computational analysis of the variance and autocorrelation coefficients of
acoustic emission characteristic parameters with time can provide a precursor prediction
method for the loaded rupture of coal samples.
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Variance is a characteristic mass that represents the deviation of data from the mean
value x in a sample, denoted as s2; s is called the mean square error, and the calculation
formulas are:

S2 =
1
n∑n

i=1 (xi − x)2 (4)

S =

√
1
n∑n

i=1 (xi − x)2 (5)

An autocorrelation coefficient is a statistical quantity that represents the relevance
between different times of the same argument. The autocorrelation coefficient with lag
length (j) is marked as r(j) so as to judge the possibility of predicting xi+j by xi. For variable
x, the autocorrelation coefficient with lag length (j) is:

r(j) =
1

n − j∑
n−j
i=1 (

xi − x
s

)(
xi+j − x

s
) (6)

s is the mean square error of n-length time series, and s is obtained by (5).
Firstly, it is assumed that there is a periodic variable ∆t with a recovery speed of λ. In

a simple model of autoregression, it can be represented as:

xn+1 = eλ∆txn + sεn (7)

where xn is the deflection distance of system state from disturbance state to equilibrium
state. If λ and ∆t are not determined by xn, the course can be simplified to a one-step
autoregressive model:

xn+1 = αxn + sεn (8)

Among them, the autocorrelation coefficient α = eλ∆t, and the pair (8) autoregressive
process is examined by square deviation:

Var(xn+1) = E(x2
n) + (E(xn))

2 =
s2

1 − α2 (9)

Generally, as the system approaches the critical point, the recovery rate of small
perturbations becomes slower and slower. When it approaches the critical point, the
reparatory rate λ tends to 0 and the autoregressive item α tends to 1 [44,45]. The variance
of (9) tends to infinity, so the variance can also be used as an index to determine whether
the system reaches the critical state. In summary, when the complex multi-dynamic system
approximates the critical point, the reparatory rate of the perturbation gradually decreases
and approaches 0. At this time, the autocorrelation coefficient and variance increase of
the disturbance information are two important indexes for testing the critical slowing
down phenomenon.

4.2. The Effect on Different Window or Lag Length on Critical Slowing Down

Before calculating the autocorrelation coefficient and variance, we first need to select
the appropriate size of window or lag length, because the change and stability situation
of the autocorrelation coefficient and variance are closely relevant to the window or lag
length size. As shown in Figure 5, a certain unit that needs to be calculated for a sequence is
referred to as the window length, and the lag step represents the length of the lag sequence
to be slid backward to obtain a new sequence of window length, starting from the selected
window length sequence [38,43]. To investigate the effect on different window lengths or
lag steps on the critical slowing down characteristics, there are different window length
and lag steps selected for comparative analysis.
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Due to the large amount of raw test data, the window length and the lag step should
be chosen accordingly as a larger value. Firstly, the window length is 3000, and the lag
steps are 500, 1000 and 1500. Then, the lag step is 1000, and the window lengths are 2000,
3000 and 4000. The effects of different lag steps and window lengths on the autocorrelation
coefficient and variance are compared separately in Figure 6.
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Figure 6. Comparison of variance and autocorrelation coefficient curve. (a) Sample 1 variance curves
with different lag steps; (b) Sample 1 autocorrelation coefficient curves with different lag steps;
(c) Sample 1 variance curves with different window lengths; (d) Sample 1 autocorrelation coeffi-
cient curves with different window lengths; (e) Sample 2 variance curves with different lag lengths;
(f) Sample 2 autocorrelation coefficient curves with different lag steps; (g) Sample 2 variance curves
with different window lengths; (h) Sample 2 autocorrelation coefficient curves with different window
lengths; (i) Sample 3 variance curves with different lag steps; (j) Sample 3 autocorrelation coeffi-
cient curves with different lag steps; (k) Sample 3 variance curves with different window lengths;
(l) Sample 3 autocorrelation coefficient curves with different window lengths.

The window length was taken as 3000 to compare the effect of variance for different
lag steps. As shown in the Figure 6a,e,i, the variance curves relative to the lag steps of 500,
1000 and 1500 show the same trajectory with time and reunite together, and the time points
of sudden increase are basically the same, that is, the variance curve does not vary with the
variation in lag length.

The window length was taken as 3000 to compare the effect of the autocorrelation
coefficient for different lag steps. The autocorrelation coefficient curves with different lag
steps of the same window length are shown in Figure 6b,f,j. It can be seen that different
lag steps have a certain influence on the autocorrelation coefficient, but this change does
not show the overall regularity. There is no obvious correlation between the fluctuation
range and the choice of lag step size, but the trend of local change is consistent, meaning
that the autocorrelation coefficient has independent variation characteristics under the new
sequence of lag step size.

A lag step of 1000 was taken to compare the effect of different window lengths on the
variance. Figure 6c,g,k show the same lag length variance curves with different window
length. As shown in the figure, the variance curves with various window lengths of 2000,
3000 and 4000 show the same change rule and affect the change range of variance; in
particular, the increase in the inflection point of the variance curve reduces with the growth
in window length.

A lag step of 1000 was taken to compare the effect of different window lengths on the
autocorrelation coefficient. As can be seen in Figure 6d,h,l, when the lag step lengths are
equal, the change trend of the autocorrelation coefficient curve corresponding to different
window lengths is relatively consistent, and the volatility range of the curve gradually
reduces with the growth in window length or even tends to be stable; that is, to determine
the length of the new series, the larger window length series is selected, with a smaller
effect on the autocorrelation coefficient.
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In summary, although the precursor points of critical slowing can be successfully
captured by both variance and autocorrelation coefficient, however, compared with the
variance, the autocorrelation coefficient presents a messy change process with more peaks,
which is very easy to be judged as a pseudo-signal. Therefore, the variance is more definite
than the autocorrelation coefficient precursor signal, so the variance can be used as the main
criterion of the precursor signal and the autocorrelation coefficient as an auxiliary criterion.

4.3. Compare the Precursor Characteristics of Each Index

Usually, the sudden increase in acoustic emission signal level and the increase in
slope of the accumulated energy curve of acoustic emission are often shown before the
destabilization damage of coal [46], which is because the microfracture is sprouting and de-
veloping through, so the precursor point of each index characterization must be controlled
in the URD stage if the precursor signal of coal rupture can be effectively identified.

Based on the load, cumulative energy of acoustic emission, variance and autocor-
relation coefficient versus time, the magnitude of the load values corresponding to the
precursor signals characterized by the cumulative energy, positive sequence variance and
autocorrelation coefficient are summarized from the loads and compared with the load at
the damage point. The degree of damage load at the precursory signal point is represented
by each index before the failure of the coal sample is analyzed. According to the effect of
different window or lag length on the critical slowing, the lag step of 1000 and window
length of 3000 were selected to calculate the critical slowing down precursor index. As
shown in Figure 6, among the three samples, the strength corresponding to the appearance
of the damage precursor signal of sample 1 is 4.651 MPa and the peak strength is 4.840 MPa,
which is about 96.1% of the peak strength; the strength corresponding to the appearance of
the damage precursor of sample 2 is 9.895 MPa and the peak strength is 10.736 MPa, which
is about 92.2% of the peak strength; and the strength corresponding to the appearance of
the damage precursor of sample 3 is 6.472 MPa and the peak strength is 6.904 MPa, which
is about 93.7% of the peak strength. The precursor signals all appear in the URD stage
and have sufficient validity. From Figure 4, the precursor signal is characterized by a steep
change in the slope of the accumulative energy curve of AE. The strength corresponding
to the appearance of the damage precursor signal of sample 1 is 4.452 MPa and the peak
strength is 4.836 MPa, which is about 90.8% of the peak strength; the strength correspond-
ing to the appearance of the damage critical precursor of test coal sample 2 is 8.626 MPa
and the peak strength is 10.736 MPa, which is about 80.4% of the peak strength; and the
strength corresponding to the appearance of the sample 3 damage critical precursor is
5.676 MPa and the peak strength is 8.092 MPa, which is about 82.2% of the peak strength.
The precursor signals of sample 2 and sample 3 appear in the SDMF stage. Although they
can indicate the damage of coal to some extent, the early warning characteristics are not
obvious. The calculation results show that the precursor signal characterized by variance
and autocorrelation coefficient is more accurate and effective.

From a time perspective, the precursor signal appeared 24 s earlier for sample 1,
25 s earlier for sample 2 and 50 s earlier for sample 3 after the critical slowing treatment,
accounting for 4.0%, 1.9% and 5.8% of the total loading time, respectively, all of which
were in the URD stage. The precursor signals characterized by the cumulative energy
curve were 45 s, 54 s and 103 s earlier, accounting for 7.5%, 4.1% and 12.1% of the total
loading time. This shows that the occurrence time of the precursor signal represented by
the critical slowing down is neither too early to become a false signal nor too late to cause
difficulties in early warning work. Therefore, on the basis of the critical slowing theory,
effective measures are taken to deal with the fracture of coal with good timeliness in the
precursor of failure, which has a certain use as a reference for enriching the AE monitoring
technology of coal failure.
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5. Conclusions

(1) The strengths of coal samples are significantly different due to the influence of
internal pore fractures. The elastic moduli and uniaxial compressive strengths grow with
increase in coal integrity, while the failure strain decreases.

(2) AE signals are generated during the destruction of the coal, and the whole loading
process can be divided into five stages: PFC, ED, SDMF, URD, and P-R. The accumulated
AE energy can reflect the characteristics of these stages more intuitively.

(3) Based on the acoustic emission signal, a risk index of acoustic emission parameters
was established. According to P1, P2 and P3, the risk was divided into three levels: weak
risk, medium risk and high risk. At a high risk index, the possibility of coal fracture is
greatly increased and there is a high risk of fracture. Therefore, effective prediction should
be carried out in the URD stage to reduce the occurrence of disasters caused by coal fracture.
Furthermore, this conclusion was obtained for uniaxial compression conditions. The study
of other loading conditions as well as samples is necessary to verify this result.

(4) The critical slowing precursor point characterized by variance is clearer and more
accurate and provides an early warning response to coal rupture at the URD stage. In
underground coal mining engineering operations, effective measures must be taken to
prevent and manage coal rupture after capturing the precursor signals at this stage so as to
reduce the losses caused by coal–rock power disasters. This can serve as a reference for
enriching the AE monitoring technology of coal failure.
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