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Abstract: This research paper introduces a sensor that utilizes a machine-learning model to predict
water salinity. The sensor’s concept and design are established through a simulation software which
enables accurate modeling and analysis. Operating on the principle of light transmission physics, the
sensor employs data collected from the simulation software as input parameters to predict the salinity
parameter, serving as the output. The results of the prediction model exhibit excellent performance,
showcasing high accuracy with a coefficient of determination value of 0.999 and a mean absolute error
of 0.074. These outcomes demonstrate the model’s ability, particularly the multi-layer perceptron
model, to effectively predict salinity values for previously unseen input data. This performance
underscores the model’s accuracy and its proficiency in handling unfamiliar input data, emphasizing
its significance in practical applications.
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1. Introduction

The salinity of seawater is an essential oceanographic parameter, representing the total
amount of dissolved salt in seawater. Measuring seawater salinity accurately is essential for
understanding ocean circulation, water cycle dynamics, and heat transfer. In this paper, we
examine various techniques used for measuring seawater salinity, including their principles,
advantages, and limitations. Then, we put forward a new method for detecting water
salinity by means of optics and a machine-learning model to achieve precise findings.

The conventional method used to measure seawater salinity is through titration. This
technique involves the process of titrating a known volume of seawater with a solution of
silver nitrate until a complete reaction occurs with all the chloride ions. When determining
the salinity of seawater, the amount of silver nitrate required to carry out titration is
proportional to the chloride content [1–3]. Chemo-resistive sensors are used to directly
measure seawater salinity [4–6]. An environmentally friendly sensor made of indium-tin
oxide (ITO) nanoparticles has been investigated for detecting liquid chemicals in brine [7].
Direct measuring procedures often involve chemical processes to change the solution’s
chemical properties. For applications that require the chemical properties of the solution to
be preserved, these techniques may prove ineffective.

The conductivity method is one of the most common approaches used to determine the
salt content of seawater which is based on the correlation between the electrical conductivity
and salinity of seawater. A conductivity sensor measures the electrical conductivity of
seawater, and salinity is calculated using empirical or theoretical relationships between
conductivity and salinity. This approach is known for its straightforward design, ease
of implementation, rapid response, and affordability, making it widely used in various
industrial settings [8–11]. Conductivity ratio measurements call for a steady stream of
water to be pumped through the conductivity cell, like the Sea-Bird CTD profiler. This
makes the system more intricate and harder to miniaturize [12]. The conductivity CTD is
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also limited in its ability to account for the fraction of dissolved material in seawater that
does not conduct electricity [13].

A specific type of sensor that relies on the optical phenomenon known as surface
plasmon resonance (SPR) has been proposed in different studies. These sensors have found
applications in diverse areas, including medical diagnostics, biochemical sensing, and
water pollution monitoring [14–16]. Several studies have employed the SPR technique
for developing multi-parameter sensors that can detect seawater salinity and tempera-
ture simultaneously [17–20]. Refs. [21,22] have applied Raman spectroscopy to detect
seawater salinity.

Since the refractive index (RI) is related to density via the Lorentz–Lorenz relationship,
it has been used as an optical technique for salinity sensing [23,24]. Many optical concepts,
including the critical angle, the Fraunhofer method, and total internal reflection, have been
applied to the development of refractive-index-based optical salinity sensors [25–29].

Operating a densitometer [30,31] or an interferometer [32–34] can also be employed
for measuring water salinity. Nevertheless, these approaches may not be suitable for
operating under harsh measurement conditions, and they are typically used in laboratory
settings [35].

The most used techniques for measuring water salinity are those that do not alter the
chemical properties of solutions. Of these methods, optical methods are the simplest, most
affordable, and most accurate. Most commercial sensors for measuring salinity rely on
the conductivity ratio measurement, such as the widely used Sea-Bird CTD (conductivity,
temperature, depth) profiler. These sensors require a reliable pump to maintain a constant
flow rate of water through the conductivity cell, which complicates miniaturization and
sensitivity to water velocity [36]. Additionally, temperature has a greater impact on conduc-
tivity than the refractive index [37]. The TEOS-10 guidelines state that conductivity-based
CTD sensors cannot detect seawater’s non-conductive dissolved material [13]. As a viable
alternative, measuring the refractive index (RI) is an advantageous alternative method.
The Lorentz–Lorenz correlation in oceanography links RI to absolute salinity by means of
density [23,24]. This has led to an increased focus on developing more precise methods for
measuring RI in seawater. The seawater RI equation depends on density and, consequently,
on absolute salinity, pressure, temperature, and light wavelength [25,28,29].

Machine-learning models have recently been presented as an alternative method for
determining the salinity of water. A sea ice buoy was used to measure chlorophyll levels
in the upper ocean, and the nature of the sensor was determined by applying a hybrid
machine-learning technique [38]. Yet, a different method was necessary to convert the data
into pertinent ocean parameters. Ref. [39] used a neural network trained on a generalized
radial basis function to predict the salinity of ocean water. Few studies have examined
the measurement of water salinity with the MLP based on optical data. Employing a
scattering pattern, an artificial intelligence deep-learning framework is used to identify
saline particles with varying salt concentrations, as stated in [40]. In two phases, salt
particles were classified. Initial photos of various salt salinities were taken with a Raspberry
Pi. The photos were then utilized to train the deep-learning neural network model to
categorize saline particles of various ranges. Water salt classification accuracy was 90%
using the approach. Due to the insufficient quantity of training data, the deep-learning
system categorized incorrectly particles of saline salt. Cubist (version 0.2.2) and corrplot
(version 0.84) R packages were utilized by [41]. Each rule is coupled with a multiple linear
regression model in the rule-based prediction model utilized. Applying the linear regression
model, the relationship between soil salinity and MSI-derived surface soil moisture was
analyzed. To assess the efficacy of the model, some fundamental metrics were employed,
including: (1) the coefficients of determination (R2), (2) root mean square errors (RMSE),
(3) normalized root mean square errors (NRMSE) considering the wide range of soil salinity
in the study area, (4) ratio of performance to deviation (RPD) and (5) ratio of performance
to interquartile distance (RPIQ).



Sustainability 2023, 15, 11468 3 of 12

This paper introduces an innovative method that employs both the principles of light
refraction and a machine-learning system to enable the real-time measurement of saltwater
concentration in a free biochemical environment. A machine-learning model is trained
on a large simulation study dataset to find patterns and relationships. Therefore, we are
eliminating the experimental complexity of real-time data collection and filtering, which
is one of the major challenges of machine learning, to optimize the model. Furthermore,
the deep-learning system encountered challenges in certain instances due to the scarcity of
training data. This is precisely why our paper focuses on generating synthetic data that can
be augmented with real data to enhance prediction accuracy.

In this study, we use COMSOL Multiphysics, a powerful tool widely used in various
fields such as energy harvesting, medical devices, and engineering [42–44], to design and
analyze our sensor function and obtain the required data. Despite numerous research
studies using COMSOL to test seawater sensors, the possibility of integrating machine-
learning approaches with COMSOL Multiphysics for seawater sensor development has yet
to be thoroughly explored [45,46].

Despite advances in seawater sensor manufacturing, approaches, and methods, a
simple, cost-effective, and high-performance sensor that can identify water type (saltwater
or pure) and temperature is still essential. Our proposed solution to this issue involves a
compact and straightforward laser-based measuring system developed using COMSOL
Multiphysics. This system operates on the basis of a fundamental law of physics (Snell’s
law) for computation and can effectively identify the refractive index of water samples
that are being tested. The simulation data collected through this system are then utilized
as inputs to a machine-learning model that predicts the salinity concentration of a water
sample under different temperatures. This method is highly sensitive, low-cost, and ideal
for label-free biochemical detection in real time.

This paper aims to contribute to the field by presenting a novel conceptual approach
by combining optics principles with a machine-learning technique for water salinity mea-
surement. We would like to emphasize that our project does not involve a development
stage process and does not cover any experimentation, procedures, or instruments.

The following sections examine and analyze the specifics of this research in detail.
In Section 2, the conceptual framework and method used to make the suggested sensor

are explained in detail. Results from COMSOL Multiphysics simulations and analyses of
data gathered through machine learning are also presented. Evaluation of the sensor’s
performance is presented in Section 3, and findings are discussed in Section 4.

2. Sensor’s Design and Concept

To generate synthetic data for MLP input–output, the sensor principle is simulated
using COMSOL Multiphysics. The layout and scale of the sensor are rendered as a 2D
rectangular geometry, resembling a water container or tank into which the water sample
will be placed for analysis.

The sensor concept revolves around the refraction of laser light as it passes through
the water sample until it reaches the bottom section of the tank, known as the sensing zone.
Within the zone, sensors are implemented to measure the distance covered by the light. The
measured distance depends on several factors, wavelength of light, angle of transmission,
refractive index, temperature, and salinity of the water sample.

Parameters and equations crucial for the COMSOL Multiphysics analysis of the sen-
sor’s concept and design are presented here. The model has three main parts: a cap that
houses the laser, a tank that holds the water sample, and a sensor-equipped sensing zone at
the bottom. The sensor model geometry, defined through COMSOL, comprises a 2D design
separated into two domains, air (refracive index nair = 1) and water ( refracive index nw).
A 3D illustration of the sensor concept design is shown in Figure 1. However, the study
and data obtained using COMSOL are based on a 2D analysis.
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Figure 1. Illustration depicting the 3D design of the proposed sensor showcasing the positioning of
the laser source, servo motor, and the LDR.

The sensor is modeled and designed in COMSOL with a rectangular shape in a 2D
configuration, and its dimensions are set to 30 cm for length and 20 cm for width where
both air and water widths are equal: Wair = Wwater = 10 cm (Wair + Wwater = 20 cm ).

The laser, located at the point of incidence O within the cap, emits light at an angle of
incidence θi, which can be adjusted using a mirror–servo motor system, as shown in Figure 1.
As light travels from air to water, it bends at an angle of refraction θt with the normal.
The relationship between nair, nw, θi and θt is described by Snell’s law (Equation (1))
implemented in the simulation study.

nair sinθi = nw sinθt (1)

In order to reach a sensing zone at a distance of d from the reference point of incidence
O, transmitted light must travel through a medium at an angle of θt.

The value of d is influenced by various factors such as the wavelength of the incident
light λ, angle of incidence θi, refractive index of the water sample nw, temperature of the
water T, and the depth of air and water in the medium Wair/Wwater.

To model the electromagnetic wave propagation, the “Geometrical Optics” physics
interface is applied. This study ignores diffraction and reflection at geometry edges
and corners by defining wall boundary conditions as “disappear” options for perfect
absorption. For precise air–water refraction, the optical path length step is 0.01 cm. The
investigation in this study is restricted to the distance d parameter, dependent on the
λ, θi, T, nw and Wair/Wwater parameters.

Three distinct wavelengths λ were simulated to determine the distance parameter d
(450 nm for blue, 520 nm for green, and 660 nm for red) and four different incident angles
θi (10◦, 20◦, 30◦, and 45◦). The parameter d is computed for a temperature T range of
0 to 80 ◦C with a 1 ◦C increment, and for a salinity S range of 0 to 40% with a 1% increment.

3. Simulation Data Validation

The refractive index of the water sample nw is a crucial factor in this study and must
be defined correctly through COMSOL in order to obtain trustworthy data. Various studies
have attempted to determine the refractive index nw of salty water. Parrish C [47] proposed
an empirical formula, which builds on earlier research [48,49], to estimate nw with an
accuracy of up to 3–4 decimal places. Reference [26] measured seawater salinity in situ
using a total-internal-reflection-based optical refractometer and the empirical equation from
the Quan–Fry formula [50]. Both formulae are based on the water’s salinity S, temperature
T, and the wavelength of light λ.
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Refs. [47,50] conducted studies to compare the refractive index of water salinity of
S = 0 and S = 35% at different temperatures and wavelengths. Figure 2 displays this
comparison for λ = 450 nm and 660 nm revealing that the calculated refractive index
values from both references were identical for both salinity levels and temperatures tested,
with a standard deviation of 34.88× 10−4 for λ = 450 nm, and 33.43× 10−4 for λ = 660 nm.
Thus, equations in [47,50] are equivalent and can be used interchangeably. For our results
and analysis, we have opted to implement the Quan–Fry equation (Equation (2)) outlined
in [50] in the simulation study to depict the refractive index of the water sample.
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n(S, T, λ) = n0 + S
(

n1 + n2T + n3T2
)
+ n4T2 +

n5 + n6S + n7T
λ

+
n8

λ2 +
n9

λ3 (2)

T, λ, and S are the temperature in ◦C, wavelength in nm, and salinity in %, respec-
tively. n0 to n9 are the coefficients determined by n0 = 1.31405, n1 = 1.779 × 10−4,
n2 = −1.05× 10−6,n3 = 1.6 × 10−8, n4 = −2.02 × 10−6, n5 = 15.868, n6 = 0.01155,
n7 = −0.00423,n8 = −4382, and n9 = 1.145× 106.

To validate the data acquired from COMSOL, the refractive index values are cross-
referenced with values obtained through Snell’s law and trigonometry (Equation (1)), as
well as values obtained from [25,26,47]. Figure 3a,b, at λ = 520 nm, depict, respectively,
the influence of temperature on the refractive index for different water salinities and the
influence of water salinity on the refractive index for different temperatures. Notably, as the
temperature rises, the refractive index values decrease for all salinity percentages, whereas
an increase in salinity results in an increase in refractive indices. The comparison results
indicate similarity, thereby confirming the validity of the data acquired through COMSOL.

Data validation in this study involves rigorous measures to ensure the accuracy and
reliability of the findings. Firstly, the correctness and reliability of the equation for the
refractive index nw are verified by comparing it with equations derived from different
experimental studies. This comparison serves as a crucial step in confirming the validity of
the data used in our analysis. Furthermore, the behavior of nw in terms of temperature and
salinity is carefully examined and compared with similar studies that exhibit comparable
patterns and behaviors. By conducting these thorough validations, we can confidently
affirm the integrity and robustness of the simulation results employed in our research,
strengthening the credibility of our study’s conclusions.

The machine-learning algorithm’s parameters are based on the data obtained from
the simulation study. The input data in the algorithm can be rearranged to have a spec-
ified output depending on the purpose of the study performed. In our study, the main
focus of our simulation study is to generate synthetic data related to the salinity measure-
ment. Therefore, the salinity S is set to be the output parameter. In the following section,
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the machine-learning model is detailed, discussing data classification in the model and
results analysis.
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4. Machine-Learning Model Verification

MLP models are particularly effective in addressing problems involving non-linear
relationships between input and output variables. Multiple layers of neurons enable
the modeling of non-linear functions by capturing intricate patterns and correlations in
data. The backpropagation algorithm adjusts neuron weights and biases based on the
difference between predicted and actual outputs to train MLP models. Through this
iterative process, the model can learn from the data and enhance its performance over time.
Various machine-learning libraries and frameworks, including TensorFlow, PyTorch, and
scikit-learn, provide support for MLP models (the latter incorporates a built-in overfitting
trigger). These libraries offer efficient implementations of MLPs and a broad range of tools
and functionalities for training, evaluating, and deploying the models.

As previously mentioned, the simulation of the laser beam refraction is carried out
using COMSOL Multiphysics software, considering modeling different values for various
factors such as λ, T, θi, and S. The simulation computes the distance d for every variation
in the aforementioned variables. The resulting data from these simulations are combined
and restructured to generate an input–output dataset defining the salinity S as output,
presented in Table 1.

Table 1. Input–output dataset sample.

INPUT OUTPUT

λ
(nm) 450 520 660 450 520 660 450 520 660 450 520 660

θ
(deg) 10 10 10 20 20 20 30 30 30 45 45 45 T (◦C) S (%)

d
(cm)

3.0687 3.0724 3.0769 6.2764 6.2843 6.2939 9.7901 9.8032 9.819 16.2026 16.2268 16.256 10 8
3.0716 3.0753 3.0798 6.2826 6.2905 6.3 9.8004 9.8134 9.8293 16.2216 16.2457 16.275 45 15
3.0743 3.078 3.0825 6.2882 6.2961 6.3057 9.8097 9.8228 9.8387 16.2388 16.2631 16.2925 62 20
3.0733 3.0771 3.0816 6.2863 6.2942 6.3039 9.8065 9.8196 9.8356 16.2328 16.2572 16.2868 64 27
3.0634 3.0671 3.0717 6.2651 6.2731 6.2829 9.7714 9.7847 9.8008 16.1683 16.1927 16.2225 8 35
3.0631 3.0669 3.0715 6.2644 6.2725 6.2823 9.7704 9.7837 9.7998 16.1664 16.1908 16.2206 16 40
3.0695 3.0732 3.0777 6.2781 6.286 6.2956 9.793 9.8061 9.8219 16.208 16.2321 16.2613 7 3
3.07 3.0737 3.0782 6.2791 6.287 6.2965 9.7946 9.8077 9.8235 16.211 16.2351 16.2643 3 0

Table 1 displays input–output data parameters from a subset of the entire dataset, with
a total row count of 3313. The simulation and training variables used from Table 1’s dataset
are as follows:
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• Incident angle θi of 10◦, 20◦, 30◦, and 45◦;
• Temperature T of 30 ◦C, 40 ◦C, and 50 ◦C;
• Wavelength λ of 450 nm, 520 nm, and 660 nm.

Changing these variables will impact the distance d.
These modified variables will collectively form the input dataset for a multi-layer

perceptron (MLP) regression model, which will be used to derive the salinity percentage
of water.

Feature scaling involves transforming the values of input elements so they fall within
a specified range, typically between 0 and 1 or −1 and 1. While scaling can improve the
performance of some machine-learning models, it may not be necessary or beneficial for all
datasets, as certain algorithms may be more sensitive. When deciding whether to scale the
data, it is important to consider the characteristics of the dataset and the requirements of
the machine-learning algorithm. Experimenting with different scaling methods can help
determine which approach works better for your specific case. Our variable d was first
rounded to 4 decimal places after which a RobustScaler is applied to all variables as the
best option for the feature-scaling method, as it is designed to be robust to outliers in the
data. Outliers are extreme values that may be significantly different from other values
in the dataset and can potentially affect the performance of machine-learning models.
RobustScaler works by centering and scaling the data similarly to other scaling methods,
but, instead of using the mean and standard deviation, it uses the median and interquartile
range (IQR). The IQR is the range between the first and third quartiles of the data, which is
less sensitive to outliers than the full range.

After completing the preprocessing step, the subsequent stage involves initiating the
training process using the MLP regressor from the sklearn library. Initially, we specify the
input features that correspond to various d values obtained by simulating λ and θi. This
yields a total of 12 input d values. Additionally, we incorporate temperature T as an input
parameter, making the total number of input parameters 13. The corresponding output
variable represents the salinity percentage S ranging from 0% to 40%. The MLP Regressor
comprises multiple layers of neurons, where each layer contains a group of neurons linked
to all neurons in the previous and following layer. Let us denote the input to the first
hidden layer as h11, h12, . . . , h1m, where m represents the number of neurons in the first
hidden layer. The output of the MLP Regressor can be expressed in Equation (3):

y = f (z, L) (3)

where L is the number of layers in the network, and f is the activation function of the
output layer.

The output of each hidden layer can be calculated using Equation (4):

hj,L = f
(
Zj, L

)
(4)

where j is the neuron index in layer L,
(
Zj, L

)
are the weighted sum of the inputs to neuron

j in layer L, and f is the activation function of the hidden layer.
The weighted sum

(
Zj, L

)
can be calculated using Equation (5):

(
Zj, L

)
= Σi

(
Wi,j,L ∗ (h i−1, L

))
+ (b j, L

)
(5)

where Wi,j,L is the weight connecting neuron i in layer L− 1 to neuron j in layer L, (h i−1, L
)

is the output of neuron i in layer L− 1, and (bj, L) is the bias term of neuron j in layer L.
Finally, the output of the MLP regressor can be trained by minimizing the mean

squared error (MSE) loss function, defined in Equation (6):

MSE =

(
1
N

)
Σ(yi − f (z, Li))

2 (6)
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where N is the number of training samples, yi is the true output value for sample i, and
(z, Li) is the predicted output value for sample i.

The weights and biases of the network can be updated using backpropagation and
a gradient descent optimization algorithm to minimize the MSE loss function. These
equations describe the basic structure and training process of the MLP regressor. By
adjusting the number of layers, the number of neurons in each layer, and the activation
functions used, the MLP regressor can be tailored to specific regression tasks and provide
accurate predictions for a wide range of applications.

In our training, we used the logistic activation function, commonly used in the MLP
regressor. It is a sigmoidal function that maps any input value to a value between 0 and 1
as defined in Equation (7):

f (z) =
1

1 + e−z (7)

where z is the weighted sum of the inputs to a neuron.
The logistic function is continuous and differentiable, which makes it suitable for

use in the MLP regressor, where gradients are required for backpropagation. It can be
interpreted as probability, where the output value represents the probability of the input
belonging to a particular class. In the case of the MLP regressor, the output of the logistic
function represents the predicted output value for a given set of input features. The logistic
function has the following properties:

• It is a monotonic increasing function;
• Its output is bounded between 0 and 1;
• It is differentiable, and its derivative can be expressed in terms of the function itself as

given in Equation (8):

f ′(z) = f (z) ∗ (1− f (z)) (8)

where f ′(z) is the derivative of the logistic function.
Our MLP regresor structure is given below:

• Learning rate = ‘adaptive’;
• Random state = 0;
• Hidden layer sizes = 3;
• Activation = ‘logistic’;
• Solver = ‘lbfgs’;
• Alpha = 0.000001;
• Max iter = 10,000,000.

The ‘lbfgs’ solver is a popular choice for MLP regressors because it can handle large
amounts of data and can converge quickly to a local minimum of the cost function. It is
particularly advantageous for small- to medium-sized neural networks with many more
datasets for training than the inputs of the model.

The alpha parameter is the L2 regularization term added to the cost function, which
helps prevent overfitting by adding a penalty to the weights. A smaller alpha, such as
0.000001, suggests a smaller regularization term, which can lead to a more complex model
that has greater variance. This can be beneficial if the training data is noisy or complex
but can also lead to overfitting if the model is too complex for the data. The “Max iter”
parameter specifies the maximum number of iterations for the solver to converge. A larger
value, such as 10,000,000, allows the solver to continue iterating until convergence or until
the maximum number of iterations is reached. However, a very large number of iterations
may lead to overfitting or slow training, especially for large datasets.

5. Results and Discussion

In Table 2, the error statics show that the MLP model is very trustworthy, with
R2 = 0.999 and MAE is 0.074. This substantiates the feasibility of the put-forward MLP
model for input–output mapping.
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Table 2. MLP model regressor errors.

Coefficient of Determination R2 0.999

Mean Squared Error MSE 0.009

Root Mean Squared Error RMSE 0.094

Mean Absolute Error MAE 0.074

Figure 4 shows the MLP model’s error parameters and precision, where simulated
and predicted test data align across all salinity states with only minimal oscillation. It is
essential to note that the evaluation test data were different from the training data.
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Table 3 provides a tabular representation of the discrepancy between the error in the
salinity prediction using a novel input parameter and the MLP predictions. It is noteworthy
that the data used for this analysis was not employed during the training or testing phase.
Furthermore, the results displayed in Table 3 demonstrate the model’s ability to accurately
predict the salinity values for untrained input data, indicating high performance levels. This
highlights the relevance of the model’s ability to accurately process unfamiliar input data.

Table 3. Salinity percentage S (%).

Real 8 15 20 27 35 40 3 0

Predicted 7.97926 14.9341 19.9869 26.9965 34.946 39.8294 3.07405 0.016663

Error difference 0.02074 0.0659 0.0131 0.0035 0.054 0.1706 0.07405 0.016663

Few studies have examined the measurement of water salinity using MLP data gen-
erated from the optical principle. Reference [40] used convolutional neural networks and
transfer learning to classify salt particles in seawater. The study achieves an accuracy
of 90% and an f-score of 87%. However, due to the limited amount of training data, the
deep-learning system suffered from the misclassification of saline salt particles. For this
reason, our paper generates synthetic data that can be enriched with real data for improved
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prediction. As evidenced by Figure 4 and Table 3, the model demonstrates a strong cor-
relation between variable d and salinity, given that our research makes use of synthetic
data devoid of anomalies. The d values are derived using COMSOL and the equations
presented in [47,50].

Figure 4 depicts the error parameters and MLP precision, demonstrating a close
alignment between the actual and predicted data across all salinity states, with minimal
oscillation observed at certain data points. A more comprehensive statistical analysis of the
model is presented in Table 3, where the model is tested with entirely new and unseen input
data. The results displayed in Table 3 indicate that the model’s predictions are satisfactory
across the entire salinity range (0 to 40%), but, due to the use of synthetic data, model
robustness for the real on-site measurements will decrease the accuracy [51,52].

6. Conclusions

In conclusion, this research study presents a machine-learning laser-based sensor de-
sign for accurate water salinity detection and COMSOL 2D-simulation design for synthetic
data collection.

• Unlike other approaches that rely on current flow or chemicals, which can be harmful
to underwater life and are complex for real on-site evaluations, our proposed method
utilizes the light refraction optics concept to generate synthetic data for ML predictions.

• Synthetic data speed up the machine-learning training process, which is a challenging
step in all AI applications. COMSOL 2D simulation reduces the time–cost process for
obtaining input–output data used in the training process.

• The data obtained from COMSOL is validated by comparing the refractive indices
calculated in COMSOL with those determined using Snell’s law, trigonometry, and
experimental research.

• The obtained results demonstrate the multi-layer perceptron (MLP) model’s ability to
accurately predict salinity values for previously unseen input data, indicating a high
level of precision.

• Water salinity prediction is possible under diverse temperature settings.

By considering these significant findings, this research contributes to the advancement
of sensor technology for precise and accessible water salinity detection. The cost-effective
design of the sensor could make it easier to make a flexible multi-parameter sensor and can
be used as a solution for a variety of purposes, such as life monitoring on contaminants in
water, as affordable low-cost IoT technology ensuring its safety even in household water
supply systems. Moreover, such a sensor could be implemented in water facilities next to
petroleum lines for 24/7 leak detection as part of an IoT technology solution.
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