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Abstract: Climate stress poses a threat to the agricultural sector, which is vital for both the economy
and livelihoods in general. Quantifying its risk to food security, livelihoods, and sustainability is
crucial. This study proposes a framework to estimate the impact climate stress on agriculture in
terms of three objectives: assessing the regional vulnerability (exposure, sensitivity, and adaptive
capacity), analysing the climate variability, and measuring agricultural performance under climatic
stress. The vulnerability of twenty-two sub-regions in Jammu, Kashmir, and Ladakh is assessed using
indicators to determine the collective susceptibility of the agricultural framework to climate change.
An index-based approach with min–max normalization is employed, ranking the districts based on
their relative performances across vulnerability indicators. This work assesses the impact of socio-
economic and climatic indicators on the performance of agricultural growth using the benchmark
Ricardian approach. The parameters of the agricultural growth function are estimated using a linear
combination of socio-economic and exposure variables. Lastly, the forecasted trends of climatic
variables are examined using a long short-term memory (LSTM)-based recurrent neural network,
providing an annual estimate of climate variability. The results indicate a negative impact of annual
minimum temperature and decreasing land holdings on agricultural GDP, while cropping intensity,
rural literacy, and credit facilities have positive effects. Budgam, Ganderbal, and Bandipora districts
exhibit higher vulnerability due to factors such as low literacy rates, high population density, and
extensive rice cultivation. Conversely, Kargil, Rajouri, and Poonch districts show lower vulnerability
due to the low population density and lower level of institutional development. We observe an
increasing trend of minimum temperature across the region. The proposed LSTM synthesizes a
predictive estimate across five essential climate variables with an average overall root mean squared
error (RMSE) of 0.91, outperforming the benchmark ARIMA and exponential-smoothing models by
32–48%. These findings can guide policymakers and stakeholders in developing strategies to mitigate
climate stress on agriculture and enhance resilience.

Keywords: agricultural vulnerability; agricultural growth; climate variability; Ricardian approach;
AI; deep learning

1. Introduction

An increasing footprint of climatic variability has the potential to impact billions of
people in terms of how they secure their sustenance. However, the implications of climate
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variability can vary in magnitude and severity. A global climate change phenomenon, as
specified by the Intergovernmental Panel on Climate Change (IPCC) [1], refers to

“a change in the state of the climate that can be identified by changes in the mean and/or
the variability of its properties, and that persists for an extended period, typically decades
or longer”.

Researchers have been studying the effects of such dynamics that alter the configu-
ration of the atmosphere for decades [2]. The progressively receding ice caps [3], rising
sea levels, and rising global temperatures [4] provide a nominal estimate of changing envi-
ronmental conditions. A plethora of such manifestations is attributed to climate change,
like the increase in the incidence and number of extreme events, record temperatures [5],
intense rainfalls, hailstorms, floods, droughts [6], and the outbreak of pests and diseases [7].
Severe exposure to such conditions may have long- and short-term repercussions on the
economy [8] and livelihood. Crop efficiency and production have been observed to be
influenced antagonistically as a consequence of climatic variability [9,10], increasing food
and livelihood security issues. The thrust towards industrial modernization has already
taken a heavy toll on plant and animal diversity. Long-term climatic stress could influence
agriculture and horticulture in various ways, incorporating changes in average temper-
atures, patterns of precipitation, carbon dioxide concentration in the atmosphere [5], the
nutritional quality of certain foods, water availability, agricultural productivity, and the
growth of essential crops with a significant deterioration of soil. On the other hand, agricul-
ture is the principal way in which land is used worldwide. About 1.2–1.5 billion hectares of
land is under harvest, with another 3.5 billion hectares [11] being grazed. People utilize
approximately another 4 billion hectares [11] of forest territory to different degrees [12,13].
Ensuring food security to accommodate the anticipated needs of the increasing global
population is, thus, ineluctable. Agriculture is a requisite economic activity supporting the
heavy burden of the working populace in India (65%), although its share in the country’s
GDP is declining. Moderate developments in the agrarian segment, in addition to changes
in the climate, must be subject of significant consideration as they are closely linked to
the food security and poverty status of a dominant part of the populace [14–16]. The
dependence of the mass on farming practices and the risk of instability in agricultural
production due to accumulating climatic stress increases the vulnerability of farmers and
threat to the economy, development, and sustainability.

There are three main ways to address the threat of climate stress on the agricultural
paradigm, namely (i) proactively predicting the implications of climate change on agricul-
ture; (ii) actively studying the existing observable or perceivable effects of climate change;
and (iii) passively framing adaptation policies for its mitigation measures. Our work focuses
on the first two schemes of analysing climate change in terms of the three following objec-
tives, namely characterising the vulnerability of the region to climate change; observing the
forecasted trends of climate variables; and analysing the performance of agriculture in the
current climatic scenario. Vulnerability assessment estimates the extent of climate change
hazard, and is defined as the susceptibility and degree of risk of the region towards the
impacts of long-term climatic variability, which depends on various geographic, economic,
cultural, social, demographic, governance, institutional, and environmental factors [17].
The determinant variables and methodologies of estimating the vulnerability vary across
studies [18,19]. A comprehensive assessment of the vulnerability of a system/region to
climate change is recognized [1] as a three-fold process, namely assessments of sensitivity,
exposure, and adaptive capacity variables. Exposure indicates the rate of climate varia-
tion [20] to which a region/system is exposed. Sensitivity specifies the degree to which
a region/system is affected (positively or negatively, directly or indirectly) [17] and is a
function of climate-related stimuli [20]. The response of the region/system that defines its
recovery tendency from the effects of climate change in terms of countermeasures, potential,
resources, behaviour, and technology is measured as adaptive capacity.

Deep learning has emerged as a powerful tool that has revolutionized various fields,
including healthcare [21–24], education [25], and agriculture [26–29]. Its ability to process
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vast amounts of data and extract meaningful patterns has paved the way for transformative
advancements [30]. In agriculture, deep learning has played a pivotal role in optimizing
crop yields [26,31], monitoring soil conditions [32], and detecting pests and diseases early
on, leading to increased productivity and sustainable practices. Statistical methods and
deep learning has played a crucial role in assessing the extent of the vulnerability of
agriculture to climate change, offering valuable insights into the potential impacts on crop
production and guiding adaptation strategies [33,34]. By leveraging its ability to analyse
complex datasets, deep learning algorithms can process diverse sources of information
such as climate data, satellite imagery, and historical agricultural records. These models
can identify intricate patterns and relationships that traditional statistical approaches may
overlook, enabling a more accurate estimation of climate variability. One area where
deep learning has made significant contributions is in crop yield prediction under climate
change scenarios [35]. By training models on historical climate and agricultural data, deep
learning algorithms can learn patterns and correlations that help estimate future yields [36].
These models can take into account various climate variables such as temperature, rainfall,
and humidity. By incorporating these multidimensional inputs, deep learning models
can provide the more precise predictions of crop yields under different climate change
scenarios, helping farmers and policymakers understand the potential risks and plan
accordingly. Recurrent networks in deep-learning are a valuable tool in estimating the
extent of climate variability due to their ability to model temporal sequences, and identify
intricate patterns and relationships that traditional methods may miss. This enables more
accurate predictions of climate distributions, and helps identify the regions and crops that
are most at risk. Deep learning’s capability to detect non-linear relationships and analyse
historical trends contributes to a comprehensive understanding of the impact of climate
change on agriculture, assisting in the development of effective adaptation strategies.

The aim of this paper is to assess the dynamics of agriculture-driven regions to climate
change and their corresponding resilience. The significant contributions of this work are
listed below:

1. In this work, a standard dataset comprising forty-two determinant indicators was
curated from the records of Digest of Statistics (Jammu and Kashmir) [37] for the years
1983 to 2020, in addition to five exposure indicators from NASA LaRC POWER [38]
for the years 1983–2022 across twenty-two sub-regions (districts) of Jammu, Kashmir,
and Ladakh (illustrated in Table 1). The descriptions of the variables defined in the
dataset are illustrated in Tables 2 and 3. Seven additional indicators were derived
from the curated exposure indicators.

2. This study formalizes an index-based algorithm to estimate the span/extent of vul-
nerability of each sub-region to climate change.

3. In this work, we analyse agricultural growth as a function of socio-economic, de-
mographic, geographic, and climatic variables leveraging the benchmark Ricardian
methodology. Each of the indicators is assessed for its contribution to the performance
of agriculture.

4. We study and present the forecasted trends of the climatic variables using a recurrent
neural network-based approach to analyse climate change exposure in the stud-
ied region.

2. Recent Works

Depending upon the type of action undertaken to assess the vulnerability of agri-
cultural systems in the presence of climate variability, this section is divided into studies
of the impacts of climate change on the environment, works that discuss its observable
and apprehensive impacts on agriculture and economy, proactive studies of vulnerability
assessment, and studies on passive support and mitigation measures.
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2.1. Studies on Climate Change and Environment

With reference to climate variability, the evident causal factors in the environment
and their effects are apparent. The global average temperature increased by 0.74 ◦C
over the last 100 years and is projected to increase from 1.8 to 4.0 ◦C by 2100 [39]. The
notable predicted effects are sea-level rise [40], variability in precipitation patterns [41],
delay/decrease in precipitation [42], increased temperatures [1,20,39], increased storminess
and heatwaves [43], extreme weather conditions [44], droughts and floods [45], negative
impacts on vegetation [46], loss of biodiversity [47], and the decreased availability of
freshwater [48]. In similar studies, it has been observed that climatic stress may appear
differently across geographical areas. In developing countries like India, where agriculture
is the main occupation, the expected impacts include seasonal variation in temperature
such as warmer winters [14] with a projected 2 ◦C temperature rise in north India [49].
The increasing global population is estimated to have a positive correlation with the
increasing rate of global carbon footprint [50], increase in the global temperature (due
to anthropogenic activities) [48,51,52], extensive exploitation of fossils [53], deforestation
and rapid urbanization [54], which is expected to increase climatic variability. Various
researchers weigh the positive impacts of climate change with its negatives. Some studies
show that increased levels of carbon dioxide (CO2) could benefit certain plants and regions
but is widely accepted to be harmful to the natural habitat [55]. Various studies show a
correlation with a number of causal factors of climate change, such as the correlation of
temperature balance and CO2 concentrations [56] that contributes to approximately 77% of
the concentration of GHGs [57], leading to global warming and environmental instability.

2.2. Studies on Agriculture, Economy, Livelihood, and Climate Stress

Several studies have evaluated the effects of climate variability on agriculture. There
is a necessity to evaluate its impact on agriculture to minimize its associated risk. The
global mean GDP loss is projected to be 1–5% for a 4 ◦C warming [58]. Although the
theories suggest that positive effects could also be witnessed, depending on the landscape.
A study carried out by [59] in northwestern India revealed that rice (28%) and wheat (15%)
could perform better under elevated CO2 concentrations. However, impacts cannot be
generalized across geographical regions. All optimistic scenarios predict an 8% increase in
overall agricultural productivity [43], increased rice yields of 3.5–33.8% [60] and irrigation
being optimized by 16–28% ) [61]. In contradiction, studies also predict a devastating
effect on agricultural resources (in zero-response scenarios) by temperature-rise and rainfall
variability, leading to various effects, such as food insecurity [59], and detrimental impacts
on livestock growth and forage crops [44], a drastic decrease in food availability [62],
a 4.5–9% reduction in major food crops [63], decrease in nutritional quality [58], 18%
reduction in global water availability for agriculture by 2050 [62], economic instability and
increase in pests, diseases, and pathogens [7].

2.3. Studies on Vulnerability Assessment

Estimation techniques that portray vulnerability assessment in region-level case stud-
ies are essential in determining the impacts of climate variability in agricultural settings.
As such, multiple studies have performed vulnerability assessments on various dependent
factors. A study by [64] represented a methodology for examining the susceptibility of In-
dian agriculture towards climate change at the regional level within the premise of various
global effectors. Another study [65] proposed a statistical framework of vulnerability anal-
ysis, linking it to various exposure indicators, sensitivity indicators, and generic/specific
adaptive capacity indicators. Indexing-based vulnerability assessment is followed in some
studies. However, more models of vulnerability assessment have been explored [19]. The
contribution of diverse effectors can vary across regions since vulnerability is shown [17] to
be specific to geography and can be performed at many levels of the institution.
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2.4. Studies on Mitigation and Adaptation Measures

Mitigation strategies help limit climate variability effects. Studies show the tremen-
dous potential for adaptive capacity variables against climate risk. Mitigation measures
like pollution control, afforestation [48], water system planning [45], disease control mea-
sures [66], pest-control measures, advanced water management technologies, minimizing
environmental degradation [57], carbon sequestration, crop-selection, proper irrigation, us-
age of stress-resistant crops, soil conservation [67], manure management, cross vegetation,
agroforestry, crop diversity, awareness, youth empowerment [68], adoption of scientific
knowledge [69], education, and proactive policies [70] are seen by researchers to bring
about agricultural sustainability. The agricultural sector has enormous potential to mitigate
and adapt to climate change. In contrast, the absence of adaptation strategies, ignorance,
lack of knowledge [63], poverty, and lack of technology are generically seen as hurdles to
mitigation. Various developing countries in this paradigm are hence susceptible, unstable,
sensitive, and vulnerable to climate risk.

3. Materials and Methods
3.1. Study Area: Area Selection and Its Agro-Climatic Setting

The present study intends to investigate the characteristics of agricultural growth
in relationship with various intrinsic/extrinsic variables and assess the vulnerability of
agriculture to climatic change in the region of Jammu, Kashmir, and Ladakh. This study
area is situated in the northwestern portion of the Himalayan mountain range, characterised
by significant variations in terrain elevation, snow-covered peaks, river systems, intricate
geological formations, and diverse temperate plant and animal life. The studied area is
centrally proximal to three climatic systems of Asia. The region of Punjab, characterised
by a weak monsoon zone, is located in its southern border. It is bordered by the vast arid
plateau of Tibet in its northeast. In contrast, the northwest border areas face the eastern
limits of the Mediterranean climate. Two-thirds (2.3 million ha) of the total mountainous
area of India (3.5 million ha) is found in this region. This region lies in the extreme north
of the Himalayas. It constitutes about 67.5% of the northwest Himalayan region. There is
diversity in the region’s agro-climatic conditions, ranging from temperate in Kashmir, cold
arid in Ladakh, and sub-tropical in Jammu. However, the shift in micro-climatic scenarios
varies widely across the whole area. A geographical outline of the area under study spans
on a net area of about 101,387 km2 segregated into 22 sub-regions/districts (as shown in
Figure 1).

Figure 1. Continental level position of the studied area highlighted in red (Left): map of the studied
area (right).

Table 1 specifies the global location of the districts in the studied area.
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Table 1. Global coordinates of the districts in the studied region.

District Lat., Long. District Lat., Long.

Anantnag 33◦ 49′ N, 75◦ 15′ E Jammu 32◦ 44′ N , 74◦ 51′ E
Bandipora 34◦ 25′ N, 74◦ 38′ E Kathua 32◦ 35′ N , 75◦ 37′ E
Baramulla 34◦ 10′ N, 74◦ 22′ E Kishtwar 33◦ 19′ N , 75◦ 46′ E
Budgam 33◦ 55′ N, 74◦ 38′ E Poonch 33◦ 42′ N , 74◦ 15′ E
Ganderbal 34◦ 13′ N, 74◦ 47′ E Rajouri 33◦ 16′ N , 74◦ 21′ E
Kulgam 33◦ 39′ N, 75◦ 0′ E Ramban 33◦ 20′ N , 75◦ 12′ E
Kupwara 34◦ 31′ N, 74◦ 11′ E Reasi 33◦ 4′ N , 74◦ 50′ E
Pulwama 33◦ 57′ N, 75◦ 3′ E Samba 32◦ 35′ N , 75◦ 7′ E
Shopian 33◦ 49′ N, 74◦ 50′ E Udhampur 32◦ 55′ N , 75◦ 20′ E
Srinagar 34◦ 5′ N, 74◦ 48′ E Kargil 33◦ 48′ N , 76◦ 28′ E
Doda 33◦ 8′ N, 75◦ 35′ E Leh 33◦ 21′ N , 78◦ 15′ E

3.2. Data: Collection, Preprocessing, and Reference Period

This study is based on benchmark secondary data procured from two sources: (1) pub-
lished records of the Digest of Statistics (Government of Jammu and Kashmir); and
(2) NASA LaRC POWER. The data in Table 2 illustrate the exposure, sensitivity, and
adaptive capacity variables used in this study for the vulnerability assessment. Table 3
describes the socio-economic indicators that are used in this study for estimating agricul-
tural growth in the presence of these variables. The reference period of study for climatic
variables (exposure) spans the years 1983–2022, while the data pertaining to sensitivity
and adaptative capacity indicators span from 2007 to 2020. The procured climate data are
sampled daily, which was processed to obtain the annual figures as follows:

Tmax and Tmin represent the overall annual maximum and the minimum temperatures
in a certain year. The daily data for average temperature and relative humidity on a certain
day were averaged to obtain the annual mean figure, Tavg and RH, respectively. The daily
precipitation data were summed up to form its annual figure. Equations (1)–(5) detail the
process of obtaining the annual data of the mentioned variables.

Tmax = maximum
n
{

i=1
Tmaxi} (1)

Tmin = minimum
n
{

i=1
Tmini} (2)

Tavg = average
n
{

i=1
Tavgi} (3)

RH = average
n
{

i=1
RHi} (4)

PPT =
n

∑
i=1

PPTi (5)

where Tmaxi , Tmini , Tavgi , RHi, and PPTi denote the maximum temperature, minimum
temperature, average temperature, relative humidity, and precipitation, respectively, on
the ith day of the year (with n days). The annual data for variables T̃max, T̃min, T̃avg, and
P̃PT (as defined in Table 2) is derived from Tmax, Tmin, Tavg, and PPT, respectively. The
other derived variables, Tmax, Tmin, and PPT (as defined in Table 3), are derived from Tmax,
Tmin, and PPT, respectively. For all other sensitive, socio-economic, and adaptive capacity
variables (as defined in Tables 2 and 3), the data source exists in annual representation, as
it is.
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Table 2. Various vulnerability indicators categorized into components of exposure, sensitiv-
ity, and adaptive capacity along with their positive (+) or negative (−) functional relationship
with vulnerability.

Components Indicators (unit) Representation Func.
Rel.

EXPOSURE

Annual precipitation (mm)
Change in annual precipitation (%)

PPT
P̃PT

+

Annual maximum temperature ( ◦C)
Change in annual maximum temperature (%)

Tmax
T̃max

+

Annual minimum temperature ( ◦C)
Change in annual maximum temperature (%)

Tmin
T̃min

+

Annual average temperature ( ◦C)
Change in annual average temperature (%)

Tavg
T̃avg

+

Annual relative humidity (%) RH +

SENSITIVITY

Average land holding size (hectares) QAVL +
Culturable waste land (% reported area) ACWL +
Gross irrigated area (% total sown area) AGI +
Net irrigated area (% net sown area) ANI +
Area under apple (% total fruit area) Aapple +
Area under major food crops (% Total
sown area) Amajor +

Area under rice (% total sown area) Arice +
Agricultural workers (% total workers) Wagricultural +
Agricultural labourers (% agricultural
workers) Wlabourers +

Population density (number per km2) Dpopulation +
Illiteracy rate (%) Rilliteracy +
BPL population (% total population) PBPL +

ADAPTIVE
CAPACITY

Net sown area (% reported area) Asown −
Forest area (% reported area) A f orest −
Area under all food crops (% total
sown area) A f ood −

Area under fruit crops (% geographical area) A f ruit −
Area under walnut (% total fruit area) Awal −
Total fodder area (% total sown area) A f odder −
Cropping intensity (%) IC −
Irrigation intensity (%) II −
Villages electrified (%) Evillages −
Cultivators (% agricultural workers) Wcultivators −
Total workers (% total population) Wtotal −
Livestock density (number per km2) Dlivestock −
Fish caught (quintals) Q f ish −
Rationed population (% total population) Prationed −
Literacy rate (%) Rliteracy −
Bank branches (number per lakh hectares
of net sown area) QBB −

Credit societies (number per thousand hectares
of net sown area) QCS −

Health institutions (number per
lakh population) QHI −

Welfare centres (number per
lakh population) QWC −

Liveable houses (% total houses) Hlivable −
Indicators highlighted by (˜) are derived.



Sustainability 2023, 15, 11465 8 of 25

Table 3. Socio-economic and climatic variables considered for the assessment of agricultural growth.

Indicators (Unit) Representation

Net irrigated land (% net sown area) * ANI
Cropping intensity (%) * IC
Tractors (number per thousand hectares of total sown area) QT
Tubewells energized (number per thousand
hectares of total sown area) QTE
Rural literacy rate (%) RRL
Average land holding (hectares) * QAVL
Public investment in agriculture (rupees per hectare) QPBIA
Agricultural credit (direct credit per hectare) QAC
Variance in maximum temperature (%) * Tmax
Variance in minimum temperature (%) * Tmin
Variance in precipitation (%) * PPT
Change in annual maximum temperature (%) * T̃max
Change in annual minimum temperature (%) * T̃min
Change in annual precipitation (%) * P̃PT

Indicators highlighted by (˜) and ( − ) are derived. * Some indicators are common to Table 2.

3.3. Vulnerability Assessment: Categorisation of Districts and Indexing of Districts

In this study, a hypothesis for the functional relationship between the vulnerability
components and indicators (from Table 2) was established. District-wise vulnerability
assessment is performed as an indexing-based standardization approach to categorize
various regions on the basis of their relative rank derived from the functional hypothesis.
The influence of each variable was captured with an assumption that each variable has a
weight equal to that of the overall vulnerability to climate change.

Algorithm 1 illustrates the methodology (pseudo-code) followed in pursuing this
objective. Initially, all the annually sampled indicators (φi), given in Tables 2 and 3 (except
the derived indicators) are treated for the removal of noise, that could be present because
of inter-year fluctuations, using the moving-average method on previous k years across
all districts. Similarly outliers and missing values are adjusted using standard Gaussian
filtering [71]. Then, the current smoothened value of the ith indicator is taken as a reference
value of the respective indicator which is again retained for each of the districts. This is
followed by the min–max normalization for determining the scaled value of the reference
indicator among d districts, denoted by as λ = [0, 1]. Given that the overall performance
of a district is quantified separately as indices of exposure (ξ), sensitivity (§), and adaptive
capacity (α), the relative rank of the dth district among each indicator category is observed
as a ranking of averaged λ, given as Rξ,d, R§,d, and Rα,d each ∈ {1, 2, 3, ..., n} where n is
the number of identified districts (in Table 1). Hence, the vulnerability index (ϑ) of a district
is formulated as defined in Equation (6).

ϑ = § + ξ + (1− α) (6)
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Algorithm 1: Methodology for ranking districts on the basis of vulnerability to
climate change.

Input: Annually sampled exposure, sensitivity, and adaptive capacity indicators
for all districts

Output: Ranking of districts on the basis of exposure index, sensitivity index,
adaptive capacity index, and overall vulnerability index with respect to
climate change

1 n← number of districts;
2 ξ ← array() ; . Array of zeros; size n
3 §← array() ; . Array of zeros; size n
4 α← array() ; . Array of zeros; size n
5 ϑ← array() ; . Array of zeros; size n
6 for each ith indicator: φi do

. Preprocessing and moving average
7 for each district d do
8 φ[i,d]← district_wise(φi, d) ; . φ[i,d] is annually sampled district-wise

data of φi
9 φ̂[i, d]←moving_average(φ[i,d], k) ; . Moving-average over ‘k’ years

10 φ̃[i, d]← latest(φ̂[i, d]); . Current year’s smoothed annual value of φ̂[i,d]
11 end

. Min–max normalization
12 for each district d do

13 λ← φ̃[i, d]−min(φ̃[i])
max(φ̃[i])−min(φ̃[i])

; . λ holds the normalized value of the index

for dth district
. Combining effects of exposure, sensitivity, and adaptive capacity

indicators
14 if φi is exposure variable then
15 ξ[d]← ξ[d] + λ;
16 end
17 else if φi is sensitivity indicator then
18 §[d]← §[d] + λ;
19 end
20 else if φi is adaptive capacity indicator then
21 α[d]← α[d] + λ;
22 end
23 end
24 end
25 for each district d do
26 ξ[d]← ξ[d] / (Total number of exposure variables);
27 §[d]← §[d] / (Total number of sensitivity variables);
28 α[d]← α[d] / (Total number of adaptive capacity variables);
29 ϑ[d]← ξ[d] + §[d] + (1− α [d]) ; . Equation (6)
30 end
31 Rξ ← rank(ξ);
32 R§ ← rank(§);
33 Rα ← rank(α);
34 Rϑ ← rank(ϑ);

. rank() sorts the districts according to the values of the argument, hence the
districts are ranked individually on the basis of exposure, sensitivity, adaptive
capacity, and overall vulnerability

35 returnRξ ,R§,Rα,Rϑ
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3.4. Estimation of the Impact of Climate Change on Agricultural Growth

This study employed the Ricardian method developed by [72] with few modifications
to capture the impact of climate change on agricultural growth. This analysis is based
on the assumption of a direct cause-and-effect relationship between climate events and
agricultural growth. As a modification of the Ricardian method to assess the contribution
of environmental conditions towards agricultural growth, the estimated parameter of
agricultural growth is taken as a proxy of land rent value (as defined by the original
Ricardian model). A modelling function is employed to analyse the impact of different
variables on agricultural growth in the presence of climatic variables. Several variables
were attempted while estimating the function; however, certain variables (mentioned in
Table 3) were retained in their final form. The model of the structural form, as defined in
Equation (7), is estimated to give the best fit for the trend of agricultural growth (AG) as a
linear combination of the aforementioned variables:

AG = β0 + β1RRL + β2 IC + β3QT + β4QTE + β5 ANI + β6QAVL + β7QPBIA

+ β8QAC + β9Tmax + β10Tmin + β11PPT + β12T̃max + β13T̃min + β14P̃PT
(7)

where β0 is a random bias term and βi (i ≥ 1) represents the respective coefficients of the
variables. The parameters βi (i ≥ 0) of the function are estimated using ordinary least
squares (OLS)-based linear regression. Prior to performing an analysis of this function,
necessary requirements of the linear regression were tested for the purpose of verifying
the distributional characteristics in the data. The results of these tests are specified in
Appendix A.

3.5. Estimation of Climate Variability and Forecasting

The climatic data variables have temporal characteristics, and it is imperative to model
the distribution of such data using recurrent neural networks that have found applications
in numerous use-cases. This study leverages a standard long short-term memory [73]
(LSTM)-based neural network model to approximate a function on the distribution of
climate variables. Although many climatic variables could be compositely taken under
consideration, this study mainly focuses on the exposure of climate variability and its
impact within agricultural framework, hence the climatic variables under consideration
are CV = {Tmax, Tmin, Tavg, RH, PPT}. Understanding the distribution system of these
climate variables could provide a detailed analysis of the stability of agricultural systems
in the current scenario.

Now, the climate variables represent individual time-series signals with distinct tem-
poral distribution. LSTM model is viable for capturing such temporal features having
long-range dependencies. Initially, the dataset is treated with standard scaling to mitigate
inter-year fluctuations, the removal of noise, and fasten the convergence of the applied
model. Standard scaling is applied on each climate variable using the formulation in
Equation (8).

CVkscaled
=

CVk − µCVk

σCVi

(8)

where CVk ∈ CV, and µCVk , σCVi represent the mean and standard deviation of CVk, respec-
tively. The motivation to utilize the neural network approach for the objective of forecasting
climate variables has three reasons: firstly, the universal approximation theorem suggests
that neural networks are an excellent choice for modelling continuous functions [74]. This
is true, irrespective of the possible trends, oscillations, seasonality or other properties in
the data. Secondly, LSTM [73] neural networks have the tendency to capture temporal
characteristics in the data samples that have long-range dependencies, on previous values,
across time. The climate data distribution is expected to follow a Markov chain [75], and
may not be stationary (such as in the case of temperature or precipitation). Furthermore,
some climate variables do not follow a linear trend of expectation, and some can experience
change in variances with time (such as precipitation and relative humidity). Hence, most
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climate data cannot be generalized well by linear econometric models (unless some addi-
tional processing is performed, such as when the first-order differences of the time series
are modelled using these models instead of actual data). Thirdly, non-linear parametric
econometric models [76–78] tend to assume the parameters of the model according to the
statistical properties of the data, prior to modelling, which could fail in predicting un-
even/sudden changes in the data (such as predicting erratic precipitation). The parameters
are tuned according to the statistical characteristics found in the data prior to achieving
the generalization. In contrast, the parameters of the neural network-based predictors are
tuned as a process during its training phase by some suitable learning algorithms (such
as SGD [79]). In the latter case, there is no need to manually re-engineer the parameters
of the model or assume the statistical properties in the data (such as stationarity, scedas-
ticity, or type of probability distribution); hence, there is the potential to achieve better
generalization.

Now, some climate variables in the dataset could be correlated and some are apparent
to be completely uncorrelated. To remove any hazard that could occur due to inter-variable
dependency towards model convergence, an individual LSTM-based neural network is
trained for each climate variable. This helps understand the trend of each variable discretely.
Secondly, the agricultural systems tend to be complicated across geography. For instance,
crops across regions can have distinct dependence on a specific subset or, sometimes, all
of climate variables. It is thus essential to consider approximating the distributions of
the climate variables in separation from one another for the objectives of forecasting. The
scaled transformation of the data of each climate indicator is modelled using the proposed
model (as illustrated in Figure 2). The input to the LSTM layer is first resampled into
m + 1 features which specifies the network to use m previous annual values to predict one
futuristic estimate of the input variable. Hence, the series of 39 annually sampled values for

each district is featured in the form of
(

39−m
stride

+ 1
)

samples (each of length of m units) in

each variable of each district. The defined LSTM layer has four cells. Consider the sequence
xt as input to the LSTM cell at any time t which is transformed across its different gates [80]
using the formulation (as shown in Equations (9)–(14)).

it = sigmoid(L2[xt, hot−1 ]) (9)

ft = sigmoid(L3[xt, hot−1 ]) (10)

ct = itc′t + ftct−1 (11)

ot = sigmoid(L4[xt, hot−1 ]) and hot = ottanh(ct) (12)

ct = itc′t + ftct−1 (13)

c′t = tanh(L1[xt, hot−1 ]) (14)

where Li, i ∈ N, i ≤ 4 represents the trainable parameters of the LSTM baseline. The output
vector xot from the LSTM cell is forwarded (after 60% dropout) as input to two dense layers
(FC1 and FC2), each with ten nodes. The output is forwarded to a ReLU activation layer to
yield a normalized prediction value (y) as shown in Equation (15). F1 and F2 represent the
trainable parameters of the fully connected layers.

y = relu(F2[F1[hot ]]) (15)

Then, a procedural inverse standard scalar processes the overall output to yield a
futuristic estimate of the sample. We repeat the training procedure for multiple epochs until
an apparent convergence of the model is reached. It is essential to realize that, even though
LSTMs are capable of approximating data that are frequently sampled (such as daily or
monthly), it is appropriate to generate year-long average predictions rather than generating
for more frequent periods because of the following reason: climate change is observable for
sufficiently long periods of time. Frequently sampled data tend to be more stochastic than
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otherwise. In this context, capturing stochasticity, something LSTMs would be capable of,
is not the purpose. The purpose is to visualize year-long or decade-long projections. In this
case, neural networks trained for more frequently sampled data would yield more error
when generating such longer projections because they would expect stochastic behaviour
to exist in yearly sampled data as well. To prevent the model to overfit, we limit the LSTM
cells to be only four in comparison to the number of training samples in each variable. In
addition, we add significant dropout rate to prevent any uncontrolled overfitting.

Neural Network

LSTM Layer

LSTM Cell 2

LSTM Cell 1

LSTM Cell 3

LSTM Cell 4

FC1 FC2

CLIMATE
DATA

Preprocessing

Standard
Scaling

Tmax 

Tmin 

Tavg 

RH 

PPT

O
U
T
P
U
T

Inverse
Standard
Scaling

ReLU

Figure 2. Proposed LSTM-based model for modelling climate variability.

4. Results and Discussion

This section details the results observed and the corresponding experimental analysis
of the objectives.

4.1. Estimation of Climate Variability and Forecasting

The set of initial settings and hyper-parameter space assumed during the training
phase of the proposed LSTM-based framework for forecasting climate variables are illus-
trated in Table 4.

Table 4. Hyper-parameter space of proposed deep-learning-based architecture for the analysis and
forecasting of climate data.

Hyper-Parameters Space

Optimizer Adam
Learning rate [0.01, 0.1]
Baseline 1 LSTM layer, 4 LSTM cells
Fully connected layers 2
Regularization 60% Dropout on LSTM output
Input dimensions 10 × 1
Output dimensions 1 × 1
Generalization loss Mean squared error (MSE)
Epochs [50, 100, 200, 300, 500]
Batch size [8, 16, 32]
Convergence Early stopping

Initially, the data corresponding to each district comprise 39 years’ worth of annually
sampled data for each of five climate variables. The size of training window is m = 10
and the stride length is s = 1, yielding

(
39−(10)

1 + 1
)

feature vectors in each district in each
variable, each of which is 10 units long. There are a total of 22 districts under study. Hence,
the dimensions of feature vectors across all districts in each variable are 638 × 10. The ratio
of splitting training data, validation data, and test data was kept as 0.8:0.1:0.1 with the
dimensions of 528 × 10, 66 × 10, 66 × 10 samples, respectively. The model is trained for
500 epochs and the learning algorithm is set with Adam optimization for faster convergence.
Each input sample is m = 10 in the dimension specifying the previous 10 annual values
used to predict one futuristic estimate with a unit sliding window stride. Five different
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neural networks are thus trained for the five specified climate variables. The overall loss
and convergence patterns of each network are illustrated in Figure 3a–e. The overall mean
squared error (on normalized validation data) figures achieved on the proposed network
for Tmax, Tmin, Tavg, RH, and PPT variables are 0.0211, 0.0483, 0.0057, 0.0695, and 0.1022,
respectively. Since the generated predictions are conditional on the first 10 annual values
of each variable, the predictions are generated by the neural network model from the
year 1993 onward, until the year 2023. We proceed to provide a comparative analysis
of the proposed LSTM-framework for forecasting the climate variables with respect to
some benchmark econometric models (illustrated in Table 5) in terms of root mean squared
error (RMSE) and mean absolute error (MAE). We perform forecasting against the actual
unnormalized target values from 1993 to 2023 (including unnormalized train, test, and
validation data) across all the compared models, viz., LSTM, ARIMA(10,1,2) [76], simple
exponential smoothing [77] and Holt’s exponential smoothing [78] (smoothing parameters
of 0.3 and 0.5). Figure 4a–e showcase the variability patters and corresponding predictions
generated from the compared models in the region for each of the climate variables.

Table 5. Comparative tabulation of root mean squared error (RMSE) and mean absolute error (MAE)
between predicted values and target values in each model.

Model (→)
Name of Variable (↓) LSTM ARIMA

(10,1,2) SES HES

RMSE

PPT 0.293801 0.488456 0.552951 0.567089
RH 2.602121 3.55365 4.611147 4.955605
Tavg 0.413821 0.455526 0.399482 0.412566
Tmax 0.293187 0.539785 0.307205 0.298067
Tmin 0.974485 1.057636 0.948449 1.038631

MAE

PPT 0.230967667 0.38846 0.441161 0.442889
RH 2.129080667 2.854096 3.588261 3.975286
Tavg 0.324114 0.357876 0.316091 0.347007
Tmax 0.240407 0.432585 0.250983 0.249933
Tmin 0.771305333 0.821572 0.844976 0.816885

As can be seen from the results, the proposed LSTM-based architecture achieves a
considerable convergence and acceptable error. As seen from Figure 3a–e, the training loss
and validation loss almost coincide at convergence, suggesting that the LSTM-approximator
has a better fit to the distribution of climate data with respect to the compared models
(as shown in Table 5). We proceed to analyse the climate variability using the specified
neural network model by generating estimations of futuristic annual figures for all climate
variables averaged across districts.

4.2. Analysis of Exposure of the Studied Region to Climate Change

As reported from the results, an overall decrease in the annual maximum temperature
(Tmax) is observed during the period 1993–2023. It is worth noting that Tmax does not
represent an averaged number but a distribution of annually observed maximal temper-
ature values. Significant impacts are seen in Tmin and Tavg. Tmin is observed to have a
normal distribution during the years 1993–2023 with a deviation of about 1.05–1.28 ◦C,
and is observed to have an increasing trend. A similar observation was seen in [81]. On
the other hand, Tavg representing the average temperature is showing an increasing trend
from 1993 of about 0.8–1 ◦C with a variance of 0.07. It is seen that the trends of annual
relative humidity (RH) and annual precipitation (PPT) are increasing rapidly [82]. The
repercussions of a collective system of these interacting variables can have diverse effects
on the cropping framework across the spectrum. The extent of exposure is seen to vary
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across districts in the studied region. A heatmap representation of the studied region is
shown in Figure 5 which illustrates the exposure in the studied region.
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Figure 3. Loss plot of proposed LSTM−based network for studied climate variables. (a) Tmax (b) Tmin

(c) Tavg (d) RH (e) PPT.
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Figure 4. Variability and forecasting for studied climate variables. (a) Tmax (b) Tmin (c) Tavg (d) RH
(e) PPT.

4.3. Analysis of Sensitivity to Climate Change

Due to commercialisation and urbanisation, land holdings (QAVL) have shrunk across
the region. On such terrain, basic agricultural activities are undesirable, and it renders
stakeholders susceptible to climate change. The average landholding has been decreasing
over the years, exhibiting a −0.95 ha difference since 1983. The magnitude of sensitivity
of an area is directly proportional to its area under culturable waste lands (ACWL), and it
is reported to show a decreasing trend. The premise of increasing freshwater scarcity [83]
poses a threat to the populace that depends on water-demanding food crops (such as
rice [84]). The quantity of the area utilized for such an agricultural product along with the
associated population are, thus, susceptible. In the extension to this context, any long-term
change in climate would impress an impact on the hydrological regimes of an area with
consequent effects on its irrigation system, making water-dependent crops even more
sensitive. We witnessed an increase in the gross irrigated area (AGI) and net irrigated area
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(ANI) with district Leh having the largest area under its influence. We also observed that
the principal food crops in Jammu and Kashmir followed a decreasing trend since 1983.
Rice acreage is declining due to the large-scale conversion of the area into commercial,
residential, and horticultural fields (particularly apple orchards). Although the irrigation
system of apple is less complex, meeting the requirements of sufficient chilling hours is
essential for its sustainability. A long-term increase in Tmin threatens apple production. We
proceed to quantify the illiteracy rate (Rilliteracy) as a parameter of sensitivity because it
poses a hurdle in establishing mitigation measures and promoting awareness. Since the
districts of Jammu, Kashmir and Ladakh largely qualify as socially suburban, all of the
districts have average illiteracy rates (with district Budgam reporting the highest illiteracy
rate). Illiteracy is also an indirect indicator of unemployment and poverty scenario in the
district. Owing to all these factors, climate stress affects the populace that entirely depends
on its agricultural footprint. However, we report a declining percentage of agricultural
workers (Wagricultural) but an increasing percentage of agricultural labourers (Wlabourers),
with the highest percentage increase in district Kargil. Lastly, we analyse the role of
population characteristics with the objective of specifying the sensitivity of the area. In
densely populated areas, the distribution and availability of natural resources such as water,
food, and energy become more challenging. Dense populations are more susceptible to the
spread of climate-related diseases. In addition, social vulnerability can be higher in densely
populated areas, as these communities often face challenges in accessing resources, services,
and timely emergency response during climatic catastrophes. A region’s sensitivity is also
measured in terms of its BPL population (PBPL), both are positively correlated because of
lower access to strategic resources. It was observed that the Srinagar district, followed
by Bandipora, has the highest population density (Dpopulation) while district Leh has the
least. In this framework, Figure 6 illustrates a heatmap representation of the studied area
to quantify its district-wise sensitivity to climate variability.

Figure 5. Heatmap showing the exposure to climate change in the studied region across vari-
ous districts.
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Figure 6. Heatmap showing the sensitivity to climate change in the studied region across various
districts.

4.4. Analysis of Adaptation to Climate Change

The adaptive capacity of a system relies on various socio-economic elements, including
the progress of infrastructure, availability of essential resources, and span of literacy. Infras-
tructure development indicators, such as health and educational facilities, as well as road
density, play a significant role in determining the adaptation backbone of a region. Access to
technology, electrification, percentage of the female workforce, infrastructural/institutional
development, and literacy rate are its other essential indicators. Here, we proceed to discuss
the trends of significant adaptive capacity indicators. An analysis of data in our study
revealed a rise in regional cropping intensity (IC) [85] and irrigation intensity (II) across all
districts. Similarly, we saw an increase in the net sown area (Asown) in various districts. An
increase in livestock productivity is another positive indication of the adaptive capacity.
Since ancient times, livestock and their products have supplemented crop production,
provided means of sustenance during lean seasons, and improved resilience to climatic
extremes [86]. Livestock productivity increases with the increase in fodder crops (A f odder)
and it was observed that Kargil has the highest percentage of land under fodder crops,
Udhampur the lowest, while many districts lag behind this benchmark. On the other
hand, the districts in the Kashmir sub-region saw a slight decrease in forest cover, which is
otherwise effective in managing the micro-climate settings. This behaviour is attributed
to the rapid exploitation of the natural habitat. We have taken the area under walnut
(Awal) as an adaption measure as these are robust fruit crops that may survive adverse
weather conditions and reduce financial stress in the failure of field crops. Its cultivation
has expanded due to public understanding of its benefits (with Kishtwar leading the spec-
trum). In the next context, the noticeable increase in literacy rates could help bring about
preparation for and awareness of the impacts of climate change and help in developing
the corresponding mitigation strategies [87]. Similarly, with the reported increase in rural
electrification (Evillages) numbers, farming mechanisation could help in stressed areas by
maximising land utilisation. Various other indicators pertinent to housing, infrastructure,
and welfare, which help stakeholders in terms of financial stability and risk-coverage, have
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grown overall in the region. While the trends of all aforementioned indicators have been
reported for the overall region, some districts show relatively worse performances. A
heatmap representation is shown in Figure 7 that illustrates the relative performance of the
adaptive capacity among the districts in the studied region.

Figure 7. Heatmap showing the adaptive capacity to climate change in the studied region.

4.5. Categorisation of Districts on the Basis of Climate Vulnerability

The vulnerability to climate change reflects an aggregate effect of various exposure,
sensitivity, and adaptation parameters [18]. The Leh, Kathua, and Bandipora districts
demonstrated the highest variability in the climate variables, especially due to a higher rate
of change in precipitation and temperatures. As far as sensitivity variables are concerned,
the Budgam, Bandipora, and Ganderbal districts were found to be highly sensitive, mainly
due to higher illiteracy rates, population density, area under rice, area under apple, number
of agri-labourers, and net irrigated area. On the other hand, the Budgam, Ganderbal,
and Pulwama districts were found to be highly adaptive. Based upon the aggregation
of exposure, sensitivity, and adaptation variables as defined by Equation 1, the districts
Budgam, Bandipora, and Ganderbal were found to be the most vulnerable areas to climate
change, while as the Kargil, Rajouri, and Poonch districts were found to be the least
vulnerable due to various socio-economic factors and institutional measures. Furthermore,
the central part of Kashmir valley was found to be the most vulnerable sub-region, followed
by northern Kashmir, and then followed by southern Kashmir. Figure 8 illustrates a
heatmap representation of the overall vulnerability pattern in the studied region.

4.6. Impact of Climate Change and Agricultural Growth Model

An ordinary least squares-based estimation scheme was employed to determine
the coefficients of indicator variables (discussed in Equation (7)). Table 6 summarises
the estimates of these coefficients used in modelling agricultural growth [88] as a linear
regression function. The estimates of these coefficients help us realize the correlation of the
indicators with respect to agricultural growth. The variability in climate variables was seen
to have a serious negative influence on the agricultural growth modelled as a Ricardian
function (Equation (7)). The decreasing land holdings also show a significant negative
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impact on the growth. The determinant factor of this result is attributed to the increase in
annual minimum temperature (Tmin). The number of inputs, technology, and institutional
variables, including the public investment in agriculture, have significantly contributed
towards positive agricultural growth. The rural literacy rate was also found to be one of
the important variables, influencing agricultural growth, in a positive direction. These
findings advocate a holistic approach to reducing the negative influence of climate change
and impart resilience in the production system of the region.

Figure 8. Heatmap showing the vulnerability to climate change in the studied region across vari-
ous districts.

Table 6. Estimates of the coefficients pertinent to the agricultural growth model defined in Equa-
tion (7).

Coefficient
(Indicator) Value Standard

Error
Coefficient
(Indicator) Value Standard

Error

β0 17.075 4.039 β7 (QPBIA) 0.037 * 0.012
β1 (RRL) 0.225 * 0.058 β8 (QAC) 0.325 * 0.104
β2 (IC) 0.052 * 0.014 β9 (Tmax) −0.499 0.458
β3 (QT) 0.008 0.026 β10 (Tmin) −0.189 * 0.066
β4 QTE 0.026 0.104 β11 (PPT) −0.170 * 0.079
β5 (ANI) 0.070 * 0.024 β12 (T̃max) 0.010 0.007
β6 (QAVL) −2.268 * 0.030 β13 (T̃min) −0.011 * 0.004

β14 (P̃PT) 0.001 0.001

R2 0.879
* denotes significance at 0.05 or a better probability level.

5. Conclusions

This study conducted an empirical investigation in the region of Jammu, Kashmir,
and Ladakh with the aim of assessing its agricultural growth, modelled as a linear regres-
sion function under the influence of the variables of climatic stress and socio-economic
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indicators. The estimated coefficients detail the underlying dependence of agricultural
performance on various variables that could help in establishing proactive/mitigation
strategies in the agricultural paradigm against climate variability. We propose a framework
for quantifying the vulnerability of twenty-two sub-regions (districts) of the studied region
utilizing min–max normalization-based ranking scheme that helps to identify the underly-
ing hazardous indicators in a region and its subsequent resilience factors. The sub-regions
were categorised according to the indexed values that provide an understanding of the
causes and prospective adaptive policies towards the threat of climate variability. An
analysis of trends in climate variability was performed with the comprehensive detailing
of region-level effects, using an LSTM-backbone model. Our proposed approach yields
significant accuracy in predicting the annual estimate of five climate variables that have
a direct relationship with the agricultural footprint in the region. Our work provides a
baseline for all prospective studies towards the quantification of the region’s susceptibility
to climate change.
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Appendix A

Whilst undertaking the third objective of this study, which pertains to modelling
the agricultural growth function as a linear combination of socio-economic and derived
exposure variables (as defined in Equation (7)), some diagnostic tests were performed
on the framed model comprising the empirically selected set of variables, determining
whether a linear estimator could be considered for modelling this function. The results of
the tests were discussed in the following subsections:

Appendix A.1. Test of Auto-Correlation of Residuals (Durbin–Watson Test)

We leverage the Durbin–Watson statistic (TDW) to test the presence or absence of auto-

correlation in the residuals, defined as TDW =
∑n

i=2((yi − ŷi)− (yi−1 − ŷi−1))
2

∑n
i=1(yi − ŷi)2 = 2(1− ĝ),

where ĝ is a parameter of the function, yi and ŷi denote the observed and predicted values of
the ith response variable, ĝ denotes sample auto-correlation, and 0 ≤ TDW ≤ 4. Considering
the null hypothesis (H0) that residuals are auto-correlated, while the residuals are not auto-
correlated in the alternative hypothesis (H1), the Durbin–Watson statistic recorded the
value of 2.09 (very close to 2), accepting the alternative hypothesis. The observed statistic
indicates that there was no significant correlation among the residuals, which can thus be
treated as independent.

We proceed to extend the deduction using Ljung–Box auto-correlation test, against
the same set of hypotheses. The statistics and p-values in across lags = {1, 2, 3, ..., 30} are
illustrated in Table A1. Since the p-value > 0.05, then the null hypothesis is accepted.
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Table A1. Results of Ljung–Box auto-correlation test.

Ljung–Box (LB) Test

Lag-value 1 2 3 4 5 6
LB statistic 2.013155 2.03636 5.550541 7.324725 7.352519 7.353024
LB p-value 0.155941 0.361252 0.135647 0.119691 0.195715 0.289429

Lag-value 7 8 9 10 11 12
LB statistic 10.32041 10.99063 11.23732 11.26712 12.70028 12.88068
LB p-value 0.171132 0.202231 0.259792 0.337089 0.313365 0.377773

Lag-value 13 14 15 16 17 18
LB statistic 13.76404 14.81549 16.67063 16.67072 16.72562 17.02409
LB p-value 0.390669 0.390883 0.338932 0.407208 0.4731 0.521449

Lag-value 19 20 21 22 23 24
LB statistic 17.1546 17.17511 17.5885 18.89323 18.89363 18.94258
LB p-value 0.579395 0.641575 0.674875 0.651912 0.707381 0.755045

Lag-value 25 26 27 28 29 30
LB Statistic 20.37629 20.54265 21.74614 22.27702 24.35248 27.60363
LB p-value 0.726819 0.765169 0.750163 0.768308 0.711367 0.591433

Appendix A.2. Test of Collinearity (Variance–Inflation Factor Statistic)

The variance–inflation factor (TVIF) is used to measure the extent to which the variance
of the estimated regression coefficient is increased due to collinearity. The results are
tabulated in Table A2.

Table A2. Variance–inflation factor test results.

Indicator Tolerance TV IF Indicator Tolerance TV IF

RRL 0.351 2.845 QAC 0.271 3.687
IC 0.977 1.023 Tmax 0.665 1.503
QT 0.209 4.782 Tmin 0.317 3.149
QTE 0.189 5.277 PPT 0.488 2.047
ANI 0.242 4.126 T̃max 0.205 4.87
QAVL 0.234 4.268 T̃min 0.209 4.784
QPBIA 0.312 3.197 P̃PT 0.426 2.343

TVIF values above indicate the presence of collinearity, with higher values suggesting
stronger collinearity. Typically, TVIF values above 5–6 are considered indicative of a
higher degree of collinearity and as per the results the TVIF values (and the corresponding
tolerance) are in the justifiable range that showed a minor spectrum of multicollinearity
between variables.

Appendix A.3. Test of Normality (Shapiro–Wilk Statistic)

We test the null hypothesis (H0) against an alternative hypothesis (H1) defined as
H0: residuals are normally distributed.
H1: residuals are not normally distributed.
The required test statistic (TSW) is defined as

TSW =

(
∑k

i=1 an−i+1(yn−i+1 − yi)
)2

∑k
i=1(xi − x)2

where k =
n
2

, when n is even and k =
(n− 1)

2
, otherwise. The distribution from yi denotes

the sorted values of the sample distribution (xi). The values of TSW are compared to the
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benchmark threshold values (TSWλ) at significance level (λ) framed in [89]. If the calculated
value of TSW is less than TSWλ, then H0 is rejected, or otherwise accepted. The parameters
of the statistic are illustrated in Table A3.

Table A3. Results of Shapiro–Wilk test to check normality of residuals.

Indicator TSW p-Value Significance

AG 0.763 0.231 NS
RRL 0.952 0.166 NS
IC 0.925 0.069 NS
QT 0.878 0.072 NS
QTE 0.921 0.082 NS
ANI 0.951 0.152 NS
QAVL 0.925 0.079 NS
QPBIA 0.944 0.096 NS
QAC 0.822 0.100 NS
Tmax 0.963 0.326 NS
Tmin 0.979 0.763 NS
PPT 0.983 0.875 NS
T̃max 0.982 0.861 NS
T̃min 0.944 0.098 NS
P̃PT 0.923 0.065 NS

NS denotes non-significant.

Shapiro–Wilk test statistic was found to be non-significant (p-Value > 0.05) at 5% level
significance, indicating that the assumptions of the randomness and normal distribution of
the residuals were satisfied.

Appendix A.4. Test of Homoscedasticity: White Test and Breusch–Pagan–Godfrey Test

To verify the presence of homoscedasticity in the residuals, we test the null hypothesis
(H0) against the alternative hypothesis (H1) defined as

H0: homoscedasticity is present.
H1: heteroscedasticity is present.
To concede to the appropriate hypothesis, we undertake the White test and Breusch–

Pagan–Godfrey test, the results of which are specified in Table A4.

Table A4. Results of the White test and the Breusch–Pagan–Godfrey Test.

White Test Breusch–Pagan–Godfrey Test

Test statistic 7.0766 Lagrange multiplier statistic 7.9956
Test statistic p-value 0.2150 p-value 0.8895
F-statistic 1.4764 F-statistic 0.4044
F-statistic p-value 0.2314 F-statistic p-value 0.9532

For the White test analysis, since the p-value > 0.05, we accept the null hypothesis. The
same conclusion was obtained for the Breusch–Pagan–Godfrey test, hence it is conceded
that the residuals are homoscedastic.
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