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Abstract: Modeling and control theory applied to precision agriculture irrigation systems have been
essential to reduce water consumption while growing healthy crops. Specifically, implementing
closed-loop control irrigation based on soil moisture measurements is an effective approach for ob-
taining water savings in this resource-intensive activity. To enhance this strategy, the work presented
in this paper proposed a new set of water management strategies for the case in which multiple
irrigation areas share a single water supply source and compared them with heuristic approaches
commonly used by farmers in practice. The proposed water allocation algorithms are based on tech-
niques used in real-time computing, such as dynamic priority and feedback scheduling. Therefore,
the multi-area irrigation system is presented as a resource allocation problem with availability con-
straints, where water consumption represents the main optimization parameter. The obtained results
show that the data-driven water allocation strategies preserve the water savings for closed-loop
control systems and avoid crop water stress due to the limited access to irrigation water.

Keywords: real-time computing; precision agriculture; closed-loop irrigation; water efficiency;
feedback scheduling

1. Introduction

According to the Food and Agriculture Organization (FAO) of the United Nations,
it is estimated that around 70% of all water withdrawal worldwide is due to agricultural
applications [1], contrasting the industrial sector at 20% with municipalities’ local infras-
tructure for services and domestic water use taking the remaining 10%. This seems a logical
percentage distribution given that around 2000 to 3000 L of water are required to grow
food per person daily [2]. Nonetheless, what is more concerning regarding this volume of
water is that 93% never returns to its original source, signifying an apparent complete loss
of the resource.

Irrigation efficiency refers to the ratio of water the crop uses to the total amount
of water extracted from the source [3]. Different factors affect irrigation efficiency, like
water run-off, evaporation, and deep percolation. Water efficiency mostly depends on
the hydraulic infrastructure and irrigation method, while surface irrigation has a water
efficiency from 50% to 65%, sprinklers range from 60% to 85%, and drip irrigation from
80% to 90% [4]. Surface irrigation implies surface evaporation, which contributes to water
loss. Sprinkler technology reduces water loss but, still, the applied water evaporates off the
leaves of the crop canopy. In contrast, drip irrigation delivers water directly to the plant’s
root zone, reducing losses due to run-off and evaporation [5]. In any case, water efficiency
can be considerably improved when a sensor-based smart irrigation system is installed
over the hydraulic infrastructure [6].

Notwithstanding, food production is stated to rise in the following ten years and
for many decades to come. In [7], the author states that the demand for food and agri-
cultural products is projected to further increase by up to 70% by 2050 in order to satisfy
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the requirements for an estimated 10 billion person population by then. That, in addition
to the growing effect of climate change on water shortage worldwide, can have terrible
consequences in the near future regarding resource allocation and availability for agri-
cultural purposes. Vulnerable communities in arid regions would potentially suffer the
consequences of water scarcity and global warming more [8]. Moreover, severe social
conflicts have already occurred in rural communities due to the unfair assignation of water
resources for agricultural activities [9]. Therefore, technology and data-driven solutions
for water management are required to improve resource efficiency, reduce water waste,
and contribute to sustainable agriculture practices [10].

The waste and overuse of water resources for crop irrigation is a relevant topic that
has been addressed by precision agriculture from different perspectives [11]. In this sense,
automatic irrigation systems aim to optimize water utilization while helping farmers to
improve crop yields by providing the right amount of water, at the right time, in the right
place in the field [12]. To control the amount of water used during irrigation, typically
these systems conduct measurements of soil moisture levels (volumetric water content),
environmental parameters (solar radiation, wind speed, air temperature, air humidity),
and crop conditions (canopy temperature, chlorophyll content, trunk diameter) [6].

Efficient water management is typically achieved by implementing closed-loop irriga-
tion, where real-time soil moisture measurements gathered from large crop areas determine
when to activate irrigation. Wireless sensor networks provide the communication in-
frastructure for the devices to transmit and receive data. A control device receives soil
moisture data from sensors, executes a control algorithm, and activates or deactivates
the irrigation valves to determine how much water to apply to the crops. In addition,
the control unit may receive complementary information, such as environmental parame-
ters and crop conditions, to improve algorithm accuracy using model-based estimations.
The strategies to implement the algorithms are mostly based on classical and modern con-
trol theories like on-off control [13], PID (proportional-integral-derivative) control [14], and
MPC (model predictive control) [15,16]; however, recently artificial intelligent approaches
such as fuzzy logic [17–19], machine learning [20,21], and multi-agent systems [22,23] have
gained the attention of the research community due to the initial promising results in the
area of data-driven agriculture. However, most works on closed-loop irrigation consider
one crop and a single irrigation area without water constraints. Therefore, they usually
assume full water availability, which in practice is not always true, especially in arid regions
where water management is a priority for sustainable and economically profitable crops.

Real-time systems refer to computing devices that react within precise time constraints
to events in the environment [24]. Around this concept, different algorithms have been
developed mainly within the scope of operating systems theory, where multiple control
tasks are simultaneously executed, sharing common resources [25]. In these systems,
the allocation of resources is commonly formulated as a constrained optimization problem,
where the aim is to maximize the benefits of control performance subject to efficient use of
the available resources. Real-time computing for control systems has been deployed over
various fields of industry and services like automotive systems, mobile robotics, smart grids,
gas and water distribution, and food and petrochemical industries, among others [26].

The work presented in this paper integrated modeling and control theory with real-
time computing to develop dynamic water allocation algorithms for precision agriculture,
considering different irrigation areas with different characteristics, such as crop types, soil
conditions, and water needs. Under this scenario, water availability is constrained and can
only be supplied to one irrigation area at a time. Experimental data show that dynamic
resource allocation in multiple irrigation areas avoids stressed crops and improves water
utilization compared to the empirical approaches commonly used by farmers.
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2. Materials and Methods
2.1. Irrigation Dynamics

An irrigation area can be modeled as a finite two-dimensional space where vegetation
is to be raised, with water being the primary input resource for the system. Other relevant
physical variables that can be considered in the analysis of the crop’s growth include, but
are not limited to, soil physical characteristics (texture, structure, drainage), environmental
parameters (temperature, air humidity, solar radiation, wind speed), and crop attributes
(type of crop, development stage, plants health).

A single variable that can show the irrigation’s overall performance concerning water
usage is the soil moisture level θ(t). As evidenced by its name, it measures the water in the
soil. Soil moisture data are obtained by sensors that measure the volumetric water content
VWC, which is defined as the ratio of water volume VW(t) to the unit volume of soil Vs(t).
Therefore, soil moisture can be defined as

θ(t) =
Vw(t)
Vs(t)

. (1)

Even though irrigation dynamics present non-linear behavior, it is common to ap-
proximate the system as a linear model divided into three main operating zones according
to normalized soil moisture levels [15]. As illustrated in Figure 1, these three areas are
denoted as

1. Gravitational (water saturation zone);
2. Available (water available in the root crop zone);
3. Unavailable (hydric stress region).

Figure 1. Water content zones according to the soil moisture level, figure adapted from [27].

In the first workspace region, soil cannot retain water which is allowed to drain freely,
provoking a significant amount of water waste. The second operating region consists of a
state where the soil retains water and it is available for the crops. In the third area, there
is not enough water available; at this point, visible damage can become apparent to the
vegetation and, if not treated, can lead to crop loss. These three zones are exemplified in
Figure 2, where it can be noticed that soil moisture dynamics are different for each region,
and the two irrigation events rapidly raise the volumetric water content.
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Figure 2. Soil moisture dynamics for an irrigation system, figure adapted from [15].

Normalized soil moisture uses the maximum allowable depletion (MAD) as a reference
level and is defined as

θN(t) = θ(t)−MAD, (2)

where MAD specifies the maximum soil water deficit that the crop may support without
experiencing any water stress. Typically, the MAD level is located at 50% of the total
available water capacity in the rooting zone [28]. Table 1 illustrates typical MAD values
and maximum root zone depths for selected crops. As for the field capacity (FC), their
volumetric water content percentage depends on the soil texture with values form 30% to
40% for silt loam, clay loam, and silty clay loam types of soil [27].

Table 1. Percentage values for maximum allowable depletion (MAD) and ranges of root depth for
common crops. Data obtained from Allen et al. (1998) [29].

Crop MAD (%) Root Depth (m)

Alfalfa 55 1.0–2.0 m
Apple 50 1.0–2.0 m
Cotton 65 1.0–1.7 m
Maize 50 0.8–1.2 m
Pecan 50 1.7–2.4 m

Green pepper 45 0.5–1.0 m
Potato 35 0.4–0.6 m
Tomato 40 0.7–1.5 m

Turf grass 50 0.5–1.0 m
Wheat 55 1.0–1.5 m

Closed loop irrigation aims to keep soil moisture above MAD and below FC level; this
is an optimal spot for the stability of the crop’s growth since it avoids crop hydric stress
and water waste.

2.2. Irrigation Model

Based on the previous observations, a linearized model at the operating points is
proposed; it is important to base the irrigation dynamics on experimentally-confirmed
differential equations that allow for a proper realization of the input–output relationship
for the system. A model solely based on irrigation as input is too ideal to execute according
to the expected outcomes. Therefore, another humidity-related environmental factor
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must be added to the equation. This second time-dependent variable will be reference
evapotranspiration eto(t). It can be inferred as the amalgamation of the evaporation and
transpiration processes that the vegetation may suffer and it can be obtained using weather
variables (solar radiation, wind speed, air temperature, and relative air humidity) according
to the FAO Penman-Monteith method [29]. Thus, it accounts for the vaporization of the
moisture from the soil surface through heat transfer mechanisms such as convection and
radiation from the immediate environment and it also takes into consideration the loss
of water from the plant tissues through the stomata. The model can be enhanced by
recognizing the variations of soil moisture with respect to time. This new variable, θ̇(t),
should be equivalent to the difference of humidity inlets minus the outputs of liquid matter,
according to the law of conservation of matter.

Although a realistic model could employ dozens of variables, the simplest of them
all are sufficient in many cases, including the scenario in which the climate is dry with
minimum rainfall (which is the circumstance in which the eto(t) data were collected),
a straightforward equation can take the following form via the work of [30]:

θ̇(t) = c1ir(t) + c2r f (t)− Kceto(t)− dp(t), (3)

where ir(t) and r f (t) represent water inflow from irrigation and rainfall since, in arid
regions, rainfall does not have a significative impact, then coefficient c2 is zero, while c1
represents the irrigation efficiency which depends on the hydraulic infrastructure with
values that range from 0.3 to 0.9 and may vary considerably from one irrigation area
to another. Crop coefficient Kc in conjunction with the eto(t) integrates the actual crop
evapotranspiration, Kc depends on the crop type and crop growth stage, and the reference
value of 1.0 corresponds to plain grass crop. Finally, dp(t) stands for the effects of deep
percolation, which is the gradual descent of surface water to underground levels.

It is important to remark that the effect of irrigation is not immediate and thus a time
delay τ can be considered in the expression. This time delay depends on the depth location
of the sensors but also soil compactness level. As for the deep percolation, as it can be
inferred from the soil moisture levels in the ground, it can be defined as being proportional
to θ(t). Consequently, the soil water balance model can be re-written as

θ̇(t) = c1ir(t− τ)− Kceto(t)− c3θ(t), (4)

where c3 denotes the proportionality of the soil moisture to the deep percolation effect.
Now, (4) can be represented as a second-order state space model in the form of

ẋ(t) = Ax(t) + Bu(t), (5)

where A, B ∈ R2×2 are the state and input matrices, which incorporate coefficients c1,
c3, and Kc, and they can be experimentally obtained from measurements per crop area.
The state vector x(t) and the input vector u(t) are respectively defined as

x(t) =
[

θ(t)
δ(t)

]
(6)

and

u(t) =
[

ir(t− τ)
eto(t)

]
, (7)

where δ(t) = θ̇(t) and denotes the dynamic of the soil moisture variations.

2.3. Model Validation

Over 45 days, data were collected from four different irrigation areas with different
crop types, irrigation systems, and soil characteristics, as denoted in Table 2.
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Table 2. Irrigation areas characteristics used for data collection.

Crop Type Crop Area Size Irrigation System Soil Texture

Green pepper 21 m × 8 m Drip irrigation Silt loam
Wheat 21 m × 8 m Drip irrigation Silt loam
Pecan 45 m × 12 m Sprinkle irrigation Clay loam
Maize 18 m × 8 m Drip irrigation Silty clay loam

As depicted in Figure 3, the irrigation areas were monitored with a solar cell-powered
data acquisition system that sensed the crop soil moisture level every minute from three
volumetric water content sensors (10HS Sensor from Meter Group), solar radiation (PYR
Sensor from Meter Group), wind speed (Davis Cup from Meter Group), air temperature
and relative humidity (VP-4 Sensor from Meter Group), and water consumption (Flow-Sync
from Hunter Industries) through a wireless sensor network as described in [31].

Figure 3. Evaluated irrigation areas.

Coefficients values for matrices A and B from Equation (5) were experimentally ob-
tained to model the soil moisture dynamics for each evaluated area properly. The estimation
algorithm proposed by [15] was used to create a linear dynamic state space model for each
operating zone (gravitational, available, and unavailable). Figure 4 shows the correlation
between the estimated normalized soil moisture values calculated from the model θ̂N(t)
and the normalized measured soil moisture values obtained from the sensor readings θN(t)
for a specific crop. Irrigation flow ir(t) is expressed in m3/mm and reference evapotranspi-
ration eto(t) in mm/day. Correlation results showed that the identified model adequately
captured the irrigation dynamics for the crop.



Sustainability 2023, 15, 11337 7 of 14

Figure 4. Validation results for the system identification.

Once the proposed irrigation model was experimentally validated with four different
crops, an optimization problem was formulated to evaluate the various water management
strategies for a case where multiple irrigation areas share a water supply source.

2.4. Optimization Problem

For real-time systems, control performance optimization and efficient use of the
available resources are two key elements in the design of resource-constrained control
applications [24]. This paper analyzed the scenario in which four irrigation areas with
different crops compete for water supply. The proposed algorithms try to solve a water
management optimization problem in order to minimize water consumption and crop
hydric stress subject to the constraint of water availability, which can be defined as

minimize J =
1
n

n

∑
i=1

(Jci + Jsi ) (8)

subject to
n

∑
i=1

ci
hi
≤ Ure f , (9)

where n is the number of irrigation areas, J is the cost function which integrates water
consumption Jc and crop hydric stress Js for the i area. Also, ci is the irrigation time
required to move soil moisture from the low threshold to the high threshold for each
specific area and hi is the task period which represents the deadline before soil moisture
reached stress levels. Finally, Ure f is the required water utilization level for the entire group
of n irrigation areas.
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Cost functions for water consumption and hydric stress are respectively defined as

Jc =
1

tdays

teval

∑
k=1

irk (10)

Js =
100
teval

teval

∑
k=1

sk, (11)

where teval is the total number of minutes for the 45 days evaluation period. Jc is the daily
water consumption in m3/day, while Js is the percentage of time that the crop suffers from
hydric stress; hence, s corresponds to the total time the crop soil moisture level is under the
maximum allowable depletion level, i.e., θN < MAD.

Figure 5 shows the evaluated scenario, where a single water source supplies irrigation
to only one area at a time by activating the electro-valves (actuators) while the sensors
conduct periodic soil moisture and environmental measurements. The water management
algorithm runs in the controller to schedule the irrigation events for the areas.

Figure 5. Irrigation system for four areas.

2.5. Evaluated Algorithms

A total of six algorithms were evaluated for a simulation time of 45 days. The eval-
uation was conducted through a simulation implemented in the Python programming
language. The first algorithm considers the ideal case where no water constraint is consid-
ered; each irrigation area receives water immediately when needed. Then, two heuristic
irrigation algorithms based on time-partitioning schemes and three data-driven techniques
based on real-time control were considered in the analysis.

1. Full-Satisfaction Irrigation (FSI): This ideal case was used as a reference, where no
water constraint was applied. If the moisture level is found below some established
level MAD, it is time for irrigation. The input signal stops when the soil moisture
reaches a certain ceiling FC. IrrValue represents the flow in m3/min provided by
the hydraulic system when the electro-valve is activated. Therefore, ir(t) has only
two possible values: {0, IrrValue}. The control law can be summarized as an on–off
hysteresis controller with full water availability:

ir(t) =

{
IrrValue, θN(t) < MAD
0, θN(t) > FC.

(12)
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2. Time Partitioning Irrigation (TPI): In this heuristic algorithm, a time slot is assigned to
each area; during this time period, the area is irrigated until field capacity is reached.
Let Ti be the period of time placed in the i-th order where area i can be irrigated.
The irrigation cycle is formed by T = (T0, . . . , Ti, . . . , Tk). Once Tk is over, the circle
repeats itself. Irrigation on area i cannot occur if, at time t, t /∈ Ti. Therefore,

ir(t) =

{
IrrValue, (t ∈ Ti) ∧ (θN(t) < MAD)

0, (t /∈ Ti) ∨ (θN(t) > FC).
(13)

3. Greedy Time Slotting (GTS): Like TPI, irrigation is divided into fixed time slots in a
predetermined order. The main difference is that to recompense the expected stress
during the periods of no irrigation, watering will be forced as long as t ∈ Ti. Therefore,
the proposed control law is

ir(t) =

{
IrrValue, t ∈ Ti

0, t /∈ Ti.
(14)

4. Mutual Exclusion Resource Locking (MERL): In this data-driven algorithm analog
to a first-come, first-serve scheme, the first land lot under the MAD level will gain
access to water for irrigation. While it is being watered, no other crop can be irrigated.
It deals with the scenarios of access collision like in the dining philosophers’ problem
proposed by [32]. Different processes (irrigation areas) may require access to a shared
resource (water supply) in this strategy. Then, to control concurrency and avoid
deadlock, a mechanism (algorithm) allows access only if the resource is available; if
not, the process will wait a random period of time to check if the resource is now
available. It is not a perfect solution but, given a good random seed, the probability
that different processes keep colliding becomes null in practice. The proposed control
law is defined as

ir(t) =

{
IrrValue, (θN(t) < MAD) ∧ (water = available)
0, (θN(t) > FC) ∨ (water 6= available).

(15)

5. Earliest Estimated Deadline First (EEDF): Given that an available mathematical model
is obtained through system identification techniques [33], an approximate behavior of
the real plant can be estimated. To determine which irrigation area to give the most
priority, one can compute which one has the sooner deadline and define a priority
ranking among the competing areas. The deadline is calculated by estimating the
time for the area to reach the MAD threshold since, below this level, the crop will
suffer from hydric stress. In this dynamic scheduling algorithm, the highest priority is
assigned to the task with the earliest deadline to avoid water stress. Once the area has
access to the water supply, no preemption is allowed until the irrigation area reaches
the field capacity level. The proposed control law is defined as

ir(t) =

{
IrrValue, (h ∈ min{hi}) ∧ (water = available)
0, (h /∈ min{hi}) ∨ (water 6= available).

(16)

6. Dynamic Feedback Priority (DFP): This resource-aware algorithm is based on the
feedback scheduling concept, where the resource manager continuously monitors
the soil moisture level for all the areas. Similarly to the EEDF strategy, the water
resource is assigned to the irrigation area based on how close the moisture level is
with respect to the MAD threshold to avoid water stress. Here, the difference is that
the resource manager may preemptively interrupt the current irrigation area anytime
if it is determined that another area is in a more critical stage, i.e., closer to the water
stress limit. Unlike the previous scheduling technique, where the priority will be
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calculated after finishing the irrigation, in this new dynamic feedback algorithm,
the priority is continuously estimated for each sample period,

ir(t) =

{
IrrValue, h ∈ min{hi}
0, h /∈ min{hi}.

(17)

3. Results and Discussion

The evaluation results in terms of water stress percentage Js and water consumed
daily Jc are displayed in Figure 6, with a legend to signal the four individual areas and
their performances. The left side belongs to an ideal case and the empirical methods, while
the right side stands for the proposed data-driven techniques.

(a) (b)

(c) (d)

Figure 6. Numerical results of the 45-day simulation period for each irrigation area following the
scheduling policies and the constraints imposed into the system. (a) Water stress on each area for the
ideal case and the heuristic algorithms. (b) Water stress on each area for the data-driven algorithms.
(c) Irrigation water consumed daily in m3 by area for the ideal case and the heuristic algorithms.
(d) Irrigation water consumed daily in m3 by area for the data-driven algorithms.

The ideal scenario of unlimited water is present in the FSI algorithm. Under there,
every time the sensed moisture goes below the permitted threshold, irrigation is activated
regardless of the state of the other lots. When it surpasses the upper threshold, irrigation
stops. Therefore, as expected, the crops spend practically no time under stress even though
it may consume a surplus of water.

Otherwise, TPI irrigates only when necessary during the selected time slots permitted
periodically. One can infer that, although it will save a good amount of resources, the plant
will be placed under constant stress for most of the study horizon. If one agrees to irrigate
heedless of the state variables during the allowed period, the expected result is a reduced
level of water stress due to the incoming stagnant water to alleviate the climate in the
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subsequent periods at the expense of an augmented degree of resource usage. GTS is a
technique commonly used by farmers to reduce crop water stress, since they use the soil
to store water for the future; however, soil capacity to store water is very limited and this
considerably increases the water waste.

MERL enables the capacity to emulate the limitless resource case’s response while
setting boundaries on how much water can be used in practice. Hence, the overall per-
formance under this algorithm is similar to FSI. Earliest deadline scheduling functions
similarly to the time-division multiplexed algorithms, with a considerable upgrade. EEDF,
by always following the then-closest area to moisture fulfillment, ensures that the periods
between irrigation will always be the shortest ones possible. However, three crops suffered
from water stress under this algorithm and only one avoided the hydric stress; this can be
explained by the no preemption mechanism imposed by the algorithm.

Finally, the DFP algorithm obtained similar results to the MERL approach. This is
because it is essentially a straight line along the lower threshold of the moisture level
percentage. Nonetheless, it is excellent yet surprising news. The only mode in which one
can achieve this kind of constant response is by periodically placing marginal magnitudes
of the input at a fast and constant rate. This sort of reaction is the same as in drip irrigation,
where the water is placed drop by drop into the root area. This method minimizes the
erosion and evaporation of water commonly found in sprinkler irrigation while saving
up to 60% of the water used and increasing crop yield by over 50% (see [34]). At first
sight, the data-driven approaches seem to improve the extent of hydric stress in submerged
areas. Also, they present a more organized and fair way to distribute the resources with the
correct constraints in a real land lot.

For a deeper evaluation, Table 3 presents the obtained cost function results as defined
by Equations (10) and (11).

Table 3. Cost function results of the evaluated algorithms.

Algorithm Jc Js

FSI 2.668 0.058

TPI 1.809 43.852
GTS 14.080 22.762

MERL 2.660 2.593
EEDF 1.827 41.808
DFP 2.616 4.605

It can be observed that, even though the heuristic approaches tend to the highest and
lowest values in both categories, the ability of the data-driven methods is more balanced
and they produce an overall better performance. It is clear that, with the exception of EEDF,
the plant suffers from much less hydric stress than with the heuristic methods. Additionally,
at most, MERL and DFP allowed just under 5% water stress, while TPI and GTS put the
crop under stress for more than 20% the duration of its intended growth.

Additionally, water consumption stays below the ideal scenario of FSI, whose only
true competitor is time partitioning schemes that increment the water stress exponentially,
making them unsuitable for actual applications even if they are already used in practice by
most farmers due to their experience and background. Of all the above, the best irrigation
strategies that one can and should implement are the mutual exclusion resource locking
(MERL) and the dynamic feedback priority (DFP), since they provided a balance of avoiding
water stress while reducing water consumption in comparison with the heuristic TPI and
GTS approaches. The first one shows how arbitrarily blocking the access of some agents
to the main hydration supply can diminish the expenses and protect the vital resources
in play while at the same time keeping the areas in good condition. The latter has more
rewards that safeguard water utilization in this sector and consider the conservation of the
immediate environment.
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The obtained results have demonstrated that data-driven water management strategies
reduce irrigation water consumption while avoiding water stress on crops in conditions
where multiple crop areas share a water supply. However, the drawbacks of implementing
these automated solutions reside in the installation and maintenance cost, which most
farmers are unwilling to accept if the return on investment is not clearly defined. To il-
lustrate this, just the acquisition cost and the proper installation and maintenance of soil
moisture sensors have a high level of complexity [31]: sensors require individual off-line
calibration for the specific soil texture to reach a reliable accuracy, then installation must
be carefully conducted to avoid soil air gaps to obtain representative readings; also, at
least three sensors are required for an irrigation area and it is a good practice to unearth
sensors each year for re-calibration. Since soil moisture sensor is, so far, the element on
which closed-loop irrigation is based, lowering costs and efforts must be a priority to make
sensor-based automated irrigation a feasible option for farmers.

4. Conclusions

A set of dynamic water allocation algorithms was proposed to optimize water con-
sumption and avoid hydric stress for an agricultural irrigation system composed of multiple
areas and a single water source. The dynamics of each area were modeled to represent
different crops with different soil properties. The water management algorithms were inte-
grated with closed-loop controllers based on soil moisture measurements for each irrigation
area. Simulation results based on experimental data showed that the proposed strategies
obtained a similar performance regarding water savings and avoiding water-stressed
crops to when total water is available. They provided superior results compared with
the heuristic strategies commonly used by farmers in practice. The proposed data-driven
algorithms were formulated as a real-time computing optimization problem with resource
constraints. The results encourage looking for other data-driven techniques to be applied
in irrigation management. Water management for agricultural activities may have different
perspectives: environmental, social, and economic, and the use of data-driven solutions
may positively impact sustainable agriculture practices. Therefore, future works consider
implementation in vulnerable communities where farmers share common water resources.
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Abbreviations
The following abbreviations are used in this manuscript:

DFP Dynamic Feedback Priority
EEDF Earliest Estimated Deadline First
FC Field Capacity
FSI Full-Satisfaction Irrigation
GTS Greedy Time Slotting
TPI Time Partitioning Irrigation
MAD Maximum Allowable Depletion
MERL Mutual Exclusion Resource Locking
PWP Permanent Wilting Point
VWC Volumetric Water Content
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