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Abstract: Increasing the injection pressure has a significant impact on atomization and combustion
characteristics. Spray tip penetration serves as a vital parameter for fuel injection control and engine
structure design. However, a reliable spray tip penetration model for ultra-high-pressure injection
is currently lacking. To address this gap, this study establishes a theoretical 0-dimensional model
for spray tip penetration under ultra-high pressure (300 MPa) conditions. The model is based on
the conservation of momentum and phenomenological models. The new model divides spray tip
penetration into two stages: Pre-breakup and post-breakup, with fuel injection rate and spray cone
angle used as model inputs. To validate the model, high-speed camera observations and constant-
volume chamber experiments are conducted to investigate the spray characteristics. The results
indicate that the new spray tip penetration model demonstrates improved predictive accuracy across
all experimental conditions.

Keywords: diesel fuel; spray penetration model; ultra-high injection pressure; 0-dimensional model

1. Introduction

Sustainability is a critical global issue (renewable energy, environmental conservation,
reducing carbon emissions, etc.), and various research efforts are being made to address
it [1–3]. Their work aims to develop innovative technologies, improve resource efficiency,
and promote sustainable practices. Diesel engines are extensively utilized in various indus-
tries, including agriculture, construction, and shipbuilding, due to their significant torque
and excellent economic performance [4–7]. However, in recent years, the engine industry
has encountered significant challenges due to the continuous enhancement of emissions
and efficiency [8–10]. To address these challenges, numerous advanced technologies, such
as homogeneous charge compression ignition (HCCI) and low-temperature combustion
(LTC), have been implemented to improve combustion performance and achieve cleaner
combustion in diesel engines. The implementation of these technologies has led to a
continuous increase in the injection pressure of diesel engines [11,12]. Currently, diesel
engines operate with injection pressures surpassing 250 MPa. Meanwhile, previous studies
on spray have shown that for direct-injection diesel engines, combustion and pollutant
formation are largely influenced by the dynamics of spray and air mixing. Higher injection
pressures directly affect diesel atomization and mixing performance [13,14]. Moreover,
under high-load conditions, faster spray penetration contributes to improved air utilization
and combustion rates [15]. Therefore, increasing injection pressure and reducing noz-
zle diameter are effective methods to enhance fuel atomization and accelerate mixing in
diesel engines.
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The 0-Dimensional (0-D) model is extensively employed in predicting spray and com-
bustion characteristics due to its cost-effectiveness, minimal input parameters, and time
efficiency [16,17]. Accurately predicting spray tip penetration is crucial for engine structural
design and fuel injection strategy. Over the years, several models have been developed to
estimate spray tip penetration, including the Wakuri model, the Hiroyasu model (which
divides the injection process into two stages), and the Naber and Siebers model, among
others [18–23]. However, these models have limited applicability in terms of the pressure
range. In recent years, research on spray penetration models has continued [24–28]. Re-
searchers, such as Desantes and Payri, have incorporated spray momentum as an input to
the model to predict spray penetration [25,26]. The predicted spray tip penetration from
these models has been compared with experimental results, demonstrating their ability to
predict penetration, even during initial time intervals. Kostas et al. focused on the initial
stage of spray tip penetration and observed that it follows a functional relationship of the
form S(t) = At(3/2) until the tip velocity reaches its maximum value, where A is a constant
and t is the time. This behavior is attributed to the influence of supersonic conditions on the
initial stage of the spray [27]. Zhou and Li studied the spray tip penetration distance model
throughout the injection process, dividing it into five stages. The calculated results from
their newly developed models showed excellent agreement with experimental data [28]. Jia
et al. observed that under ultra-high injection pressure conditions, the spray head produces
two shock waves. Additionally, a comparison with predictive models revealed that shock
waves influence spray tip penetration [29]. Table 1 summarizes the main spray tip penetra-
tion models established by researchers in different periods. From the table, it is evident that
although numerous researchers have made significant progress in spray tip penetration
models, most of these prediction models are applicable only to a relatively low-pressure
range. Models for high injection pressure to ultra-high injection pressure scenarios are
still lacking. Therefore, through the utilization of the momentum conservation theorem
and a phenomenological approach, a mathematical expression between spray velocity and
penetration is established. The phenomenological model was used as a base to divide the
spray into two stages. Meanwhile, based on the spray tip penetration discussed in the first
paragraph, the second paragraph considers the tip penetration in the second stage as an
extension of the growth pattern observed in the first stage, using a momentum model for
analysis. In other words, the results of the model in the first paragraph will directly affect
the results of the second paragraph. Finally, the validity of this model is then verified by
comparing it with experimental results under ultra-high injection pressure conditions.

Table 1. Spray tip penetration models.

Model Correlation References Pinj Range

Wakuri S = 1.18C0.25
a

(
∆P
ρa

)0.25( Dt
tan(θ)

)0.5
Wakuri et al., 1960 [18] 400–750 atm

Dent S = 3.07
(

∆P
ρa

)0.25( 294
Ta

)0.5
(Dt)0.5 Dent., 1971 [19] 10–66 MPa

Hiroyasu and Arai

S = 0.39
(

2∆P
ρl

)0.5
t 0 < t < tb

S = 2.95
(

∆P
ρa

)0.25
(Dt)0.5 t > tb

tb = 28.65 Dρl√
∆Pρa

Hiroyasu and Arai.,
1990 [20]

7–150 MPa

Schihl S = 1.414C0.5
v

(
∆P
ρa

)0.25( Dt
tan(θ)

)0.5
Schihl et al., 1996 [21] 7–160 MPa

Naber and Sibers
∼
S =

[(
1
∼
t

)n
+

(
1
∼
t

0.5

)n]− 1
n Naber and Sibers.,

1999 [22]
75–160 MPa
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Table 1. Cont.

Model Correlation References Pinj Range

Arrègle S = D0.307P0.262
inj ρ−0.406

a t0.568 Arrègle et al., 1999 [23] 30–110 MPa

Sazhin S = vd0t− 0.5v2
DγKv1.5

D t2.5 Sazhin et al., 2001 [24] 90 MPa

Desantes and Payri S = 1.26·ρ−0.25
a M0.25

i (t)0.5(tan( θ
2 ))
−0.5 Desantes and Payri

et al., 2006 [25] 50–130 MPa

Desantes and Payri
S1 = kp

(
tan θ

2

)−0.5
ρ−0.25

a M0.25
0 t0.5

S2 = kp

(
tan θ

2

)−0.5
ρ−0.25

g M0.25
0 (t− ∆t + ϕ)0.5

Desantes and Payri
et al., 2006 [26]

30–130 MPa

Kostas S = A(t)1.5

Hiroyasu’s model after the intersection
Kostas et al., 2009 [27] 50–100 MPa

Xinyi Zhou and Tie LI

S = K1

(
2∆P

tp

)1/2
ρl
−1/2t3/2 0 < t ≤ tb

S = K2

(
∆P
tp

)1/4
ρa
−1/4(D)1/2t3/4 tb ≤ t ≤ tp

S = K2

(
∆P
ρa

)1/4
(D)1/2(t)1/2 tp ≤ t ≤ 2ti

S = 21/2K2

(
∆P
ρa

)1/4
(D)1/2(ti)

1/4(t− ti)
1/4 t ≥ 2ti

Tie LI., 2021 [28] 90–150 MPa

2. Experimental System and Conditions
Experimental Setup

In this study, we employed three Denso ten-hole electromagnetic injectors for the
experiment. These injectors had different hole diameters, specifically 0.07, 0.101, and 0.133
mm. One of the injectors had a 0.07 mm diameter, specially manufactured for experimental
purposes, while the other two injectors were mass-produced. The length of the injector
nozzle was 0.8 mm, and the angle between the axis of each injector hole and the central
axis of the injector was 77.5◦. The specific structure and parameters of the injector can be
observed in Figure 1 and Table 2, respectively.
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Table 2. Injector parameters.

Items Value

Injectors Denso G4S (solenoid injector)
Type Mini-Sac

Hole number 10
Umbrella angle [◦] 155

Nozzle-hole diameter (D) [mm] [mm] 0.07 0.101 0.133
Hole length [mm] 0.8
Sac radius [mm] 0.5

Figure 2 shows the injection system and observation system used in this study. The
diffuser background illumination method (DBI) was used to obtain the characteristics of the
spray. The light source of the observation system was provided by the high brightness LED
light source (by Altec company). The light made by the LED light source streamed into
the constant volume combustion chamber (CVCC) through the diffuser and was captured
by the high-speed camera after passing the target spray. The delay generator (DG645)
simultaneously controlled the ECU (Electronic Control Unit) of the injector and the high-
speed camera to ensure that the high-speed camera could smoothly capture the target spray.
The injection pressure of the experiment was provided by the high-pressure Common
Rail system, which could provide a stable injection pressure, and the maximum pressure
could reach more than 300 MPa. The nitrogen cylinder was connected to the constant
volume combustion chamber through the pressure reducing valve and switch valve. The
constant volume combustion chamber was connected with the pressure gauge to ensure
pressure control in the chamber. Table 3 shows the optical system configurations in the
DBI experiment. A visible lens (Nikon, 105 mm, f/4.8) coupled with a NAC-MEMRECAM
HX-3 high-speed camera was used. They provide frame rates of up to 20,000 frames per
second. It should be noted that the injector was embedded over the chamber at an angle of
approximately 37.5◦ from the horizontal direction. Therefore, the target spray was inclined
at an angle of 25◦ with the vertical instead of vertically downward. Thus, the results of the
multi-hole injectors shown in the figure were vertically scaled by multiplying it by a factor
of 1/cos25◦.
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Table 3. Optical system configurations.

Items Value

High-speed camera NAC-MEMRECAM HX-3
Lens Nikon, 105 mm

Light source Altec LED lamp
Pulse generator DG535

Resolution 640 × 640
Exposure [ms] 0.005
Framerate [fps] 20,000

Aperture sizes [1/f] 4.8

The experimental conditions are shown in Table 4. The JIS#2 diesel was used as the
test fuel in the experiment. The main properties of the fuel are shown in Table 5. In this
study, we used the same injection duration (2.3 ms). The injection pressure was from
100 to 300 MPa. The ambient temperature of the experiment was 300 K. Nitrogen with
stable chemical properties was used as the ambient gas to fill the whole constant volume
combustion chamber. According to the state equation of an ideal gas, the ambient pressure
was calculated as 0.88, 1.32, and 1.76 MPa.

Table 4. Experimental conditions.

Injection Condition

Fuel Diesel (JIS#2)
Injection Duration [ms] 2.3

Injection Pressure (Pinj) [MPa] 100 200 300
Nozzle Hole Diameter (D) [mm] 0.07 0.101 0.133

Injection Amount [mg] 28.2~157.89 (Depends on Pinj and D)

Ambient Condition

Ambient gas Nitrogen
Gas Density (ρamb) [kg/m3] 10/15/20
Ambient Temperature [K] 300
Ambient Pressure [MPa] 0.88 1.32 1.76

Table 5. Main properties of the fuel.

Fuel Property Diesel (JIS#2)

Density @ 15 °C [kg/m3] <860
Kin.Viscosity @ 30 °C [mm2/s] >2.5

Flash point [°C] >60
Flow point [°C] <−7.5
Cetane number >45

Ignition point [°C] >50
Oxygen content [wt%] <1

3. Results and Discussion
3.1. Injection Rate and Spray

The fuel injection rate is a crucial parameter that directly impacts the atomization
process, influencing the quality and characteristics of the spray. Several methods exist for
measuring the fuel injection rate, including the Bosch long tube method, Zeuch method,
momentum flux measurement method, etc. [30–32]. For this study, considering safety
and stability, we opted for the Bosch long tube method as the measurement technique for
fuel injection rate. Figure 3 illustrates the variations in injection rate under different hole
diameters and injection pressure conditions. It is evident from the figure that the injection
rate increases significantly with higher injection pressure and larger hole diameter. This
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can be attributed to the fact that the injection rate is primarily governed by the effective
flow area and injection speed. The injection rate can be divided into three main stages.
In the initial stage, the injection rate rises rapidly. When the injection pressure is higher,
the slope of the injection rate also increases, predominantly influenced by the pressure in
the sac. During the stable stage, the injection rate gradually stabilizes, with the injection
pressure having minimal effect on the duration of this stage. However, as the injector hole
diameter increases, the stable stage duration decreases, primarily due to the movement of
the injector needle and the sac pressure [33]. In the final stage, the injection rate decreases
rapidly until the needle is closed. Similar to the initial phase, higher injection pressure
leads to a faster decrease in the end-stage.
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Figure 3. Injection rate with different hole diameters.

Figure 4 shows the non-evaporating spray images obtained through the DBI method.
The figure clearly illustrates that under ultra-high injection pressure conditions, the spray
boundary of the injector with a larger hole diameter becomes highly unstable. Particu-
larly during the initial stage of injection, the spray shape experiences severe deformation.
Additionally, it should be noted that the spray tip penetration of the target spray differs
from that of the other sprays during the initial stage. However, as the spray develops, the
disparity in tip penetration among the sprays gradually decreases, eventually leading to
similar tip penetrations for all sprays.

Reducing the hole diameter and injection pressure effectively enhances the spray
stability, as depicted in Figure 4c,d. This phenomenon can be attributed to the increased
complexity of internal flow within the injector nozzle and intensified cavitation in the
nozzle resulting from higher injection pressure and smaller hole diameter. These factors
contribute to the observed spray instability.
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ρa = 20 kg/m3 (d) Pinj = 300 MPa, D = 0.07 mm, ρa = 20 kg/m3.

3.2. Image Proceeding and Macroscopic Characteristics of the Spray

In the preceding analysis, our focus was on examining the spray characteristics using
non-evaporating spray images obtained through the DBI method. However, relying solely
on non-evaporating spray images may not provide a comprehensive understanding of
the details. To overcome this limitation, we employed MATLAB software to process the
original non-evaporating spray image. The specific image processing steps and definitions
are illustrated in Figure 5. Firstly, we subtracted the target spray image (Figure 5b) from the
background image (Figure 5a). Secondly, the resulting image was subjected to binarization.
For the binarization process, we selected 15% of the maximum value of the image as the
threshold [34]. The binarized image is depicted in Figure 5c.

Finally, the binarized image is utilized to define the macro characteristics of the spray.
In this context, the distance between the tip of the nozzle and the tip of the spray is
selected as the spray tip penetration. By adopting this definition, we obtain more detailed
macroscopic characteristics of the spray, which are presented in Figure 6.
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From the figure, it is evident that the spray tip penetration increases with higher
injection pressure, lower ambient density, and larger hole diameter. However, as the
injection pressure increases from 200 to 300 MPa, the effect of injection pressure on the
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spray tip penetration diminishes significantly. In contrast to the impact of injection pressure,
the reduction in ambient density amplifies the effect on spray tip penetration (comparing
the decrease from 20 to 15 kg/m3, the decrease from 15 to 10 kg/m3 has a greater impact
on spray tip penetration). Additionally, it can be observed that the error bar of the spray
tip penetration is larger when the ambient density is low, indicating that reducing the
ambient density increases the instability of the spray tip penetration. Furthermore, when
examining the spray tip penetration during the initial stage, it can be noted that the spray
tip penetration is relatively similar under the same injection pressure. Comparing the
results for different hole diameters, it can be observed that, during the initial stage, injectors
with larger hole diameters exhibit longer spray tip penetration in a similar stage. This may
be attributed to the larger mass flow and momentum of injectors with larger hole diameters.
Moreover, it is evident that the spray tip penetration error bar is larger for injectors with
larger hole diameters when comparing results for injectors with different hole diameters,
indicating that increasing the hole diameter increases the instability of the spray.

3.3. Theoretical Model Analysis

The Hiroyasu model [20] defines the injection process of spray as two stages, before
and after breakup.

S = 0.39
(

24 P
ρl

)0.5
t t < tb (1)

S = 2.95
(
4P
ρa

)0.25

(Dt)0.5 t ≥ tb (2)

tb = 28.65
Dρl√
4Pρa

(3)

where S is spray tip penetration,4P is difference between injection pressure and ambient
pressures, D is nozzle hole diameter, ρa is gas density, ρl is fuel density, tb is breaking time.

In this study, we still define the development stage of spray as two stages, one stage
before crushing and the other being completely broken. The development state of spray in
these two stages is different from the development rule, as shown in Figure 7.
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4. Spray Tip Penetration Model
4.1. Hypotheses

The hypotheses assumed to carry out the theoretical derivation of the model are the
following:

(a) The gas in the environment remains non-flowing and the density and temperature
remain constant.

(b) The spray is an axisymmetric rotating body.
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(c) Before the breakup, the change of outlet velocity will directly affect the spray tip
velocity.

(d) After the breakup, the spray is assumed to be a gas jet, and the radial distribution of
the spray velocity satisfies the following formula [25,35].

v
vm

=

[
1−

( r
R

)1.5
]2

(4)

where r is the radius position of any spray cross-section, R is the maximum radius of the
cross-section, v is the speed of the spray cross-section where the radius is r, and vm is the
speed at the center axis of the spray cross-section.

4.2. Before Breakup

At the initial stage of spray, near the nozzle exit, there is a very small spacing be-
tween broken droplets and ligaments, and the dynamic behavior of droplets will be
greatly affected by adjacent droplets. Hiroyasu and others found that the penetration
of diesel oil occurred within and outside the broken length at different rates. According to
Kelvin–Helmholtz/Rayleigh–Taylor hybrid model [36], the crushing length is determined
as follows:

Lb = UrτKH =
1
2

B1D
√

ρl
ρa

(5)

where B1 is a constant, according to the research results of Beale and Reit, B1 = 40. Ur is rela-
tive drop/gas velocity. τKH is the breakup time obtained by the Kelvin–Helmholtz/Rayleigh–
Taylor hybrid model.

It is assumed that the head speed delay caused by the change in exit velocity in the
spray flow field is ignored before breaking. In other words, the change in exit velocity will
directly affect the spray head, so the equation can be obtained.

Lb =
1
2

B1D
√

ρl
ρa

= K0vmaxtb (6)

where tb is the breaking time, vmax is the maximum velocity of the injection, and the outlet
velocity can be calculated by the measured injection rate.

Therefore, we can draw the model of the first penetration length of the spray:

S1 = K0vmaxtb (t < tb) (7)

4.3. Theoretical Model

Now, we construct a spray penetration model of the spray stable stage. Figure 8 shows
a schematic diagram of the structure of the spray stable area. By using the intersection of
two straight lines on the outer boundary of the spray as the origin “O” and establishing
a coordinate system, according to the law of conservation of momentum, we know that
the momentum of any cross-section remains constant. Taking the moment t(s+1) as an
example, as shown in section A-A in Figure 8, Equation (8) can be obtained by integrating
the section [25,26]:

πρlr0
2v0

2 =
∫ R

0
2πρav(s+1)

2rdr (8)

where ρl is the fuel density, ρa is the air density, v0 is the nozzle outlet velocity during
injection stable stage, v(s+1) is the velocity of the A-A cross-section, R is the cross-sectional
diameter, dr is the radial differential unit.
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δ parameter is introduced, and make:

δ =
r

R(s+1)
(9)

and:
dδ =

dr
R(s+1)

(10)

It can be seen from the assumption that the radial distribution of velocity satisfies
Equation (4), substituting Equation (9) into Equation (4) to get:

v(s+1)
2

vm(s+1)
2 = [(1− δ1.5)

2
]
2

(11)

Equations (9)–(11) are substituted into Equation (8) to obtain:

πρlr0
2v0

2 =
∫ 1

0
R(s+1)

22πρavm(s+1)
2[(1− δ1.5)

2
]
2
δdδ (12)

and so:
v0

vm(s+1)

=

(
2ρa

ρl

)0.5 R(s+1)

r0

[∫ 1

0
[(1− δ1.5)

2
]
2
δdδ

]−0.5

(13)

can be calculated: ∫ 1

0
[(1− δ1.5)

2
]
2
δdδ ≈ 0.0464 (14)

and so:

vm(s+1) = 3.28
(

ρl
ρa

)0.5 r0v0

R(s+1)
(15)
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According to the spray structure in Figure 8, the following relationship can be obtained:

r0

R(s+1)
=

S0

S0 + S(s+1)
=

1

1 +
S(s+1)

S0

=
1

1 +
S(s+1) tan( θ

2 )
r0

=
r0

r0 + S(s+1) tan
(

θ
2

) (16)

where S(s+1) is the distance from the cross-section to the nozzle hole, S0 is the distance
from the origin “O” to the nozzle outlet.

Equation (16) is substituted into Equation (15) to obtain:

vm(s+1) = 3.28
(

ρl
ρa

)0.5 r0v0

r0 +
(

S(s+1)

)
tan
(

θ
2

) (17)

Now, we have got the relationship between the exit velocity v0 and a certain position
vm(s+1). Hiroyasu et al. [20] found that the penetration distance of the spray after breaking
is proportional to

√
t, and based on this assumption, constructed the second equation of the

Hiroyasu model. According to the results of Hiroyasu et al. [20] the second equation still
passes through the breaking length Lb at time tb. The following equation is constructed:

Lb = β
√

tb (18)

We redefine the hypothesis here, assuming that the second section of the penetration
distance model is gradually increasing based on the broken length, and the speed of spray
tip is proportional to 1

2
√

(t−tb+γ)
. Therefore, the following equation can be constructed:

S = Lb + β
√
(t− tb + γ)− β

√
γ (19)

Take the time derivative of Equation (19) to obtain Equation (20):

vtip =
dS
dt

=
β

2
√
(t− tb + γ)

(20)

Let t = tb, Can be calculated:

vLb =
dS
dt

=
β

2
√

γ
(21)

We have constructed the spray velocity model at the stable stage, and now we estimate
the spray motion. Obviously, the internal flow velocity of the spray at the center of the
cross-section is different from the actual displacement velocity of the spray, but it directly
affects the spray displacement velocity and is proportional to the spray displacement
velocity. Therefore, we introduce the proportionality factor K:

vtip = Kvm(s) (22)

and so:
β

2
√

γ
= K3.28

(
ρl
ρa

)0.5 r0v0

r0 + (Lb) tan
(

θ
2

) (23)

Let β = K16.56 (ρlr0v0)
0.5

(ρa)
0.25 tan

(
θ
2

)
and so:

γ = K2

(
r0

tan( θ
2 )

+ Lb

)2

r0v0(ρa)
0.5 (24)
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where K = K1K2, and K1 and K2 are constants.
Therefore, we can get the model of the penetration after breakup as follows:

S = Lb + K16.56
(ρlr0v0)

0.5

(ρa)
0.25 tan

(
θ

2

)
√√√√√√(t− tb + K2

(
r0

tan( θ
2 )

+ Lb

)2

r0v0(ρa)
0.5 )−

√√√√√√K2

(
r0

tan( θ
2 )

+ Lb

)2

r0v0(ρa)
0.5

 (25)

In summary, we can get a complete penetration model:

S1 = K0vmaxt (t < tb)

S = Lb + K16.56 (ρlr0v0)
0.5

(ρa)
0.25 tan

(
θ
2

)
√√√√√

(t− tb + K2

(
r0

tan( θ
2 )

+Lb

)2

r0v0(ρa)
0.5 )−

√√√√√
K2

(
r0

tan( θ
2 )

+Lb

)2

r0v0(ρa)
0.5

 (t > tb)
(26)

Breaking time tb can be obtained from Equation (6).

5. Model Validation

Refining the prediction of spray tip penetration is crucial for engine design and fuel
injection. Numerous models have been developed by researchers to accurately estimate
spray tip penetration. These models aim to capture the behavior of spray penetration and
provide valuable insights for engine optimization. Among them, Hiroyasu’s model and
Dent’s model are widely applied. In this study, to better compare the differences between
different models, we compared our model with Hiroyasu’s model and Dent’s model.
Additionally, to validate the accuracy of models, experimental results were compared with
calculated results. Our model used the spray cone angle as an input parameter. Based on
Hiroyasu’s research, K0 was set to 0.39. K1 and K2 were fixed values of 0.0162 and 0.0001,
respectively. Figure 9 presents a comparison of experimental results and model predictions
under different hole diameters, ambient pressures, and injection pressures. The blue dashed
line represents the prediction of Hiroyasu’s model, while the red dashed line represents the
prediction of Dent’s model. The black hollow circles represent the predictions of our model,
and other colored markers represent the experimental results under different conditions.

From the figure, it can be observed that our predicted model aligns well with the
experimental data under both ultra-high and high injection pressure conditions. However,
both Hiroyasu’s and Dent’s models underestimate the spray tip penetration, with Dent’s
model performing slightly better than Hiroyasu’s model. The discrepancy may arise from
the different model coefficients, as the structure of the injector and the motion trajectory of
the needle valve can affect the model coefficients. Furthermore, it is evident from the figure
that as the hole diameter increases and the ambient pressure decreases, the error in our
predicted model gradually increases, particularly in the initial stages of the model. This
discrepancy may be attributed to the following factors:

1. The spray tip penetration exhibits cyclic variation, with slight differences in each
injection, and there is still a certain level of measurement error in the experimental data.

2. This model used the spray angle as an input, and the accuracy of the model is
directly affected by the magnitude and variation of the spray angle. Although we used
measured spray angles as inputs, there is still an influence of error. Additionally, the spray
angle is a function that changes with time, especially in the initial stages of the spray. In the
future, it is necessary to consider varying spray angles as inputs for testing.

3. The accurate start of injection (SOI) also has a significant impact on the experimental
results, directly affecting the time scale of the model. In this model, obtaining the SOI using
high-speed video systems (HSV) introduces a large amount of error, resulting in a mismatch
between the experimental and model results. In the future, it is recommended to redefine
the SOI of the spray using microscopic imaging methods to obtain a more accurate SOI.
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6. Conclusions

This study conducted visualization experiments on non-evaporative sprays with dif-
ferent diameters, injection pressures, and ambient densities, reaching a maximum injection
pressure of 300 MPa. A prediction model for spray tip penetration under non-evaporating
conditions was developed based on momentum conservation and a phenomenological
model. The main conclusions are as follows:

(1) The injection rate exhibits three main stages, characterized by rapid rise, stable du-
ration, and rapid decrease. Higher injection pressures result in faster changes in the
initial and final stages.

(2) Initially, the spray tip penetration of the target spray differs from other sprays, but it
gradually converges as the spray develops. Under ultra-high injection pressure condi-
tions, the spray boundary of larger hole-diameter injectors becomes highly unstable.

(3) Spray tip penetration increases with higher injection pressure, lower ambient density,
and larger hole diameter. However, the effect of injection pressure diminishes as it
exceeds 200 MPa. During the initial stage, the spray tip penetration is relatively similar
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under the same ambient pressure. Larger hole-diameter injectors exhibit longer spray
tip penetration due to higher mass flow and momentum.

(4) Our predicted model aligns well with experimental data under ultra-high and high
injection pressure conditions. Hiroyasu’s and Dent’s models underestimate spray
tip penetration. Increasing hole diameter and decreasing ambient pressure lead
to increasing errors in our model, particularly in the initial stages, which may be
influenced by experimental errors, spray angle discrepancies, and uncertainties in
determining the start of injection (SOI).
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Abbreviations

ASOI After the start of injection
CVCC Constant volume combustion chamber
D Nozzle hole diameter
DBI Diffuser background illumination
HSV High-speed video
K Model constant
K0 Model constant
K1 Model constant
K2 Model constant
Lb Breaking length
Pinj Injection pressure
Pa Ambient pressure
4P Difference between injection and ambient pressures
ρa Ambient density
ρl Fuel density
r Radius position of any spray cross-section
R Maximum radius of the cross-section
S Spray tip penetration
SOI Start of injection
tb Breaking time
τKH Breaking time by KH-RT model
Ta Ambient temperature
Ur Relative drop/gas velocity
v Velocity of the spray cross section
vmax Velocity of
vm Velocity at the center axis of the spray cross section
v0 Velocity at the nozzle
vtip Velocity of spray tip
vLb Velocity at the breaking length
θ Spray angle
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