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Abstract: With the continued application of data visualization technology in sustainable development,
the construction of carbon emission monitoring platforms is becoming increasingly popular in
industrial parks. However, there are many kinds of such interfaces, the usability of which remains
unclear. Therefore, in order to explore the usability of current carbon emission visualization interfaces
in parks and put forward humanized optimization strategies for their subsequent design, this study
used eye-tracking technology to analyze the data readability of six types of layouts from three aspects
of visual perception features: integrity, understandability, and selectivity. Quantitative data from
eye movement experiments and visual perception characteristics were evaluated using a Likert
scale in an analysis of different layouts, and the correlation data between three visual perception
characteristics and the readability of different layout data were obtained using an SPSS tool. The
results show that, compared with a layout containing 3D graphics, the pure data type of interface
has a shorter task completion time and higher readability; however, it provides fewer choices for
users and is less interesting. In addition, there is a significant negative correlation between integrity
and task completion time; the more complete the interface layout, the shorter the task completion
time. In summary, a certain correlation was found between visual perception characteristics and the
readability of interface layout using this method. At the same time, the advantages and disadvantages
of different interface layouts were also analyzed, and more humanized optimization directions and
strategies were devised. This is vital for aiding subsequent research on the influence of specific layout
elements to optimize visualization interfaces that display carbon emission data.

Keywords: eye tracking; data visualization; visual perception; interface design; carbon neutralization;
sustainable development

1. Introduction

As an important tool to help decision making in the information age, data visualization
technology also plays an essential role in the sustainable development of society [1]. From
a regional perspective, effective visualization technology can be used to manage the overall
carbon emissions in industrial parks and help urban planners and policymakers to make
more rational scientific decisions [2–4]. In terms of carbon capture and storage, it can also
help regions develop more stable and cost-effective programs [5]. From the perspective of
household units, data visualization can also help households to rationally manage electricity
and energy consumption to reduce carbon emissions [6–8]. Many scholars have also studied
the application of visualization tools in the construction, transportation, and energy fields
in key areas of carbon emissions. This includes the use of a physical information system for
the real-time monitoring of carbon emissions in buildings [9], and the use of visualization
technology to help the construction industry analyze carbon emission risks and irregular
emissions [10]. Developing intelligent transportation and logistics systems to reduce
carbon emissions and fuel consumption in these fields [11–13] and using data visualization

Sustainability 2023, 15, 11102. https://doi.org/10.3390/su151411102 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151411102
https://doi.org/10.3390/su151411102
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su151411102
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151411102?type=check_update&version=1


Sustainability 2023, 15, 11102 2 of 14

technology to build a framework for energy-sustainable systems are essential [14]. Data
visualization technology has become an established and effective tool that can be widely
used to curb the acceleration of the global greenhouse effect. Producing emissions from
construction, production, transportation, and energy use, industrial parks are one of the
major sources of carbon emissions in China [15]. Therefore, data visualization technology
is commonly used for internal carbon emission monitoring in these areas. At present,
the process of carbon emission assessment is relatively well established (Figure 1), but
the optimization of visual interfaces requires further research. Therefore, designing a
data visualization interface with an intelligent layout that is consistent with users’ visual
perceptions will help decision makers to obtain effective data more quickly and accurately
to formulate relevant countermeasures.
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In an analysis of the literature, we found that most studies on regional carbon emission
visualization focus on the data itself, including data sources, data architectures, and data
applications [16–20]. Although the maturity and widespread application of this technology
was promoted by these studies, few scholars have studied visual interfaces displaying
carbon emission data from the perspective of user cognition. Visual perception, as an
important part of user cognition, is also the main method of human interaction with visual
interfaces and plays an important role in helping people to understand, master, and use
data [21]. At the same time, visual interfaces lacking a relevant visual perception basis have
the opposite effect, leading to cognitive confusion and misunderstanding [22]. Therefore,
scientific and intelligent visual interfaces must be designed according to users’ visual
perception characteristics [23,24]. Some scholars have studied the interaction between
interface layout and visual perception via eye-tracking technology in online stores, software
stores, APP applications, and car center consoles [25–29], including the influence of different
layout and aesthetic rules on user selection of goods, software usability information retrieval
and recognition, and human–computer interactions. These studies all show that different
layouts affect people’s recognition of reading information in some way. Therefore, the
interface layout design involving data reading must consider the influence of human
visual perception so that the data feedback via visual perception can help to analyze
the usability, ease of use, and data readability of visual interfaces. At present, there are
two main aspects of research on visual perception and interface layout design. On the
one hand, the interface layout can be evaluated and optimized according to the relevant
perceptual characteristics of visual perception [25,30–32]; on the other hand, the influence
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of different layouts as one of the components of the interface on visual perception can be
studied [33–35]. Together, these research approaches can be used to determine the pros and
cons of the visual interface. However, visual perception features are not the main aspect
of these studies on visual perception, so most studies focus on the specific optimization
direction of some layout aspects, some formal rules, etc., and lack the influence and role of
visual perception features in layout optimization at the macro level. Therefore, it is difficult
to systematically humanize the visual interface. In addition, eye-tracking technology
has become a reliable technology for studying the relationship between human visual
perception and interfaces, graphics, interactions, etc. Such tools can track eye movement
data that is difficult to determine, including fixation time, a heat map, and eye movement
trajectory. These explicit data can help designers to create interface layouts that are more
in line with people’s cognitive and aesthetic needs [36–41]. In addition, in recent years,
related technical studies have collected visual cognitive data to improve visual interaction
and user attention [42–44]. Eye-tracking technology was used to collect quantitative data
in this study.

In summary, since the application of carbon emission data visualization technology
in industrial parks in China is in its infancy, existing visual interface designs lack relevant
design paradigms, and there is no specific research sample with data readability. Therefore,
this study aims to collect users’ search times using eye-tracking technology as an evaluation
index of data readability. As the evaluation indicators of interface usability, a heat map
and eye movement trajectory map are combined with the relevant knowledge in the field
of visual perception to evaluate the data readability and interface usability of the existing
visual interface layout. In addition, the subjective rating scales of users are collected from
three aspects of visual perception features: understandability, selectivity, and integrity. Eye-
movement-related data were combined to measure the extent to which these three features
influence data readability. In this study, we conclude that different types of layout methods
have an impact on the time it takes users to read data, and the integrity characteristics of
different layouts have a significant impact on data readability.

In the Materials and Methods section, the experimental design and specific process
of the study are introduced in greater detail, including how to obtain more scientific eye-
movement data and qualitative data. The resulting visual analysis data are presented in
the Results section. In the Discussion section, we analyze the reasons for these results
and propose relevant design suggestions. The limitations, innovativeness, and practical
significance of this study are presented in the conclusion.

The main contributions of this study are as follows: (1) We innovatively compare the
three characteristics of visual perception with related research fields, study the influence of
visual perception on interface usability from a macro perspective, and provide a systematic
research idea for the humanized design of a data visualization interface. (2) A combined
method of eye-tracking technology and subjective evaluation is used to confirm the influ-
ence of the integrity of the three characteristics of visual perception on the readability of
the interface, which is helpful for researchers in related fields to clearly grasp the focus
of the influence of visual perception when conducting such research. (3) Six common
visual interface layouts were analyzed, and the advantages and disadvantages of different
layouts are summarized. This can help subsequent relevant designers adapt to the visual
requirements of the park according to the characteristics of these layouts.

2. Materials and Methods
2.1. Sample Collection

With the strengthening of China’s binding force on reducing carbon emissions and
the wide application of data visualization systems, carbon emission visualization systems
are being developed and constructed for various industrial parks. In this study, a total
of 100 carbon emission visualization interface samples were collected from parks via a
network collection. Finally, the 100 samples were clustered using layout similarity to obtain
six representative samples (Figure 2).
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Figure 2. Representative sample.

Using feature extraction and redesign, two major categories and six minor categories
of visual interfaces with different layouts were established (Figure 3a): a pure data flow
interface (Class A) and an interface containing maps/buildings (Class B). Because maps
and buildings have similar attributes in the visual interface, they are classified into one
category, and subsequent research focuses on buildings. Considering the requirements for
variables in eye-tracking experiments, the relevant elements from six types of interfaces
were homogenized (Figure 3b). Due to the compression of the building module on the data
module in the interface of type B, it becomes smaller, so an information module is added to
the interface of type A to balance the size of the two and offset the influence of this variable.
These six interfaces are used as experimental stimulus materials.
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2.2. Data Collection

The participants in this experiment were from Northern University for Nationalities.
All 30 participants had normal, color vision and were not familiar with the experiment
in advance. All participants gave their informed consent to participate in the study. The
experiment was set up in a quiet room with constant light. Participants were seated 65 cm
away from a 15.6-inch monitor. A Tobii Pro X3 eye tracker (sampling rate 120 Hz) was
placed directly below the monitor to record eye-movement data from each participant. Gaze



Sustainability 2023, 15, 11102 5 of 14

heatmaps, gaze curves, and associated time data were exported by Tobii Pro Lab Screen
Edition. The stimulus materials in this experiment were six types of interfaces obtained after
classifying and de-differentiating the visual interfaces of carbon neutrality data in 100 parks
(Figure 3b). When displayed, all the interfaces fill the whole 1920 × 1080 screen, the interface
background is uniformly adjusted to gray, and all the pictures are stored in the form of
jpg bitmaps. In terms of task setting, each type of interface was assigned two data search
tasks of comparable difficulty. After freely watching the assigned interface, participants
clicked the mouse to jump to the start of the search task according to the prompts and
then clicked the mouse again to complete the task. The experiment ended after the user
completed the task twice. In order to eliminate the influence of the subjects’ memory of
relevant data content on the experiment, each subject only needed to perform data search
tasks for one type of interface, and there were 5 subjects for each type of interface. A total of
30 subjects participated in the data search tasks for 6 types of interfaces. After completing
the eye-tracking experiment, each participant was asked to fill out a one-way rating scale
for six types of interface visual perceptual features. The table was designed around three
visual perceptual features: understandability, selectivity, and integrity. Considering that
the three types of feature concepts are too abstract to quantify the score, the scoring options
of the questionnaire were further optimized. Integrity was interpreted as “unity”, and
the strength of integrity was reflected by the participants’ feeling of interface unity and
coordination. Understandability was interpreted as “understandable”, and the easier it
was for participants to understand the interface, the more understandable the interface
was. Selectivity is interpreted as “interesting”, and the more interesting areas indicate that
the type of interface can be selected to view more areas, and the selectivity is stronger.
The study was conducted in accordance with the guidelines of the Declaration of Helsinki.
The study was non-invasive and did not investigate human or physiological data, and all
data were processed anonymously. According to the institutional guidelines of Lanzhou
University of Technology, it is not necessary to submit materials for ethical review.

2.3. Data Analysis

For a data visualization interface with high information density, the time spent on
searching for target information is the key data point in the analysis of the readability
of interface data [45]. The mouse event in eye-tracking technology can help researchers
to more accurately record the duration of an event. The time difference of the relevant
process was calculated in combination with each node of the experimental process. In this
experiment, this technology was used to record the time when each participant triggered
the data search and ended the data search. The above data can be used to calculate the
mean value of the task completion time for each interface, allowing the interface data
readability to be interpreted in terms of time attributes.

In addition, the heat map indicating the degree of participants’ gaze also reflects the
degree of people’s reading of the data and their interest in the interface (Figure 4a). The
degree of attention is intuitively shown by the change of hot spots from green to red, and
the deeper the red, the higher the attention of the user. The eye-tracking map can be used
to interpret the interface layout through the eye shifts and jumps of the participants when
watching the interface (Figure 4b). The larger the trajectory point, the longer the subject
looked at it. Combined with the data reading time, the eye-tracking map can also help
to determine which layout can help people to read information more effectively [39,43].
The presentation of heat maps and eye-tracking maps can help researchers and designers
understand people’s visual habits and the layout of the interface in order to design a data
visualization interface that is more readable and more consistent with visual perception. In
this experiment, the hot spot accumulation map and eye-tracking accumulation map of five
participants in each interface will be collected to evaluate and analyze different interface
layouts combined with task completion time.
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To match the quantitative data, qualitative data were also collected in this experiment.
Firstly, the subjective evaluation of participants regarding the visual perception of various
interfaces was carried out and then used to briefly analyze the nature of the interface. Com-
bined with the quantitative data obtained from the experiment, the degree of interaction
between the two was verified. A Pearson correlation test (one-tailed) was conducted on the
influence of the three characteristics of visual perception (integrity, understandability, and
selectivity) on the readability of the data. Thus, the correlation coefficient ranking between
the three features and data readability can be obtained, which can help designers better
grasp the visual perception needs of users when making interface layout arrangements.

3. Results
3.1. Effect of Layout on Data Reading Time

Table 1 shows the completion times for 30 participants who participated in six types
of interface data search tasks. To avoid contingency, each user was arranged to perform
two data search tasks, so each participant had two-time data. By de-streaming the data,
three data values were retained for each data search task on each interface for the mean
calculation.

Table 1. Time taken for 30 participants to complete the task.

Sample Participants Task1 Duration Task2 Duration

A1

1 14.0 19.4 **
2 9.0 3.4 *
3 8.7 18.8
4 5.1 * 5.2
5 02:58.4 ** 7.2

A2

1 16.5 17.6 **
2 4.4 * 8.4 *
3 8.8 14.6
4 7.6 12.0
5 01:01.6 ** 11.8

A3

1 8.4 7.8
2 6.8 7.6
3 5.7 * 8.9
4 18.0 21.1 **
5 21.1 ** 4.2 *
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Table 1. Cont.

Sample Participants Task1 Duration Task2 Duration

B1

1 34.4 ** 24.4
2 21.7 12.4 *
3 14.4 * 36.4 **
4 26.7 13.1
5 16.4 15.4

B2

1 4.1 * 7.7 *
2 17.7 25.7
3 12.6 12.9
4 15.6 31.2 **
5 39.5 ** 11.4

B3

1 19.2 3.9 *
2 02:20.8 ** 12.8
3 14.7 13.4 **
4 7.3 * 5.3
5 11.4 8.4

* The minimum of each group. ** The maximum of each group.

After calculating the mean value, we can obtain the average time consumed by each
interface in data reading (Table 2). The ranking result of the class A interface according to
duration is A3 < A1 < A2, the result of sorting the type B interface is B3 < B2 < B1, and the
total ranking is A3 < A1 < A2 < B3 < B2 < B1. The results clearly show that the data search
time of the type A interface is generally shorter than that of the type B interface. Table 3
clearly shows that the average time for the type A interface to complete the task is about
10 s less than that of the type B interface.

Table 2. The average duration of the task for each sample.

Time 1 A1 A2 A3 B1 B2 B3

Task 1 average duration 10.5 10.9 11.1 21.6 15.3 15.1

Task 2 average duration 10.4 12.8 08.1 17.6 16.7 08.8

Total duration 20.9 23.7 19.2 39.2 31.9 23.9
1 The extreme values have been removed.

Table 3. Average time spent searching for data across the two categories of interfaces.

Category Total Average Duration

A 21.3

B 31.7

Table 3 clearly shows that the total average time taken to complete the task using the
type A interface is about 10 s less than that of the type B interface. The data readability of
the type A interface (containing only data) is significantly higher than that of the type B
interface (containing architectural pictures) [27].

3.2. Differences in Eye Movement Indicators of Layout

Panel a of Figure 5 shows the cumulative hot spots of five participants with different
interface layouts when they freely watched the interface. It can be found that the hotspot
distribution of the class A interface is relatively uniform, and each module has a high degree
of gaze. In contrast, the focus on the class B interface is directed toward the data module,
and the attention paid to the architectural pictures is seriously lacking. Compared with B1
and B2, the visual hotspots of the B3 interface are more prominent in the central region,
while the B2 interface is concentrated in the lower region without architectural pictures.
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The B1 interface has a higher degree of fixation in the left region of architectural pictures.
An interesting phenomenon is that the area with higher attention in B3 also appears on the
left side of the architectural pictures.
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Figure 5. Results of the collection of two eye movement indicators: (a) gazing hotspot accumulation
graph of six types of samples; (b) the cumulative plot of the eye track for the six types of samples.

Panel b of Figure 5 shows the cumulative eye track of five participants with different
layouts when they freely viewed the interface. Combined with the viewpoint trajectory
diagram, it can be found that in the type A interface, participants’ visual perspectives
diverge from the middle to the two sides. The final visual landing point of the A1 interface
with a vertical line layout is in the lower right area. Similarly, the visual landing point of
the A3 interface with a horizontal line layout also appears in the lower right area. Only
the A2 interface with both horizontal and vertical layouts has scattered visual landing
points. In contrast, the line-of-sight map of the class B interface clearly shows the neglect
of architectural pictures. When we observe the B1 interface, although the participants’
first focus on the architectural picture located in the middle of the interface, their visual
perspectives then directly jump to the right area of the interface where the data module is
denser. B2 is concentrated in the middle and lower areas. As the most complex interface of
the three types of B interfaces, in B3, it is intuitively found that the visual landing point
in the central region is significantly higher than that in other regions. By comparison, in
the interface containing architectural pictures, areas with denser information modules are
more likely to attract the attention of participants.

3.3. Visual Perception Evaluation of Interfaces

Figure 6a shows the three visual perception feature evaluations of the six samples.
Figure 6b shows the mean values of the three evaluations of the two types of interfaces. It
can be clearly seen from the figure on the right that the understandability and unity of the
class A interface with pure data composition are greater than those of the class B interface
with architectural pictures, while the class B interface is significantly better than class A in
terms of interest. Architectural pictures add more interesting variety to the interface, but
they also reduce the comprehensibility and integrity of the interface to a certain extent.

3.4. Effect of Visual Perception Characteristics on Data Readability

A Pearson correlation coefficient was used to calculate the correlation between the
data shown in Table 2 and those shown in Figure 6a. The correlation value r is presented in
Table 4.

r =
∑n

i=1
(
Xi − X

)(
Yi − Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi − Y

)2
(1)
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Table 4. The correlation value “r” of visual perception features and total average time.

Type Integrity Understandability Selectivity

A Total duration −0.704 0.114 −0.917

B Total duration −0.746 −0.314 0.550

A&B Total duration −0.777 * −0.458 0.697
* p < 0.05.

In the above formula, there are three values of “X”, which are the subjective evaluation
scores of the three visual perceptual features of the six samples, as shown in Figure 6a. “Y”
is the total duration of the two data search tasks corresponding to the six samples, i.e., the
total duration listed in Table 2. Therefore, the size of “n” in the formula is 6.

Table 4 shows the Pearson correlation coefficient of the average data search time for two
types of interfaces with different visual perception characteristics. Since time data reflect
data readability to a certain extent, this table can also be regarded as the influence degree
of different visual perception characteristics on data readability of different interfaces. It
can be seen from the table that, among the three types of visual perception features, the
impact of integrity on data readability is the most significant, showing a significant negative
correlation. The stronger the integrity, the shorter the data search time, and the greater the
data readability.

4. Discussion

Carbon emissions are invisible and can continuously occur in all aspects of park
operation, such as construction, production, and transportation. Therefore, the urgency
of collecting and displaying carbon emission data is vital [46]. Accurate and efficient data
reading efficiency can help decision makers grasp the trend of carbon emissions in real
time to formulate timely and effective relevant measures. Therefore, analyzing the usability
of the interface layout and determining the location of key carbon emission data in the
interface are major issues.

When comparing type A interfaces separately, it was found that the more regular
horizontal or radial layout of A3 and A1 means that it takes less time to complete the data
search task, which is also consistent with the conclusions of Li Y and Yang R [47]. A2, which
has both a radial and horizontal layout, is slightly inferior in terms of information retrieval,
and its evaluation of integrity is lower than A3 and A1. Therefore, in interface layout
planning, we should try to avoid simultaneous radial and horizontal layouts. Comparing
class B interfaces separately, it can be found that the location of 3D pictures has a great
impact on the data search task time. The task time of B3, where the picture appears at
the end of the screen, is 15.3 s and 8 s shorter than the task times of B1 and B2, where the
picture appears in the middle. This is because the 3D graphics placed in the middle of
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the interface extend the user’s line of sight. At the same time, because the graphic area in
B2 is smaller than that in B1, it has less impact on line-of-sight blocking and shorter time
comparison. This point has also been demonstrated in the study by Ren J, Wang H and Hao
M, Xiaozhou Z, et al. [48,49]. In summary, it is necessary to pay attention to the influence
of its size and placement position on other data modules when typesetting 3D pictures.
Placing it alone on one side of the interface may help users shorten their saccade distance
to ensure the high efficiency of data readability.

By comparing the data search time of type A and type B interfaces, it can be clearly
found that the data readability of the 2D interface with pure data is higher than that of
the interface with 3D graphics, which is also verified by Stewart and Cipolla et al. [50].
However, in combination with the subsequent visual perception evaluation of participants,
the B-type interface also has significant advantages regarding the degree of user interest.
On the other hand, since industrial parks area carbon emission complexes in many aspects,
3D models can also help decision makers to intuitively understand the sources of carbon
emissions [51], so it is not a wise choice to simply exclude 3D graphics from interface design.
The reasonable allocation of the proportion of 2D graphics and 3D models in the interface
layout can be utilized in future research to improve the readability of the visual interface
data of carbon emissions in the park. By observing the eye-track maps of B1 and B2, people
are accustomed to moving their visual focus from the middle of the interface to both ends,
especially the more data-intensive area. However, if the data-intensive area is originally in
the middle of the interface, such as B3, then people’s visual focus will return to this area.
Based on the above results of the separate analysis of class A and Class B interfaces, it is
better to choose a one-way regular layout when designing the interface layout, with key
data placed in the middle of the layout and 3D graphics placed on the side close to the
key data of the interface. Subsequent research should explore the influence of placing the
screen on the right or left side of the interview on the reading of key data.

In addition, due to the development of digital twin technology, virtual dynamic 3D
models have also been applied to data visualization interfaces [52–56], and some interfaces
have begun to change the transparency of data components and overlap them with dynamic
models covering the screen. This kind of design has a sense of beauty combined with science
and technology and, thus, has a strong visual impact. However, its specific impact on data
reading is unknown; therefore, determining this impact is the next step for future research.

Finally, as no researchers have previously combined these three types of visual per-
ceptual features with eye-tracking technology to study the usability of data visualization
interfaces, especially for newly emerging zero-carbon parks, this study provides another
research idea for humanized design in related fields. However, this study only prelimi-
narily explored the possible relationship between interface usability and three types of
visual perception characteristics. This study simply started from the overall layout and
analyzed it using a basic Pearson correlation coefficient. Consequently, the collected data
are limited and the statistical analysis was weak; many detailed elements of the interface
layout were also not considered. In the future, we plan to use an ablation research method
to study the influence of color scheme, border design, information module transparency,
background blur degree, and interaction mode on interface usability to enhance research
and data reliability in this field of study. The data regarding visual perception and data
readability obtained in this study will provide some basic support for subsequent research.

5. Conclusions

In summary, combined with the three characteristics of visual perception, we used eye-
tracking technology to study and explore the layout of existing visual interfaces that display
carbon emission data in industrial parks, ultimately suggesting ways to improve the layout
of the visual interface of carbon emission data in a universal manner. The humanization of
interface design is a topic that previous studies have not explored in depth. When planning
the layout of an interface, we should pay attention to the requirements of the integrity of
the interface and try to avoid the simultaneous appearance of radial and horizontal layouts.
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When typesetting 3D pictures, the influence of size and placement on other data modules
must be considered. Graphics that are too large reduce the space required for other data
and negatively affect readability. Inappropriate placement of graphics can also prolong the
line of sight for users. Placing key data in the middle of the layout and placing 3D graphics
at the side of the interface close to key data also helps users focus their vision on key areas.

This study innovatively considered three types of visual perception features and
preliminarily demonstrated their correlation with the usability of a visual interface, which
provided new research ideas for subsequent visual interfaces that monitor carbon emissions
in industrial parks. This will help researchers to humanize the interface design to be
more consistent with visual perception cognitive characteristics, which also contributes to
improving the usability of the interface and the readability of data, and helps the decision
makers to develop more efficient and scientific carbon emission reduction strategies to a
certain extent.

In addition, it should be noted that this study also has some limitations. For example,
the research object was mainly a static interface layout, and interactive animation in the
visual interface was not studied. The subjects were mainly young women and men,
and thus other age groups were not considered. Moreover, the research method was an
indirect rather than direct comparison. Further research should focus on addressing the
shortcomings and limitations of this study, including the analysis of the impact of dynamic
3D animation on the data readability of a carbon emission visualization interface, analyzing
the suitability of the proportion of 2D pictures and 3D models in the interface, and the
application of digital twin technology in the carbon emission visualization interfaces of
industrial parks.
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