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Abstract: This work assesses the seismic stability of tunnel faces advanced in heterogeneous and
anisotropic soils based on the plastic limit theorem. A discretized kinematic velocity field respecting
the normal flow rule is generated via a point-to-point discretization technique. The distribution of soil
parameters in the depth direction including cohesion, friction angle, and unit weight are considered
by four kinds of profiles. The variation in cohesion with shear direction caused by consolidation
and sedimentation is considered by including an anisotropy coefficient. The seismic acceleration is
represented by the modified pseudodynamic method (MPD) rather than the conventional pseudody-
namic method (CPD). Based on the energy equilibrium equation, an upper-bound solution is derived.
The accuracy and rationality of the proposed procedure are substantiated by comparing with the
solutions obtained by conventional log-spiral mechanism and CPD. A parametric study indicates
that nonlinear profiles tend to predict a smaller required face pressure than the constant and linear
profiles due to the convexity of nonlinear profiles. The over-consolidated soil is more sensitive to the
anisotropy coefficient than normally consolidated soil. Moreover, the adverse effect of horizontal
seismic acceleration is much greater than that of vertical acceleration, and the resonance effect is more
prone to happen, especially for shallow-buried tunnels.

Keywords: tunnel face stability; modified pseudodynamic method; heterogeneity; anisotropy;
kinematic theorem of limit analysis

1. Introduction

The acceleration of urbanization puts forward a higher demand for the construction
of underground transportation in cities where the tunnel plays a significant role in the
connection of different regions. In the excavation of tunnels and underground cavities,
the stability and safety of excavation faces are important prerequisites for the smooth
penetration and timely delivery of the tunnel. Numerous contributions have been made
to predict the required support pressure and to ensure safety by various methods [1,2],
such as the limit equilibrium method [3–6], numerical simulation [7–9], limit analysis
method, and their combinations [10–13]. Compared with the limit analysis method, the
limit equilibrium method, as a classic theoretical method, solves the stability problems
from the viewpoint of static equilibrium. It usually assumes a specific failure surface, such
as a circular shape, log-spiral surface, and cylinder, and then presumes a local stress field
to the slip surface. Finally, based on the stress analysis of the whole failure block, the static
equilibrium equation is established, and the corresponding limit equilibrium solution is
obtained. However, the assumption of the local stress field on the failure surface cannot
be extended to the whole study area, and the stress state beyond the presumed area is
not exactly known; indeed, it does not strictly meet the definition of the lower-bound
stress field, and such a limit equilibrium solution is also called partial stress solution.
Although the derivation of the limit equilibrium solution uses the upper-bound failure
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mechanism and derives the least upper bound, it also does not satisfy the definition of the
upper-bound mechanism.

The limit analysis method, relying on its rigorous and systematic theorem, has gradu-
ally been accepted by scholars and engineers in recent decades [14–18]. The difficulty of the
lower-bound analysis exists in the establishment of the statically permissible stress field;
for this reason, the construction of the appropriate stress field is generally performed with
the help of finite element software. However, the kinematic method deals with stability
problems from the perspective of kinematics and avoids complicated stress analysis. It
assumes a kinematically admissible velocity field, namely, the failure mechanism, and
considers the failure block as a rigid body. Then, the limit failure load is derived from
the equilibrium between the rate of internal energy dissipated in the failure surface and
the rate of external work. Regarding the stability analysis of excavation faces, Leca and
Dormieux [19] first proposed a truncated cone mechanism to predict the critical support
pressure of tunnel faces, based on which Mollon et al. [20] modified this mechanism by
adding the number of blocks and achieved a good solution. Subrin and Wong [21] proposed
a new three-dimensional curvilinear cone failure mechanism to portray the active failure of
tunnel faces. However, these contributions are based on the assumption of uniformity and
isotropy of soils. The impact of variation in soil properties with depth and direction result-
ing from the geologic sedimentation and consolidation was often ignored. Unfortunately,
depending on the conventional upper-bound analysis, it is difficult to establish a kinematic
velocity field consistent with the variation in soil properties. Therefore, the discretization
strategy is proposed to deal with such problems. It was first developed by Mollon et al. [22]
to improve the failure mechanism and make the failure cover the entire tunnel face. Such
an improvement allows the stability analysis to be applied to more complex situations,
such as seepage conditions, earthquake action, complicated stratigraphic conditions, and
nonlinearity of soil strength [23–29].

Then, the discretization technique is extensively used to address stability problems
under nonuniform soils or earthquake loading. Chen et al. [30] investigated the face
stability of the shallow tunnel in heterogeneous and anisotropic soils considering the
passive failure of tunnel faces. Qin and Chian [31] applied this method to access the slope
stability and calculated the ultimate bearing capacity of slopes suffering from seismic
loading in heterogeneous soils. It only considered the heterogeneity of soil properties as
a simple linear variation with depth; the nonlinear variation in soil parameters and the
non-uniformity of the unit weight were not involved. Zhong and Yang [32,33] extended the
pseudodynamic method to the evaluation of the seismic stability of deeply buried tunnel
faces. However, the seismic acceleration is represented by the conventional pseudodynamic
method (CPD), which violates the zero-stress boundary condition and ignores the damping
of materials; moreover, the acceleration amplitude is assumed to be a constant distribution.

Therefore, in this paper, a new modified pseudodynamic method (MPD) that remedies
the above deficiencies is adopted to characterize the variation in seismic acceleration with
time and space. A discretized mechanism that consists of a series of discretized points is
generated via a point-to-point discretization method to adapt the variation in soil properties
with depth. According to the equilibrium between the internal and external work rates,
the upper-bound solution of the required face pressure is obtained in this work. The
heterogeneity of soil properties is analyzed by encompassing the cohesion, friction angle,
and unit weight. Four kinds of distribution profiles are assumed to describe the variation
in soil parameters with depth. The anisotropy of cohesion is considered by defining a
coefficient k = cv/ch.

2. Methodology
2.1. Modified Pseudodynamic Method

The classic wave equation is derived based on the elastic medium assumption, which
is not suitable for soil materials. Therefore, the Kelvin–Voigt viscoelastic model is used to
model the constitutive relationship of soil materials for studying the seismic response of
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soils in the vicinity of the tunnel face under earthquake excitation. According to Kramer [34],
the vibration displacement of particles in the viscoelastic medium can be decomposed
into horizontal (uh) and vertical (uv) components induced by shear and primary waves;
therefore, the wave equation is written as the following partial differential equations

ρ
∂2uh
∂t2 = G

∂2uh
∂z2 + η2

∂3uh
∂t∂z2 (1)

ρ
∂2uv

∂t2 = (λ + 2G)
∂2uv

∂z2 + (η1 + 2η2)
∂3uv

∂t∂z2 (2)

where ρ denotes medium density; η1 and η2 are viscosity; λ and G are Lamé constants.
Assuming a base shaking in the horizontal direction, Bellezza [35] derived the explicit
expression of the displacement from the above equations, based on the zero-stress boundary
condition at the ground surface and the initial displacement condition uhb= uh0 cos(vt)
at the base y = 0. The horizontal vibration displacement of particles in the viscoelastic
medium is presented as

uh(y, t) =
uh0

C2
S + S2

S
[(CSCSZ + SSSSZ) cos(vt) + (SSCSZ − CSSSZ) sin(vt)] (3)

Calculating the second derivative of formula Equation (3) concerning time, and retain-
ing the real part, one can yield the seismic acceleration at time t and height y

ah(y, t) =
khg

C2
S + S2

S
[(CSCSZ + SSSSZ) cos(vt) + (SSCSZ − CSSSZ) sin(vt)] (4)

where kh is the horizontal seismic coefficient defined by khg = −v2uh0; and the expressions
of intermediate items CS, SS CSZ, and SSZ take the forms

CS = cos(ys1) cosh(ys2) (5)

SS = − sin(ys1)sinh(ys2) (6)

CSZ = cos
[

ys1(C + D− y)
C + D

]
cosh

[
ys2(C + D− y)

C + D

]
(7)

SSZ = − sin
[

ys1(C + D− y)
C + D

]
sinh

[
ys2(C + D− y)

C + D

]
(8)

in which

yS1 =
v(C + D)

Vs

[√
1 + 4ξ2 + 1

2(1 + 4ξ2)

]1/2

(9)

yS2 = −v(C + D)

Vs

[√
1 + 4ξ2 − 1

2(1 + 4ξ2)

]1/2

(10)

Similarly, the vertical vibration displacement of particles in the viscoelastic medium is
obtained by applying the initial vertical displacement uvb= uv0 cos(vt)

uv(y, t) =
uv0

C2
P + S2

P
[(CPCPZ + SPSPZ) cos(vt) + (SPCPZ − CPSPZ) sin(vt)] (11)

Calculating the second derivative of formula Equation (11) concerning time, and
retaining the real part, the seismic acceleration at time t and height y reads
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av(y, t) =
kvg

C2
P + S2

P
[(CPCPZ + SPSPZ) cos(vt) + (SPCPZ − CPSPZ) sin(vt)] (12)

where kv denotes the vertical seismic coefficient defined by kvg = −v2uv0; and the expres-
sions of intermediate items CP, SP CPZ, and SPZ take the forms

CP = cos(yP1) cosh(yP2) (13)

SP = − sin(yP1)sinh(yP2) (14)

CPZ = cos
[

yP1(C + D− y)
C + D

]
cosh

[
yP2(C + D− y)

C + D

]
(15)

SPZ = − sin
[

yP1(C + D− y)
C + D

]
sinh

[
yP2(C + D− y)

C + D

]
(16)

where

yP1 =
v(C + D)

Vp

[√
1 + 4ξ2 + 1

2(1 + 4ξ2)

]1/2

(17)

yP2 = −v(C + D)

Vp

[√
1 + 4ξ2 − 1

2(1 + 4ξ2)

]1/2

(18)

2.2. Heterogeneity and Anisotropy Materials

In geotechnical engineering, soil materials are assumed to be homogeneous and
isotropic to facilitate analysis and simplify calculation in most cases. However, due to
natural deposition, artificial surcharge, and other factors, soils often behave with certain
strength heterogeneity along depth and anisotropy with shearing direction. It is of great
theoretical and practical meaning to study the stability of excavation faces under the
condition of strength heterogeneity and anisotropy. The common cognition takes the
distribution of values of strength parameters as linear variation with depth, as indicated in
Figure 1c; it is too simple and not comprehensive, and therefore, a polynomial relationship
f (yi) is assumed herein. The heterogeneous parameters involved in this work include c, ϕ,
and γ, and the corresponding values at a random height yi read

ci = fα(yi) = k1 · yα
i + b1

ϕi = fα(yi) = k2 · yα
i + b2

γi = fα(yi) = k3 · yα
i + b3

(19)

where α is the exponent of the power function, with α = 0, 1, 2, 3 corresponding to the
distribution of parameters in average value, linear variation, quadratic variation, and cubic
variation, respectively. k1, k2, k3 and b1, b2, b3 are coefficients that need to be determined
based on the initial parameters at yi = C + D and yi = 0.

The strength anisotropy of soils is mainly reflected in cohesion. The cohesion of
most soils is anisotropic with respect to the shear direction, Casagrande and Carrillo [36]
investigated the variation in cohesion at a certain point in soils with direction, and they
found the variation in cohesion takes the following trend, as shown in Figure 1d.

cκ = ch + (cv − ch) cos2 κ (20)

where cκ is defined as the cohesion at the slip surface where the principal stress direction
makes an angle of κ with vertical direction. Based on the geometry relationship in Figure 2b,
κ = π/2− θ − ϕi − ψ in failure surface where ψ is the angle between failure surface and
major principal stress, and it usually adopts ψ = π/4 − ϕi/2; ch and cv represent the
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cohesions in horizontal and vertical directions, respectively. Introducing a coefficient
k = cv/ch, and considering the heterogeneity, then Equation (20) becomes

ciκ = ci

(
1 +

1− k
k

cos2 κ

)
(21)
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Figure 2. Diagrammatic sketch of the discretized failure mechanism. (a) generation of failure
mechanism; (b) discretization element.

3. Determination of the Discretized Mechanism

This work aims to predict the required support pressure of shallow-buried tunnels in
the heterogeneous and anisotropic soil materials governed by the Mohr–Coulomb failure
criterion. To consider the nonuniform feature of the internal friction angle, a discretization
technique is used herein to generate the potential failure mechanism that extends to the
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surface, as illustrated in Figure 2. Failure surfaces start from crown A and invert B, and
they finally intersect with the surface at points E and F, respectively. Due to the existence of
the excavation face, the failure mechanism is truncated. Therefore, the failure mechanism
is divided into two sections by the radial plane passing through points O and A, and the
generation process is implemented in two steps.

Taking point B as the origin of the Cartesian coordinate system and point O as the
origin of the polar coordinate system, two sets of coordinate systems are established. In
Sections 1 and 2, a series of radial lines passing through polar origin O are plotted, and
the angle between successive radial lines is identical. Citing Section 2 for an example, the
point Ki(xi, yi) is given as the starting point, and the next point is Ki+1(xi+1, yi+1); the
primary mission is to determine the coordinate of the point Ki+1(xi+1, yi+1). As presented
in Figure 2b, the normal flow rule requests an angle of ϕi between the slip surface and the
corresponding velocity, and afterward, based on the sine theorem in triangular element
OKiKi+1, the length of radial line OKi+1 therefore takes the form

ri+1 =
ri cos ϕi

cos(ϕi − δ)
(22)

with a length of radial line OKi being

ri =

√
(xi − xo)

2 + (yi − yo)
2 (23)

The coordinate of point Ki+1 in the xoOyo system yields{
xi+1 = ri+1 · sin(θi + δ)
yi+1 = −ri+1 · cos(θi + δ)

(24)

Transforming the coordinate of Ki+1 in the xoOyo coordinate system into that in the
x1Oy1 coordinate system, the coordinates of the next point are obtained{

xi+1 = ri+1 · sin(θi + δ)− rB sin θB
yi+1 = −ri+1 · cos(θi + δ) + rB cos θB

(25)

Implementing the aforementioned procedure in turn, the failure surface consisting
of a series of discretized points is generated. The generation of the upper boundary AE
follows the same procedure as lower boundary BF except for substituting Equation (22)
with Equation (26).

ri+1 =
ri cos ϕi

cos(ϕi + δ)
(26)

The rotation center O of the failure mechanism is controlled by two dependent angular
variables θA and θB. rA and rB, shown in Equation (25), are defined as the initial radius,
and based on the geometric relationship, they are calculated as{

rA = C sin θB
sin(θA − θB)

rB = C sin(π − θA)
sin(θA − θB)

(27)

Following the aforementioned procedure, the last two points of boundaries might
not exactly locate the ground surface when the generation successfully finishes, and thus,
the accurate coordinates of intersection points are determined by linear interpolation. As
mentioned above, the parameter δ governs the density of discretized points and affects the
accuracy of the solution. A smaller δ results in a closer match to the log-spiral mechanism.
The appropriate value of the incremental angle will be discussed in detail.
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4. Face Stability Analysis by Kinematic Theorem

Section 3 interrupted the calculation of the discretized points for shallow-buried
tunnels in detail. Given a random initial point, the coordinate of the next point can
be determined by the procedure proposed in Section 3. Such a point-to-point method
discretizes the failure surfaces and makes the consideration of heterogeneity possible, as
illustrated in Figure 3. In the computation of rates of work, the direct integral method
does not apply to the discontinuous boundaries consisting of discretized points, and
therefore, the classic superposition method is adopted in this work. Taking the plane
where the tunnel face is located as the projection plane, termed as Π, and projecting all
discretized points onto the Π plane, then two adjacent points and their projection points
form a trapezoidal element. As the angle increment δ is small enough, the thickness of
such a trapezoidal element becomes infinitesimal, so that the shear strength parameters
can be taken as uniformly distributed in the trapezoidal element. Taking a trapezoidal
element KiKi+1PiPi+1, as shown in the shaded area of Figure 3, for instance, the procedure
of calculation for the rate of work produced by gravity is elaborated as follows.
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Using all the discretized points located in discontinuity BF, then total rates of work by
self-gravity yield the following expression

.
WG = ∑

i
ωγ(yi)Si

√
(xo − xci)

2 + (yo − yci)
2 sin θci (28)

where γi is the unit weight of the ith trapezoidal element at height yi, and θci is the angle
between the gravity direction and line OCi. Si is the area of the ith trapezoidal element.
(xci, yci) denotes the coordinates of the centroid of the ith element. xci =

x2
i + xixi+1 + x2

i+1
3(xi + xi+1)

yci =
xiyi+1 + xi+1yi + 2xiyi + 2xi+1yi+1

3(xi + xi+1)

(29)

However, rates of work in Equation (28) contain the rate of work of block AEN, which
does not belong to the failure block of the tunnel face and needs to be removed. The rate of
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work of block AEN can be calculated analogously to Equation (28), and the procedure is
not repeated herein.

In seismic stability analysis, the earthquake affects the stability of geotechnical struc-
tures from two aspects, increasing the driving force and decreasing the shear strength of
soils, but in this work, only the former is considered. The positive directions of horizontal
and vertical accelerations are defined as follows: leftwards (←) and downwards (↓). In
each element, calculating the inertial force based on the MPD, the rate of inertial forces can
be calculated as

.
WGh = ∑

i
ωγ(yi)Si

√
(xo − xci)

2 + (yo − yci)
2 cos θci·

kh
C2

S+S2
S
[(CSCSZ + SSSSZ) cos(vt) + (SSCSZ − CSSSZ) sin(vt)]

(30)

.
WGv = ∑

i
ωγ(yi)Si

√
(xo − xci)

2 + (yo − yci)
2 sin θci·

kv
C2

P+S2
P
[(CPCPZ + SPSPZ) cos(vt) + (SPCPZ − CPSPZ) sin(vt)]

(31)

In the case of a shallow-buried tunnel, the failure of the tunnel face often extends
to the surface, and therefore, the ground surcharge should be considered. Assuming a
uniformly distributed surcharge, and assuming the failure mechanism intersects with the
surface at points E and F, then the rates of work produced by surcharge are computed by
the following expression

.
Wσs =

∫ θE

θF

σsω

√
(xo − xci)

2 + (yo − yci)
2dl =

1
2

ω · r2
E · σs ·

(
cos2 θE

cos2 θF
− 1
)

(32)

Similarly, the rates of work induced by the uniform face pressure take the form

.
WσT =

∫ θA

θB

σTω

√
(xo − xci)

2 + (yo − yci)
2dl =

1
2

ω · r2
B · σT ·

(
sin2 θB

sin2 θA
− 1

)
(33)

Apart from the external work rates, the cohesion provides the resistance to keep the
tunnel face from instability in the plastic shearing failure process. The corresponding rate
of work that happened on the failure surface is calculated by

.
WD = ∑

i
c(yi)

(
1 +

1− k
k

cos2 κ

)√
(xi+1 − xi)

2 + (yi+1 − yi)
2 ·ω

√
(xi − xo)

2 + (yi − yo)
2 cos ϕ(yi) (34)

where ci and ϕi denote the cohesion internal friction angle at height yi, respectively.
Equating the total external work rates in Equations (28) and (30)–(33), and the internal

energy dissipation rates in Equation (34), the required face pressure in the heterogeneity
and anisotropy soils is derived

σT =

.
WD −

.
WG −

.
WGv −

.
WGh −

.
Wσs

1
2 r2

B

(
sin2 θB
sin2 θA

− 1
) (35)

The discretized-based failure mechanism is dependent on two angular variables θA
and θB, as observed from Figure 3; in this way, the required face pressure in Equation (35)
is considered as a function of the position of polar origin, namely, σT = f (θA, θB, t/T). To
find the optimal solution, the above procedure is written in program code, which can be
run in the MATLAB environment, subjected to the following constraint. In order to make
the structure of the article clear and organized, the specific calculation process in MATLAB
software is given in Figure 4.
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max σT = f (θA, θB, t/T)

s.t.


0 < θB < π/2
θB < θA < π/2
0 < t/T < 1
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5. Results and Discussion
5.1. Comparison

In the context of the plastic limit theorem, the analytical solution of the required
support pressure is obtained based on the energy equilibrium equation. It is noted that the
critical face pressure in Equation (35) depends on two dependent variables which control
the geometry of the velocity field and a time variable that determines the distribution
of acceleration. A random set of angles can determine a specific geometry of the failure
mechanism based on which an upper-bound solution can be calculated. To calculate
the least upper bound that is closest to the true solution, the enumeration method is
adopted to search for the optimal solution. Before the parametric analysis, the accuracy
and rationality of the proposed method are of necessity to be validated. The following
parameters are inputted: C = 5 m, D = 10 m, c1 = c2 = 10 kPa, ϕ1 = ϕ2 = 10◦,
γ1 = γ2 = 18 kN/m3, σs = 0, k = 1.0, and kh = 0. Table 1 presents the required
support pressure by the conventional log-spiral mechanism and discretized mechanism
under homogeneous and isotropic soils, while Table 2 calculates the support pressure
in heterogeneous and anisotropic soils for comparison. It is noted from Table 1 that the
smaller discretized angle δ, the higher the accuracy of the solution, when δ = 0.001 rad,
the maximum difference of the solutions between the discretized mechanism and log-
spiral mechanism decreases to 0.12%, which is neglectable. Also, the failure mechanisms
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obtaining the optimal solution are illustrated in Figure 5 with different incremental δ values,
it is shown that the discretized mechanism is nearly identical to the log-spiral mechanism
when δ = 0.001 rad, and therefore, the incremental angle is set as 0.001 rad considering the
accuracy and efficiency in the sequel.

Table 1. Required face pressure in homogeneous and isotropic soils (in kPa).

Discretized Mechanism Log-Spiral Mechanism

ϕ δ = 0.01 rad δ = 0.001 rad

c = 5 c = 10 c = 15 c = 5 c = 10 c = 15 c = 5 c = 10 c = 15

5 137.86 121.01 104.41 136.39 119.64 103.12 136.23 119.49 102.98
10 109.89 94.66 79.57 108.56 93.41 78.40 108.41 93.27 78.27
15 82.67 68.81 55.00 81.59 67.80 54.06 81.47 67.69 53.96
20 59.65 47.00 34.40 58.80 46.21 33.67 58.70 46.12 33.58
25 41.51 30.65 19.80 40.92 30.19 19.45 40.86 30.13 19.41

Table 2. Required face pressure in heterogeneous and anisotropic soils (in kPa).

C/D

Discretized Mechanism Log-Spiral Mechanism

Homogeneity
and Isotropy

Heterogeneity and Anisotropy Homogeneity
and Isotropy

Heterogeneity
and Anisotropy

c/kPa ϕ/◦ γ/kN·m−3 c/kPa γ/kN·m−3

0.20 72.04 78.95 68.75 69.59 71.94 78.84 69.48
0.40 86.82 94.51 83.00 84.31 86.69 94.38 84.18
0.60 99.42 107.72 94.77 97.11 99.27 107.56 96.95
0.80 109.47 118.29 103.89 107.55 109.30 118.11 107.37
1.00 116.65 126.03 110.26 115.29 116.45 125.83 115.08
1.20 120.69 130.75 113.68 120.07 120.48 130.53 119.84
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Figure 5. Failure mechanisms generated under different incremental δ values.

The results in Table 2 are calculated based on the log-spiral mechanism and discretized
mechanism, and the conventional linear variation in heterogeneity of soil strength with
depth is considered. In the discretized mechanism, both the heterogeneity and anisotropy
of the cohesion are considered; however, for ϕ and γ, only the heterogeneity is considered
due to their little dependence on the direction. The log-spiral mechanism is incapable of
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considering the heterogeneity of ϕ because a variational ϕ will make it difficult to explicitly
express the failure mechanism, which is also the reason why the discretization technique
is necessarily used in this paper. The comparative results indicate that the difference
in solutions resulting from failure mechanisms is small, and the consideration of the
heterogeneity of the ϕ and γ leads to a stable tunnel face; however, such an enhancement
effect on tunnel faces cannot be found from the cohesion because the reduction impact of
anisotropy of c on the stability of tunnel faces is dominant. It is preliminarily speculated
that the anisotropy of cohesion is an unfavorable factor to the face stability. This guess will
be further investigated in the following parametric study.

In the presence of earthquakes, two methods are commonly used to represent the
distribution of seismic acceleration induced by body waves including the pseudostatic
method and the CPD. The pseudostatic method assumes a time- and position-independent
distribution of seismic acceleration, which is convenient to apply to different situations but
usually yields a conservative solution. The CPD remedies the deficiencies of the pseudo-
static method by considering the spatiotemporal variation characteristic of accelerations.
However, the zero-stress boundary condition is not satisfied. Letting the wave velocity
be infinite, the CPD and MPD become the pseudostatic method. Therefore, based on the
dynamic parameters ξ = 0.1, kv/kh = 0.5, kh = 0.1, T = 0.2 s, and Vs = 100 m/s, a
comparison between the conventional pseudodynamic solution (f = 1) and the pseudostatic
solution is made in Table 3. It is shown that the pseudostatic method always obtains the
greatest solution because a peak ground acceleration is assumed to be uniformly distributed
in the whole failure block. The support pressure obtained by the MPD is greater than that
of Zhong and Yang [32] by the CPD and show good consistency with each other. In gen-
eral, the correctness and accuracy of the proposed method are validated, and the detailed
parametric study will be carried out in the following text.

Table 3. Comparison of required face pressure under earthquakes (in kPa).

ϕ/◦
This Study Zhong and Yang [32]

Pseudostatic Method Results by MPD Results by CPD

kh = 0.1 kh = 0.3 kh = 0.1 kh = 0.3 kh = 0.1 kh = 0.3

5 140.34 194.84 130.72 160.02 130.62 154.19
10 108.79 144.01 106.13 134.54 103.94 124.48
15 80.51 107.45 80.22 107.49 77.12 95.72
20 56.54 77.82 57.01 80.71 53.97 69.31
25 38.35 55.32 39.10 58.91 36.25 48.48

5.2. Parametric Studies

This subsection aims to analyze the intrinsic influence of the heterogeneity and
anisotropy of soil parameters on the required support pressure. Based on the previous
description, the enumeration algorithm is adopted herein to search for the support pressure
in the limit state, which is programmed and executed in a MATLAB environment. The
following optimization procedure proceeds with basic input parameters: c1 = 10 kPa,
c2 = 20 kPa, ϕ1 = 10◦, ϕ2 = 20◦, γ1 = 16 kN/m3, γ2 = 20 kN/m3, σs = 10 kPa, k = 1.0,
C = 5 m, and D = 10 m.

5.2.1. Influence of Heterogeneity and Anisotropy

The heterogeneity of soil strength mainly reflects the variation in strength parameters
with depth due to the sedimentation and consolidation, in the conventional analyses
regarding the non-uniformity of soil strength, the assumption of the linear distribution
of soil strength parameters is usually made, particularly for normally consolidated soils,
while in this work, it is further extended to the other polynomial distributions including
quadratic and cubic profiles.
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The impact of heterogeneity of cohesion on the face stability is given in Figure 6a,
where the cohesion from the coordinate y = C + D to y = 0 presents constant, linear, quadratic,
and cubic increases. It can be seen that the constant profile of cohesion leads to the highest
support pressure compared to the other three profiles. Interestingly, such an estimation
via the constant profile is close to that of the linear profile. However, the quadratic and
cubic variation in cohesion with depth obtains decreasing solutions with the increase in
the exponent of the polynomial; such a case is caused by the fact that the convexity of
quadratic and cubic distributions provides a higher resistance than that of the constant and
linear profiles, as observed in the subgraph in Figure 6a. For the heterogeneity of friction
angle, the same effect as cohesion is found in Figure 6b, because the increase in cohesion
and friction angle offers greater shear strength to the soils. Notably, the impact of ϕ on the
stability of tunnel faces is more significant than cohesion with a maximum reduction in
the face pressure attaining up to 28%, as index α varies from 0 (constant profile) to 3 (cubic
profile). In Figure 6c, the impact of unit weight on the face pressure presents a different
trend from that of shear strength parameters. An increase in the exponent of the polynomial
results in an unstable tunnel face, namely, a greater face pressure, which implies that γ is
an unfavorable factor in the stability of the face.
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Figure 6. Required support pressure varying with surcharge in isotropic soils: (a) for cohesion profile,
(b) for friction angle profile, and (c) for unit weight profile.

The cohesion of soils normally presents a distinct anisotropy with shearing direction.
This feature is described by introducing an anisotropic coefficient k, whose value ranges
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from 0.75 to 2. The resistance preventing the tunnel face from collapsing is provided
directly by shear forces along the slip surface. Based on the Mohr–Coulomb failure criterion,
shear force relies on cohesion and friction angle. For a tunnel excavated in uniform soils
with constant cohesion, the effect of cohesion on required support pressure is shown
in Figure 7a, from which one can find that the stability of tunnel faces is improved by
increasing soil cohesion. The geometry of the failure mechanism depends on the friction
angle, which affects the required support pressure. As expected, a higher friction angle
means better soil strength, which enables the tunnel face to maintain self-stability in a
smaller support pressure, as illustrated in Figure 8a. Moreover, the reduction in required
support pressure is 22.6% under k = 1.75 when cohesion is increased from 10 kPa to 20 kPa,
while such a reduction is 52.7% when the friction angle varies from 10◦ to 20◦, which
indicates that the influence of friction angle on the required support pressure is more
significant than that of cohesion. It is worth noting that the tunnel face becomes unstable as
the anisotropy coefficient increase, at the same time, the improvement effect on the tunnel
face by increasing the cohesion is gradually decreased. However, such a phenomenon is
not found from the friction angle because the anisotropy only involves cohesion. The soil
weight produces positive work in the limit failure state; therefore, the required support
pressure is increased as the unit weight of soils is getting higher, as shown in Figure 9a. In
the non-uniform soils, the required support pressure is plotted against different C2, ϕ2, and
γ2 (at the invert of tunnel face) and k values, as shown in Figures 7b, 8b, and 9b, with C1,
ϕ1, and γ1 kept at 10 kPa, 10◦, and 16 kN/m3 at the crown of the tunnel face, respectively.
An increase in required support pressure is observed when C2 varies from 10 to 20 kPa.
It is worthwhile noting that this decrease in the gradient is much lower than the uniform
cohesion profile, as shown in Figure 7a. The same phenomenon can be found in the friction
angle and unit weight of soils.
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Figure 7. Required support pressure against anisotropic coefficient: (a) for constant cohesion, and
(b) linear cohesion profile.

The possible failure region is also a major concern in practical engineering, especially
for shallow tunnels whose collapse is more prone to protrude to the surface. Therefore, the
critical failure mechanism for obtaining the optimal solution is directly plotted according
to the coordinates of discretized points under different influential factors. Based on the
linear profile and anisotropy coefficient k = 1.5, Figure 10 illustrates the influences of the
heterogeneity of cohesion, friction angle, and unit weight on the critical failure mechanism,
respectively. Generally, the friction angle has the greatest impact on the geometry of the
failure mechanism, and the size of the failure area that extends to the surface obviously
shrinks as the friction angle increases, because the failure mechanism is directly determined
by the friction angle, as mentioned above. The effect of cohesion on the failure mechanism
is slightly more obvious than that of unit weight.
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Figure 8. Required support pressure against anisotropic coefficient: (a) for constant friction angle,
and (b) for linear friction angle profile.
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Figure 9. Required support pressure against anisotropic coefficient: (a) for constant unit weight, and
(b) for linear unit weight profile.
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Figure 10. Critical failure surfaces in heterogeneous and anisotropic soils with k = 1.5: (a) for
non-uniform cohesion, (b) for non-uniform friction angle, and (c) for non-uniform unit weight.
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5.2.2. Influence of the Earthquake

In the presence of an earthquake, the seismic stability of tunnel faces is more of a
concern to engineers. The MPD used in this work is capable of considering the effect
of resonance on the acceleration amplitude, as shown in Figure 11, where the solid lines
represent the shear wave, and the dashed lines represent the primary waves. The amplitude
at the surface is significantly increased when the ratio of C + D to the wavelength achieves
the natural frequencies of soils. Considering the nonuniform soils in the linear profile,
the double x-axis graph in Figure 12 presents the variation in required support pressure
with the period and wave velocity, respectively, under different anisotropy coefficients.
It is observed that the support pressure behaves in a fluctuating change with the period
and wave velocity. The maximum/minimum of the required support pressure is obtained
when the ratio of C + D to the wavelength reaches resonance points. As the period or wave
velocity increases to infinity, the fluctuation disappears. This is because the ratio of C + D
to the wavelength approach zero, and the amplitude amplification effect disappears.
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Figure 11. Ratios of seismic acceleration amplitudes at the surface to the invert of tunnel faces.
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Figure 12. Influence of period and wave velocity on required support pressure.

The effect of seismic coefficients on face stability with respect to different anisotropy
coefficients is investigated in Figure 13, from which one can observe that the influence of
the horizontal seismic coefficient on face stability is greater than that of the vertical seismic
coefficient. For instance, the required support pressure is decreased by about 15.2% when
kh ranges from 0.1 to 0.2, while when kv varies from 0.1 to 0.2, the required support pressure
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decreases by about 2.3%. It is indicated that the effect of the vertical seismic acceleration is
negligible compared with the horizontal seismic acceleration.
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Figure 13. Required support pressure varies with seismic coefficients (a) for horizontal acceleration
and (b) for vertical acceleration.

To find more insights into the effect of earthquakes on face stability in nonuniform and
anisotropic soils, the required support pressure as a function of the anisotropy coefficient
and horizontal seismic coefficient is plotted in Figure 14, where the subgraphs (a)–(d)
represent the cases in constant, linear, quadratic, and cubic profiles, respectively. It is
observed that the required support pressure presents a nonlinear tendency as the anisotropy
coefficient increases, rather than the linear variation observed in previous parameters. The
presence of earthquakes greatly influences the stability of the tunnel face, with the required
support pressure increasing by more than twice from kh = 0 to kh = 0.3. In practical
engineering, although the earthquake situation may rarely be encountered, once it happens,
the property losses and casualties are huge. Therefore, the assessment of the seismic
stability of tunnel faces is necessary from the perspective of risk reduction and safety
assessment. Moreover, the influence of cover depth on the face stability is investigated in
Figure 15, from which one can see that for the shield-driven tunnels with a diameter of 6 m,
the resonance is more prone to happen, and the required support pressure significantly
increases when the cover depth is small. The tunnel face gradually becomes stable with the
cover depth increasing, and the corresponding support pressure rapidly decreases, even
maintaining self-stability without support.
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Figure 14. Required support pressure varies with horizontal seismic coefficient: (a) for constant
profile, (b) for linear profile, (c) for quadratic profile, and (d) for cubic profile.
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Figure 15. Influence of (C + D)/(VsT) on required support pressure with k = 1: (a) for constant profile,
(b) for linear profile, (c) for quadratic profile and (d) for cubic profile.
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6. Conclusions

This work revisits the seismic stability problem of circular tunnels excavated in hetero-
geneous and anisotropic soils via a discretization technique in the context of the plastic limit
theorem. The proposed procedure is made up of the following: (a) determination of the
possible failure mechanism respecting the associative flow rule via a point-to-point method;
(b) extension of the linear profile of soil strength to a universal polynomial distribution in
heterogeneous and anisotropic soils; (c) assessment of the seismic stability of tunnel faces
by the MPD.

A parametric study indicates that consideration of the nonlinear profiles of shear
strength parameters with depth tends to attain a smaller prediction of required support
pressure compared with the conventional linear and constant profiles, because such nonlin-
ear profiles are convex and can provide more resistance to prevent the tunnel face from
instability. However, the nonlinear profiles of unit weight will increase the external work
rate and weaken the face stability. As for the impact of anisotropy of soils, it is found
that for the most over-consolidated soils, namely, k < 1, the required support pressure is
sensitive to the anisotropy coefficient, while for normally consolidated soil, the required
support pressure increases steadily with the increase in the k value. The variation in friction
angle with depth results in having a prominent impact on the geometry of the failure
mechanism. In the presence of earthquakes, the effect of the horizontal seismic coefficient
is much greater than the vertical seismic coefficient, which may be the reason why scholars
tend to overlook vertical acceleration. Moreover, the resonance effect is an important factor
that significantly affects face stability, especially for shallow-buried tunnels, in which the
resonance effect is more prone to happen. In general, this work provides a new framework
to evaluate the seismic stability in nonuniform and anisotropic soils, which has a guid-
ing significance for practical engineering. In practical use, the analytical solution of this
paper should be taken as a reference together with specific seismic data as well as with
computational results of computer models of corresponding numerical solutions.

The main limitations of this study lie in the following two aspects: (1) this work
analyzes the face stability based on the plain strain condition, and the solution obtained
from the conventional two-dimensional analysis is safe in engineering but conservative.
In practice, the collapse of the tunnel face usually presents an evident three-dimensional
spatial feature, and therefore, it is necessary to conduct a three-dimensional analysis.
(2) The earthquake effect is considered by the modified pseudodynamic method, which
only involves the body waves and does not take the surface waves, such as Rayleigh waves
and Love waves, into consideration. For far-field earthquakes, the damage effect of surface
waves is more significant than body waves, and therefore, the surface wave should be
considered in the analysis in future work.
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