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Abstract: It is a challenge to improve the skill of seasonal precipitation prediction, because there
are many factors affecting summer precipitation in China, which are found on different time scales
and have complex interactions with each other. For these reasons, we establish a prediction model
with the time-scale decomposition (TSD) method to investigate whether the TSD has an improving
effect on the prediction skill of summer precipitation in China. Using this statistical model, the
predictors and predictands will be separated into interannual and interdecadal time scales, after
which Empirical Orthogonal Function (EOF) decomposition is performed on these two components,
and their time coefficients are predicted, respectively. The hindcast cross-validation results show that
the model without TSD has prediction skills only in some regions of East China and South China.
Compared with the model without TSD, surprisingly, the model with TSD can significantly improve
the prediction performance in more regions in China, such as Xinjiang Province and Northeast China.
The anomaly correlation coefficients (ACC) between hindcast precipitation with TSD and observation
are higher in most years than that without TSD. The results of the independent sample test show that
the forecast model with TSD has a stable and gratifying prediction skill, and the averaged ACC is
increased by more than 0.1.

Keywords: time-scale decomposition; Empirical Orthogonal Function; time coefficients; statistical
prediction model; summer precipitation

1. Introduction

China is located in the climate region of the East Asian monsoon, and its summer pre-
cipitation is affected by many factors, such as the East Asian summer monsoon (EASM) [1–4],
West Pacific Subtropical High (WPSH) [5–8], El Niño-Southern Oscillation (ENSO) [9–12],
Pacific decadal oscillation (PDO) [13–15], etc. The summer precipitation in China exhibits
obvious characteristics of not only interannual and interdecadal variability but also the un-
even spatial distribution of drought and flood. With the intensification of global warming,
extreme precipitation events also become more and more frequent in China. For example,
during the Meiyu period in 2020, the middle and lower reaches of the Yangtze River Valley
experienced the strongest rainfall since 1960, lasting up to 62 days, while South China suf-
fered severe drought. In July 2021, Henan Province, located in central China, experienced a
rare local rainstorm which then triggered floods, causing serious casualties and property
losses. Therefore, summer precipitation has been the key to short-term climate forecast
research in China.

The interannual variability is one of the most significant characteristics of summer
precipitation in China, which is mainly affected by EASM and is closely related to anomalies
of WPSH [5–8], sea surface temperature (SST) [9–11,16], sea ice [17–19] and other forcing
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signals. Wu and Zhou [5] believed that the strong interannual variability of summer
precipitation in East China is caused by the significant interannual variability of WPSH.
Some studies have paid attention to the impact factors of EASM and WPSH, including
ENSO in the tropical Pacific and SST anomaly in the tropical Indian Ocean. Huang and
Wu [9] proposed that in the development phase of ENSO, SST in western tropical Pacific
is colder in summer, and the convection over South China Sea is weak, which makes the
WPSH move southward and leads to increased precipitation in the Yangtze–Huaihe River
Valley; the study of Feng et al. [11] showed that in the following summer of EP El Niño
(with the maximum SST anomaly typically occurring in the eastern equatorial Pacific),
precipitation increases in the south of the Yangtze River and decreases in the Yangtze–
Huaihe River Valley, while in the following summer of CP El Niño (with the maximum
SST anomaly typically occurring in the central equatorial Pacific), precipitation increases in
the Yangtze River and Huang–Huai River Valley and decreases in the south of the Yangtze
River. Zhou et al. [16] pointed out that after the 2019 Indian Ocean dipole (IOD) event
disappeared in winter, the Indian Ocean basin warming (IOBW) was maintained by a
weak El Niño event until the 2020 summer, which triggered the abnormal anticyclone over
western Pacific and enhanced the westerly jet over the Yangtze River Valley, resulting in
more precipitation in China. For the continental part of China, studies have also shown
that SST anomaly has an impact on their summer precipitation [20,21]. In addition, it has
been revealed that decreased spring sea ice concentration (SIC) in the Arctic Ocean and
the Greenland Sea will lead to increased summer rainfall in Northeast China and Central
China between the Yangtze River and the Yellow River, while summer rainfall decreased in
South China [17].

Moreover, on the interdecadal time scale, Ding et al. [2] studied the interdecadal
relationship between summer precipitation of China and EASM, and pointed out that the
summer precipitation in East China has two interdecadal adjustments in 1978 and 1992,
respectively, with the main rain belt moving southward gradually; Feng et al. [13] studied
the modulation of PDO on the EASM in El Niño decay year, that is, when El Niño and
PDO are in phase (El Niño event/high PDO), abnormal anticyclones and cyclones appear
near the Philippines and Japan, respectively, and then the precipitation anomaly presents
a meridional triple structure in China, while when El Niño and PDO are out of phase
(El Niño event/low PDO), the abnormal anticyclone is in the Northwest Pacific and the
precipitation anomaly presents a meridional dipole structure; the study of Yang et al. [22]
showed that during the positive phase of interdecadal Pacific Oscillation (IPO), the ab-
normal cyclone over North China leads a further northerly rain belt and East China will
present a pattern of wet–north and dry–south, and when the phase of IPO is negative,
the above situations are opposite. Zhang et al. [23] examined the joint influence of PDO,
Atlantic multidecadal oscillation (AMO), and IOBW, and revealed the physical mechanism
of interdecadal variability of summer precipitation in East Asia and China over the past
century through the combination of different phases among the three.

As mentioned above, many factors have different effects on summer precipitation in
China, and they also have complex interactions with each other, which makes the forecast
a great challenge. Previous research has revealed one of the most important reasons is
that the prediction signal on the interannual time scale is inconsistent with that on the
interdecadal time scale [24]. Therefore, it is necessary to separate the time scale of the pre-
dictands into different time scales, investigate the influencing factors and prediction models
of each time scale separately, and then overlay their results as the overall prediction of the
objective physical quantity. This method is called the time-scale decomposition (TSD) pre-
diction method [25–28]. Some scholars have researched this problem before; Hu et al. [25]
decomposed the rainfall of flood season in the middle and lower reaches of the Yangtze
River Valley into interannual components of less than 8 years, interdecadal components
between 8 and 30 years, and interdecadal components longer than 30 years, then selected
the predictors, respectively and established a statistical forecast model through multiple
linear regression method; Liu and Li [26] adopted a statistical downscaling scheme based
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on the TSD to forecast summer rainfall in the Yangtze–Huaihe River Valley; Guo et al. [27]
conducted a stepwise regression on the interannual and interdecadal components of sum-
mer rainfall in North China, which is based on cross-validation, to select the best predictors
and establish a downscaling model; Song et al. [28] proposed a TSD threshold regression
downscaling approach for forecasting early summer rainfall in South China. All the con-
clusions mentioned above show that the application of the TSD method can effectively
improve the performance of summer precipitation prediction models.

EOF (Empirical Orthogonal Function) decomposition method was first proposed by
Pearson [29], and then Lorenz [30] applied this method to the research of meteorology. It
decomposes the variable field that changes over time into the part of spatial patterns that do
not change over time and the part of time coefficients that only depend on time. The EOF
decomposition method has the advantage of a fast convergence rate, and the eigenvectors
are orthogonal to each other. The spatial patterns can reflect the main spatial distribution
characteristics of the variable fields, and the corresponding time coefficients can reflect
the weight of each EOF mode. Therefore, this method has been widely adopted in the
field of climate analysis and forecast, especially for precipitation [31,32]. Xing et al. [33]
proposed an EOF–PLS regression-based method to make a long-lead seasonal forecast of
summer precipitation in China, in which the previous SST and 2 m temperature are used as
predictors. Ma and Sun [34] combined EOF decomposition with multiple linear regression
to study the relationships between the SST of preceding winter and EOF leading modes of
precipitation in Northeast China from June to August, respectively, and then constructed
a statistical prediction scheme. Huang et al. [35] used EOF analysis and the interannual
increment approach to propose an effective prediction method for summer precipitation
over eastern China. Liu and Zhu [36] took the regression coefficients of EOF leading
modes as predictands and proposed an approach to search for potential prediction skills of
predictors by ordinary least squares and cross-validation methods, namely Potential Skill
Map (PSM). They also developed an automatic selector of predictors based on this approach
to establish a statistical prediction model for summer precipitation anomaly in China.

To sum up, due to the complex impact factors and the interaction between them, there
is still a great challenge for the forecast of summer precipitation in China. As mentioned
earlier, the application of the TSD method can significantly improve the precipitation
prediction models, while currently, predictions using the EOF decomposition method
usually consider signals on an interannual time scale only.

Therefore, we raise the question here, as mentioned earlier, that it is necessary to
divide the predictands and predictors into interannual and interdecadal time scales; if
the TSD method is added to the precipitation prediction model based on EOF decompo-
sition, can its prediction accuracy also be improved? Based on the above hypotheses, we
filtered and decomposed the summer precipitation anomalies in China into interannual
and interdecadal time scales, and then used their time coefficients of EOF leading modes
as the predictands. With the linear relationship between each grid point in the physical
quantity fields and the time series, the hindcast results were tested, and the predictors were
obtained to establish a statistical prediction model based on the TSD method and the time
coefficients of EOF mode. Through cross-validation and an independent sample test, it is
found that the prediction after applying the TSD method is indeed improved.

2. Materials and Methods

Our analysis and prediction are based on the summer (from June to August) precip-
itation anomaly in China. Considering the forcing factors, as mentioned earlier, many
studies have shown that the SST anomalies in the tropical Pacific and Indian Oceans are
closely related to the summer precipitation in China [9–11,16]. There are also studies
focusing on the role of Atlantic SST [37,38]. The impact of Arctic sea ice on summer
precipitation in different regions of China has also been confirmed [19,39]. In addition,
500 hPa geopotential height can reflect the changes of the WPSH [5–8], teleconnection wave
train [39,40], trough/ridge [41,42], etc. In terms of identifying upper-level jets, 200 hPa
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zonal wind helps, and its convergence and divergence also provide conditions for pre-
cipitation anomaly [43,44]. These circulation anomalies can directly or indirectly affect
or modulate the summer precipitation in China. So, it can be seen that SST, SIC, 500 hPa
geopotential height, and 200 h Pa zonal wind are suitable as the predictands of the summer
precipitation in China.

Therefore, the following data are used in this study: (1) the monthly observation
precipitation data set of 160 stations in China from China Meteorological Administration,
and the distribution of stations are shown in Figure 1; (2) the monthly reanalysis data
set with the horizontal resolution of 2.5◦ × 2.5◦ from NCAR/NCEP (National Center for
Atmospheric Research/National Centers for Environmental Prediction), including spring
(from March to May) 200 hPa zonal wind (U200) and 500 hPa geopotential height (H500)
on the global range [45]; (3) the monthly SST and SIC observation data set in winter (from
previous December to February) with the horizontal resolution of 1.0◦×1.0◦ from UK
Met Office Hadley Centre [46], and the range of SST is (0◦–360◦, 60◦ S–60◦ N) and SIC is
(0◦–360◦, 60–90◦ N). The time range of our study is 1961 to 2020; the period 1961–2010 is
used for hindcast based on cross-validation test and 2011–2020 for independent sample
test. In order to reduce the effect of global warming, the linear trend of SST and SIC is
removed additionally.
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Firstly, before all the analysis and prediction, the TSD method is applied. To achieve
TSD of precipitation anomaly, referring to the previous works [25–27], a Butterworth filter
with an 8-year cutoff is used, and it separates the variable into interannual and interdecadal
signals for subsequent study. To avoid the influence of possible false boundary points, the
precipitation data from 1951 to 2020 are filtered, but only the data from 1961 to 2010 are
used for the selection of predictors and the establishment of the prediction model. Other
variables are not filtered.

Secondly, the primary variability of summer precipitation on interannual and inter-
decadal time scales is extracted using the EOF method, assuming that there are n years
of precipitation data Y and the predicted year is the i-th year. In order to avoid bringing
the signal of the predicted year into the hindcast model through the EOF leading modes,
which may affect the accuracy and credibility of the result, this study will perform EOF
decomposition based on the idea of cross-validation. The number m of EOF modes used in
the prediction model is determined by the comparison between the reconstructed and the
observed precipitation fields. By this step, we obtain the time coefficients of suitable EOF
leading modes on interannual and interdecadal time scales, i.e., T1(m, n) and T2(m, n), to
be the predictands and select the corresponding predictors in the following, respectively.

Thirdly, after obtaining the time coefficients T1(m, n) and T2(m, n) of EOF modes, re-
ferring to the study of Liu and Zhu [36], we will preliminarily select the possible predictors
from the previous autumn and winter variable fields X(x, y, n) through the following steps.
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x and y describe the range of the variable fields X in zonal and meridional directions, re-
spectively. Here, the ordinary least squares method is used individually for fitting the linear
function relationships R1(m, x, y) between X(x, y, n) and T1(m, n), and R2(m, x, y) between
X(x, y, n) and T2(m, n). Next, substitute the variable fields Xp,q,i (1 ≤ p ≤ x, 1 ≤ q ≤ y)
of the i-th year into R1(m, x, y) or R2(m, x, y) for each mode to obtain the hindcast time
coefficient fields T̂1i(m, x, y) or T̂2i(m, x, y), and repeat the above steps for n years to obtain
T̂1(m, x, y, n) and T̂2(m, x, y, n).

Finally, calculate the correlation coefficients between T̂1(m, x, y, n) and T1(m, n) or
T̂2(m, x, y, n) and T2(m, n), to be the selection foundation for potential predictors. In addi-
tion, the final determination method for the predictors of the time coefficients corresponding
to each EOF mode and the establishment of the prediction model will be illustrated in
detail in Section 3.3.

Before and after applying the TSD method to the precipitation anomaly fields, EOF
decomposition, selection of predictors, and establishment of prediction models will be
conducted. The complete prediction process using the TSD method is shown in Figure 2.
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3. Results
3.1. Determination of the Number m in EOF and Comparison of Reconstructed Fields

In the second step mentioned in the previous section, considering how many EOF
modes (number m) we need to reconstruct the precipitation anomaly fields is a very critical
problem for the prediction. On the one hand, more EOF modes are needed to better
reconstruct the abnormal variability of summer precipitation in China. On the other hand,
previous studies have suggested that too many EOF modes may make the prediction model
unstable [36,47,48]. Therefore, the number of EOF modes (m) is determined by the anomaly
correlation coefficient (ACC) and spatial variance ratio between the observed fields and
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the reconstructed fields. The reconstructed precipitation anomalies can be calculated
based on the spatial patterns Vk,i (k represents the ordinal number of the mode) and their
corresponding time coefficients Tk,i of EOF modes according to the following Formula (1)

Yi = ∑m
k=1 Tk,iVk,i (1)

From Figure 3, it is obvious that before and after using the TSD method, the anomaly
correlation coefficient (ACC) and spatial variance ratio between the observed fields and the
reconstructed fields will increase as the number of EOF modes increase. It can be found
in Figure 3a,b that although there are differences between reconstructed fields using the
same number of modes before and after TSD, both of them increase significantly from
two to eight modes, and the growth rate slows down after more than eight modes, which
exhibit the nonlinear growth characteristic in general. For this result, regardless of whether
TSD is performed or not, the interception of the first eight EOF modes for analysis can
reduce the possible instability effect on the prediction model, and better represent the main
characteristics of the observed precipitation.
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different numbers of EOF modes used for reconstruction).

Based on the spatial patterns and time coefficients of the first eight modes, the precip-
itation anomaly fields are reconstructed, and temporal correlation coefficients (TCC) are
calculated to compare the influence of the TSD method on the reappearance ability of the
precipitation anomaly (Figure 4). From Figure 4a,b, the spatial distribution of TCC have
great differences between the reconstructed precipitation anomaly fields with and without
TSD. For the reconstructed fields of original precipitation anomaly, TCC are small in North-
west China, Northeast China, and a part of Southwest China, which fail the significance
test at 95% level (Figure 4a). In contrast, TCC of the reconstructed precipitation anomaly
fields with TSD have been significantly improved in these regions, although some stations
in Northwest China still perform poorly (Figure 4b). Therefore, when using the first eight
EOF modes for reconstruction, although the summer precipitation anomaly in East China,
especially in the Yangtze–Huaihe River Valley, can be reproduced with or without TSD
to a certain degree, the reconstructed fields after TSD can represent the characteristic of
variation of precipitation in western and Northeast China.
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Figure 4. Spatial distribution of TCC between the reconstructed precipitation anomaly fields (a) with-
out and (b) with TSD and the observed precipitation anomaly fields using the first eight EOF modes
during 1961–2010 (the dashed line represents the 95% confidence test level).

In addition, the ACC of two reconstructed fields is calculated, respectively (Figure 5).
It is not difficult to find that, except in 1961, 1982, 1989–1991, and 2010, the ACC of the
reconstructed fields after TSD is higher than without TSD. The average ACC of the former
between 1961 and 2010 is 0.67, while for the latter is 0.57, with the difference close to 0.1.
ACC of the former range from 0.38 to 0.86, while the latter range from 0.35 to 0.82, and
both the minimum and maximum value of the former are higher than the latter. Therefore,
according to the comparison of TCC and ACC, it can be concluded that the reconstructed
precipitation anomaly fields after TSD, which use the first eight EOF modes and time
coefficients, can better restore the observed fields and provide a basis for the establishment
of the prediction model.
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Through the comparison and analysis of the reconstructed fields with and without the
TSD method, in the following research, we take the time coefficients of the first eight EOF
modes of summer precipitation in China as the predictands. According to the principle of
EOF decomposition, the predicted fields can be represented as
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∼
Yi = ∑8

k=1

∼
Tk,iVk,i (2)

∼
Yi represents the predicted precipitation anomaly field for the i-th year, and

∼
Tk,i(1 ≤ k ≤ 8)

represents the time coefficients of each mode for the i-th year, which will be predicted
by the model. For the prediction model without TSD, the predicted field of this year is
obtained by multiplying the predicted time coefficients with the spatial patterns of the first
eight EOF modes. For the prediction model using the TSD method, on the interannual and
interdecadal time scales, the predicted fields are obtained by multiplying the predicted
time coefficients with the spatial patterns of the first eight EOF modes separately, and then
they will be summed up to obtain the final predicted fields. Therefore, selecting suitable
predictors for the prediction models before and after TSD, and achieving the prediction of
the time coefficients, will be the key to the next section.

3.2. Preliminary Selection of Predictors

The result we need is the summer precipitation anomaly in China. Most work only
considered annual signals when selecting its predictors. However, as mentioned above,
many studies have shown that interdecadal signals may also play an important role in
it. Therefore, when selecting predictors, it is beneficial to consider interannual and in-
terdecadal signals at the same time to improve prediction skills. In addition, correlation
analysis is easily disturbed by extreme climate events, which may affect the result of the
prediction model. Liang [49] also pointed out that the correlation between two phenomena
does not mean that there is a causal relationship, and two independent events affected by
the same external factor often have a high correlation but no substantial causal relation-
ship. Although the predictors obtained by correlation analysis have statistical or physical
significance to some degree, they are only necessary conditions for predictand rather than
sufficient conditions [36]. Therefore, we will preliminarily choose predictors based on the
hindcast skill on each grid of the variable fields, rather than the simple correlation analysis
between physical quantities.

First, according to the steps in Section 2, the linear function relationships between the
variable fields, including the previous winter SST/SIC and spring U200/H500, and the time
coefficients of the first eight EOF modes are fitted. Using these relationships, all grids on the
variable fields can predict time coefficients for all modes every year. Then, the correlation
coefficients between the observed and predicted time series are calculated, from which
the grids with significant correlation (passing the confidence test level above 95%) will be
selected as potential predictors, which is obviously different from the traditional correlation
analysis calculating the correlation coefficients between the predictand and alternative
variables fields or indices. The potential predictors are obtained on the basis of the test for
the hindcast coefficients, and they are sufficient conditions for predictands. In addition, due
to removing the data of the predicted year and adjacent two years before fitting, the possible
impact of extreme climate events on the prediction model has been reduced. Therefore, the
predictors selected preliminarily through the above process have a more stable statistical
relationship with the time coefficients corresponding to each EOF mode.

Compared with other modes, the precursor signals of EOF 2 have a wider range and are
clear to compare [36]. In addition, many previous studies have focused on the relationship
between summer precipitation in China and ENSO and its associated circulation, while
studies on SIC are less. Therefore, we take the time coefficients of EOF 2 and the previous
winter SIC as an example to compare traditional correlation analysis with our method,
focusing mainly on the differences of predictors before and after TSD.

First, we compare Figure 6a–c with Figure 6d–f generally. It can be seen that the area
of our potential predictors is significantly smaller than the area with significant correlation.
Before TSD, the area of SIC anomaly significantly related to the time coefficients is mainly
located in the Barents–Kara Sea, and is also scattered near Baffin Bay and Greenland Sea
(Figure 6a). However, the potential predictors for the time coefficients of EOF 2 only exist
in the Barents Sea (Figure 6b). The differences between correlation analysis and potential
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predictors are also reflected in the signals of interdecadal (Figure 6b,e) and interannual
(Figure 6c,f) time scales. For the interdecadal time scale, comparing Figure 6b,e, it can
be seen that the SIC anomaly near Baffin Bay, Hudson Bay, Novaya Zemlya, and the
Chukchi Sea has a significantly positive correlation with the time coefficients of EOF 2,
while there is significantly negative in the Greenland Sea (Figure 6b). However, there
is no potential predictor for the time coefficients of EOF 2 in the Chukchi Sea, and the
range of other regions is also obviously reduced (Figure 6e). For the interannual time
scale, the time coefficients of EOF 2 also have a significant positive correlation with the SIC
in the Barents Sea, while the correlation north of the Laptev Sea is significantly negative
(Figure 6c). But the latter region failed to select potential predictors (Figure 6f). From
the above analysis, for potential predictors, it can be found that there are differences
before and after using the TSD method, and there are also obvious differences between the
interannual and interdecadal components after TSD. This also indicates that the prediction
of time coefficients on different time scales after TSD is meaningful for the improvement
of prediction skills. In addition, the potential predictors selected by the test of hindcast
coefficients are included in the region with a significant correlation between the time
coefficients and the variable fields. The selection of potential predictors is stricter than
traditional correlation analysis, and the previous SIC anomaly with significant correlation
may not necessarily be potential predictors. These conclusions are the same for other modes
and variables also (figure omitted).
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3.3. Establishment of Prediction Model and Hindcast Test

After the preliminary selection of the predictors in the previous section, the precursor
signals with significant correlation but poor prediction results have been removed. In this
section, these potential predictors will be further tested. From Equations (1) and (2), it can
be seen that the spatial distribution of EOF modes used for the reconstruction or prediction
of precipitation anomaly fields are the same, and the differences lie only between their time
coefficients. It is also widely known that the major characteristics of the precipitation fields
can be represented by the EOF modes with high variance contributions, combining the
positive or negative time coefficients. Therefore, here we first test the symbol consistency
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rate between the predicted and observed time coefficients. The hindcast period is 50 years
from 1961 to 2010, and the threshold of symbol consistency in this study is set to 60% by
many tests, that is, 30 years. So, for the potential predictors selected in Section 3.2, if the
predicted and observed time coefficients have the same symbol for 30 or even more years
on the same grid, this grid will be retained, while other grids that do not meet this condition
will be eliminated. Here, the predictors are selected based on the actual hindcast result once
again. Sorting the hindcast time coefficients given by the above grids for the same year, the
median of this series will be the final value predicted for this year, and the corresponding
physical quantity will be the final predictor, which also reduces the subjectivity and avoids
the overfitting problem that may exist in multiple regression prediction models. These steps
are all performed on time coefficients of EOF modes for the interannual and interdecadal
components after TSD, respectively.

Through the evaluation and selection of the potential predictors, we have structured
prediction models of the time coefficients corresponding to the EOF leading modes of
summer precipitation in China before and after TSD. Figure 7 shows the hindcast results
of time coefficients for the first three EOF modes in 1961–2010. Since the predictand is the
annual summer precipitation in China, here we mainly compare the hindcast results before
TSD (Figure 7a,d,g) and interannual components of TSD (Figure 7b,e,h). For the prediction
model without TSD, the correlation coefficients between the observed and predicted time
series of the first three EOF modes are 0.39, 0.52, and 0.63, respectively. For the prediction
model of the interannual component after TSD, the correlation coefficients between the
observed and predicted time series are 0.53, 0.53, and 0.52, respectively. Therefore, the
prediction accuracy of time coefficients has been improved after TSD for the first two modes,
especially for the first mode with the largest variance contribution; its correlation coefficient
has increased by nearly 0.15. Although the correlation coefficient of the third mode has
decreased, the predicted precipitation anomaly field we hope to receive is obtained by
combining two components of different time scales for the first eight EOF modes, which
will be analyzed and tested later.
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Figure 7. Observed (black solid line) and predicted (red dotted line) time coefficients of the first
three EOF modes (the left column represents non-TSD, the middle column represents the interannual
component of TSD, and the right column represents the interdecadal component of TSD).

So far, we have completed the prediction of time coefficients. The ultimate goal we
want to achieve is to predict the summer precipitation anomaly fields in China. Therefore,
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according to Equations (1) and (2), we need to multiply the predicted time coefficients of
the first eight EOF modes with their spatial patterns to obtain the final result, and compare
the prediction skill before and after TSD. It can be seen from Figure 8a,b that there are also
significant differences in TCC’s spatial distribution with and without TSD for the predicted
fields. The hindcast fields without TSD only have high prediction skills in some areas
of Central China, East China, and South China, while the rest regions all fail to pass the
significance test at the 95% level. For the predicted fields after TSD, the region with high
TCC is more expanded than the former, and a small number of stations in Xinjiang Province
and Northeast China also represent high TCC. Therefore, after TSD, the predicted fields
have higher prediction skills in TCC test.
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We also calculated the ACC of predicted fields before and after TSD (Figure 9). During
the hindcast period, the ACC of the predicted fields without TSD ranged from −0.087 to
0.61, with an average of 0.30, while the ACC of the predicted fields after TSD ranged from
−0.086 to 0.67, with an average of 0.37. It can be seen from the difference between them
in 50 years, the ACC of the predicted fields with TSD is higher than that without TSD for
30 years. Conversely, the ACC of the predicted fields before TSD is higher than after for
only 13 years (the differences are so small in other years). Through the test of ACC, it
can also be concluded that the prediction model performed better after TSD for summer
precipitation anomaly in China.

3.4. Result of Independent Sample Test

In addition, we also tested the predicted precipitation anomaly fields from 2011 to
2020 using the prediction model for an independent sample test (Figure 10). It is seen
that although the ACC of the forecast model without TSD is higher than that with TSD in
several years, its prediction skill in 10 years is unstable, ranging from −0.38 to 0.37, and
the average is only −0.002 (i.e., negative skill). Especially in 2011, 2015, and 2020, ACC
was very low. In contrast, the ACC of the forecast model after TSD is positive in almost all
years except three years close to 0. The overall performance is stable, and the average is
0.10, more than 0.1 higher than the forecast model without TSD. Therefore, it is not difficult
to find that the TSD method can effectively improve the prediction skill of the original
forecast model without TSD in an independent sample test.
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4. Discussion and Conclusions

The summer precipitation in China is influenced by forcing signals on multiple time
scales and exhibits interannual and interdecadal variation characteristics, which make its
prediction difficult. Therefore, it is necessary to divide the precipitation into interannual and
interdecadal time scales and predict them separately. This is the time-scale decomposition
(TSD) method used in our study. In addition, the time coefficients corresponding to the
EOF modes are taken as the predictands, and the predictors are selected from variable
fields according to the hindcast result of every grid. Then, statistical prediction models
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are established for the summer precipitation anomalies in China before and after using
the TSD method, and their prediction abilities are compared through the hindcast test and
independent sample test. The main conclusions are as follows:

(1) According to the nonlinear growth characteristics of the ACC and spatial variance
ratio of precipitation anomaly fields reconstructed by different numbers of EOF modes,
the first eight EOF modes and their time coefficients are selected to reduce the possible
instability impact on the prediction models. Through the test of TCC, it can be found that
the precipitation anomaly in East China can be represented to a certain degree when the
first eight modes are used for reconstruction, whether or not TSD is carried out. But the
reconstructed fields after TSD have a better reappearance ability in West and Northeast
China. ACC shows that the minimum and maximum values of the reconstructed fields
after TSD are higher than those without TSD, and the difference between their average
is close to 0.1. This comparison shows that the reconstructed fields with TSD can better
represent the precipitation anomaly;

(2) The potential predictors are preliminarily selected for the time coefficients of the
first eight EOF modes from the variable fields. It is based on the test result of hindcast time
coefficients. Before TSD, the SIC anomaly significantly correlated with the time coefficients
of EOF 2 are mainly located in the Barents–Kara Sea, while the potential predictors only
existed in the Barents Sea. On the interdecadal time scale, the SIC anomaly in Baffin Bay,
Hudson Bay, near New Earth Island, and the Chukchi Sea are significantly positively
correlated with the time coefficients of EOF 2, but there is no potential predictor in the
Chukchi Sea. On the interannual time scale, the SIC anomaly is significantly negatively
correlated with the time coefficients of EOF 2 in the north of the Laptev Sea, but no potential
predictor has been found here. Similar to SIC, it can be seen in H500, U200, and SST that
there are differences in potential predictors not only before and after TSD, but also for
interannual and interdecadal components after TSD. Through the hindcast of the time
coefficients by these physical variable fields, we clearly see the effect of the TSD method in
distinguishing predictors on different time scales;

(3) By constraining the threshold of symbol consistency between the predicted and
observed time coefficients, the potential predictors are further selected, and then the final
predicted time coefficients are defined as the median of the predicted values. The hindcast
results of the time coefficients for the first three EOF modes show that the prediction
accuracy has been improved after TSD. Based on the predicted time coefficients, the
predicted fields are reconstructed and tested. In the hindcast test, the predicted fields
without TSD only have high TCC in some areas of Central China, East China, and South
China, while they have a wider range after TSD. And ACC of the predicted fields after
TSD is higher than that without TSD in most years. In the independent sample test, the
prediction skill after TSD is basically positive and more stable, and the average ACC has
increased by more than 0.1. Therefore, TSD can improve the prediction ability of the
original prediction model.

It needs to be noticed that China has a vast territory, multiple underlying surface
conditions, and topographies such as Tibet Plateau, North China Plain, and Sichuan Basin,
so the climate presents complex regional characteristics, especially the precipitation exhibits
obvious locality. Chen et al. [50] used monthly precipitation station data set to decompose
China into 13 regions using the Rotated Empirical Orthogonal Function method. This result
can not only identify the climate characteristics of eastern China, but also central and west-
ern China in detail, which is conducive to searching for predictors affecting regional climate.
On the basis of this division, Gu et al. [51] used the downscaling method to establish a
precipitation prediction model, which is applicable to most regions of China. The predictors
selected are independent and have physical significance, thereby improving the prediction
skill of regional precipitation anomaly. Considering the results of our study, although
precipitation prediction skill has significantly improved in some regions after TSD, it can
be seen that there is still poor prediction skill in the other regions like Qinghai and Inner
Mongolia Province, which may be due to the significant difference in climate characteristics
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of precipitation between them and other regions in China. Therefore, selecting different
predictors and establishing prediction models for precipitation in different regions can help
improve their predictability.

In addition, we select the predictors from the reanalysis data set of the preceding
winter and spring and establish statistical prediction models, and if the variable fields of
the same summer can be used, it will help to improve the prediction skill, too. At present,
dynamic climate models are also developing rapidly, and they already have high prediction
ability for large-scale circulation fields. However, due to problems in model resolution and
parameterization of physical processes, the prediction of regional precipitation by dynamic
models still cannot satisfy the actual demand [52,53]. Therefore, statistical downscaling
methods are proposed and widely applied [54–56]. The statistical relationships between
large-scale circulation affecting regional climate and predictands are established by years
of observation data. And then, the large-scale variables output by the dynamic model
will be substituted into these relationships to predict climate elements. So how to utilize
the large-scale circulation fields of the same summer from the dynamic model, based on
the prediction model proposed in this study that combines EOF decomposition and TSD
method, to improve the prediction ability for summer precipitation anomaly in different
regions of China, will become the next problem to solve.
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