
Citation: Yun, J.; Vigneswaran, S.;

Lee, M.-S.; Lee, S.-J. A Laboratory

Investigation Regarding Storage

Stability of the CRM-Modified

Bitumen—CRM Processing Method

(Untreated vs. Treated). Sustainability

2023, 15, 10825. https://doi.org/

10.3390/su151410825

Academic Editors: Antonio

D’Andrea, Marinella Giunta, Ahmad

Safuan A Rashid, Nor Zurairahetty

Mohd Yunus and Norhidayah

Abdul Hassan

Received: 31 March 2023

Revised: 9 June 2023

Accepted: 3 July 2023

Published: 10 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

A Laboratory Investigation Regarding Storage Stability of the
CRM-Modified Bitumen—CRM Processing Method (Untreated
vs. Treated)
Jihyeon Yun 1 , Shyaamkrishnan Vigneswaran 1 , Moon-Sup Lee 2,* and Soon-Jae Lee 1

1 Department of Engineering Technology, College of Science & Engineering, Texas State University,
San Marcos, TX 78666, USA

2 Korea Institute of Civil Engineering and Building Technology, Goyang-si 10223, Gyeonggi, Republic of Korea
* Correspondence: truepath@kict.re.kr

Abstract: The aim of this study is to analyze the phase separation that occurs between treated and
untreated rubber crumb particles produced by wet processes in the laboratory. The percentage of
replacement used for both the treated and untreated crumb rubber-modified asphalt (CRMA) was 5%,
10%, 15%, and 20%. Tests to evaluate binder properties were performed using a rotational viscometer
and a DSR, and the following properties were determined—viscosity, G*/sinδ, % recovery, and Jnr.
The phase separation study was analyzed using the viscosity and G*/sinδ results. In general, the
results of the study show the following. (1) The treated CRMA binders had higher viscosity values
than untreated CRMA binders, although some values could not be measured due to the high viscosity
values. (2) The G*/sinδ, % recovery and Jnr results also had a similar trend with viscosity results. (3)
The viscosity and G*/sinδ phase separation values demonstrate that treated CRMA binders perform
better than untreated CRMA binders. (4) Different experimental methods have shown variations in
the calculated SI value; hence, a more improved approach should be explored to accurately assess the
storage stability of asphalt binders containing various additives.

Keywords: CRMA; treated; untreated; phase separation

1. Introduction

Nowadays, road transport is one of the main modes of transport in the world, and as
a result, there is an increasing reliance on automobiles for transporting goods and services,
which obviously increases the demand for tires and the necessity to recycle end-of-life tires
(ELTs) [1–3]. ELTs are always an environmental concern as they are non-biodegradable
and pose a fire hazard. One of the techniques to recycle end-of-life tires is in the form of
crumb rubber mixed with pure asphalt binders, and more than 30 countries around the
world have combined the application of these crumb rubber-modified asphalt (CRMA)
binders to prepare for both the airport and highway pavement [4–11]. In general, asphalt
consists of the correlation of three-dimensional polar molecules [12]. Binding of the polar
molecules of the shredded rubber after mixing with the basic asphalt binder leads to the
crumb rubber modifier (CRM) in the asphalt binder absorbing the lighter fractions of the
binders, causing the CRM to swell. This swelling leads to a decrease in the distance between
rubber particles, resulting in the hardening of the residual binders after the interaction with
the enhancement of properties such as adhesion, elasticity, resistance to heat, cold, and
aging [13–19]. In general, these CRMA binders are produced by a wet process [20]. There
is also unambiguous evidence from previous studies that the inclusion of crumb rubber
to base binders through a wet process leads to a refinement of pavement life, decreased
propensity to rutting and cracking, decrease in noise during traffic mobility, and reduced
costs against periodic maintenance [21–33]. Despite all these merits, CRMA binders are
more amenable to high phase separation, i.e., low storage stability [34–38], and past studies

Sustainability 2023, 15, 10825. https://doi.org/10.3390/su151410825 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151410825
https://doi.org/10.3390/su151410825
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-6997-3976
https://orcid.org/0000-0002-7106-2693
https://orcid.org/0000-0002-2543-6981
https://orcid.org/0000-0003-4185-6983
https://doi.org/10.3390/su151410825
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151410825?type=check_update&version=1


Sustainability 2023, 15, 10825 2 of 18

demonstrate that multiple parameters have an influence on the phase separation including
the size of the crumb rubber particles, the type of base binder used for modification, and
interaction conditions [39–43]. Furthermore, a prior project has revealed that increasing the
proportion of substitution of crumb rubber to the weight of the original binder facilitates,
to some extent, reducing the phase separation [15]. In addition, the inclusion of nanoclay
in CRM asphalt binders was found to positively affect storage stability. Nanoclay improves
the dispersion and interfacial bonding of crumb rubber particles within the binder matrix,
reducing the potential for phase separation and sedimentation [44]. However, the impact
of bio-oil on the storage stability of CRMA was positive [45].

Taking into consideration all of the above determinants that may contribute to reducing
phase separation, experiments were conducted using both treated and untreated crumb
rubber with examining their interplay, since there is a paucity of research discussing all
these factors.

In addition, the determination of the separation index (SI) for assessing storage stability
has been carried out following the ASTM D7173 standard [46]. This measurement is
employed to evaluate modified binders for storage stability based on a softening point
test [47], rheological properties analysis [48], and multiple stress creep tests [49]. However,
in a previous study, it was found that the SI value was different between the test methods
presented in the ASTM standards. Therefore, it is necessary to reconfirm that the evaluation
of storage stability varies depending on the experimental method [50].

The following tests are performed to determine the phase separation of the modified
CRMA binders generated with 5%, 10%, 15%, and 20% of treated and untreated crumb
rubber to the original binder’s weight: rotational viscometer (RV) to find out the effect of
viscosity and phase separation when exposed to two different temperatures, DSR (Dynamic
Shear Rheometer) tests, where the modified binder is tested for G*/sinδ, % Recovery, and
Creep Recovery when exposed to three different temperatures to find out its susceptibility
to plastic deformation and the percentage of separation. The ideal test method chosen
for this study based on previous research was the cigar tube test method [51]. Figure 1
illustrates a flow chart that emphasizes the empirical design adopted for this study.
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Figure 1. Flow chart of experimental design procedures.

2. Experimental Design
2.1. Materials

PG64-22 was the base asphalt binder used to formulate both treated and untreated
CRMA binders. Table 1 shows the characteristics of the virgin asphalt binder, followed by
Table 2, which shows the grading outcomes of both ground crumb rubber used for this
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study. Untreated crumb rubber is typically produced through mechanical shredding at
ambient temperature. In this study, surface-treated crumb rubber was utilized to produce
treated CRMA. The treated crumb rubber exhibited a gradation that closely resembled
a single particle size in comparison to untreated crumb rubber. It is anticipated that the
smaller amount of rectangular-shaped particles in the treated rubber sample will influence
the performance of the microstructural properties of the crumb rubber [52]. Both untreated
and treated crumb rubbers were provided by a local producer. An evaluation of storage
stability was carried out using an aluminum tube according to ASTM D7173. The images
of the cigar tube are listed in Figure 2.

Table 1. Properties of base asphalt binder (PG 64-22).

Aging States Test Properties Test Result Standards

Unaged binder Viscosity @ 135 ◦C 538 cP <3000
G*/sinδ @ 64 ◦C 1.38 kPa 1.1<

RTFO aged residual G*/sinδ @ 64 ◦C 3.82 kPa 2.2<

RTFO + PAV
aged residual

G*sinδ @ 25 ◦C 4402 kPa <5000
Stiffness @ −12 ◦C 205 MPa <300
m-value @ −12 ◦C 0.323 0.3<

Table 2. Gradation of CRM used in this study.

Sieve Number (µm) % % Cumulative Passed of
Untreated CRM

% Cumulative Passed of
Treated CRM

30 (600) 100 100

40 (425) 91.0 96.4

50 (300) 59.1 27.9

80 (180) 26.2 16.8

100 (150) 18.3 6.8

200 (75) 0.0 0.7
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2.2. Production of Treated and Untreated CRMA Binders

Both CRMA binders were prepared by a wet process in the laboratory, with modi-
fication temperatures maintained near 177 ◦C, and blended with a terminal velocity of
700 rpm utilizing a low-shear mixer for 30 min. The percentage of rubber crumb used to
make both treated and untreated CRMA binders was 5%, 10%, 15%, and 20%, respectively,
based on the weight of the virgin binder. To ensure consistency criteria for the blend
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produced, PG64-22 and crumb rubber (both treated and untreated) from the same batch
were used for this study.

2.3. Preparation of Test Specimens

The aluminum tubes (Figure 2) utilized for conditioning purposes are cylindrical in
shape, measuring 25 mm in diameter and 125 mm in length. These tubes are specifically
designed to securely hold the test samples during the conditioning process. First, 50 ± 0.5 g
of the modified binder was poured into each tube, and the tops were sealed to prevent
any oxidation reaction and kept in the oven at a temperature of 163 ± 5 ◦C for a period of
48 ± 1 h. The sample should be kept undisturbed during this conditioning period. After the
48 ± 1 h conditioning period in the oven, the sample is transferred to a freezer maintained
at −10 ± 10 ◦C and left undisturbed for a minimum period of 4 h to allow the sample to
fully solidify. After the sample has attained its full conditioning, the sample cigar tube is
divided into three equal halves. For this study, the top, middle, and bottom of the cigar
tube are considered. The sample is then transferred to an oven maintained at 163 ± 5 ◦C,
and the sample is held in the oven until it begins to be stable. In addition, we ensure that
the sample should not be left in the oven for more than 30 min, as prolonged exposure will
affect the result. Once the sample begins to liquify after 25 min, the sample is transferred to
a hot plate where it is manually stirred and mixed with a spatula free of foreign materials
until a cohesive mixture is observed, and test samples are used for both RV and DSR.

2.4. Binder Properties
2.4.1. Rotational Viscosity

To determine which CRMA binders had higher base property values among the treated
and untreated, a Brookfield rotational viscometer was employed to evaluate their viscosity
at two different temperatures, 135 ◦C and 180 ◦C, according to ASTM D4402. The spindle
number used to compute the viscosity values is SPN-27 with a rotation speed of 20 rpm
and an interval between each reading of 1 min.

2.4.2. Viscoelasticity by DSR Method

A Dynamic Shear Rheometer (DSR) was used to analyze the viscoelastic properties
of the modified binders. Two types of tests were performed using this equipment: one
was the original binder test, in which only the permanent set, i.e., G*/sinδ at 1.00 kPa
(10 cycles at a frequency of 10 rad/s per Test Method D 7175) at three different temperatures
of 64 ◦C, 70 ◦C, 76 ◦C, and the other was an MSCR test performed per Test Method D 7405
using only % recovery and unrecoverable creep Jnr per AASHTO TP70. The load cycle and
measured test temperature were limited to 3.2 kPa and temperatures of 64 ◦C and 76 ◦C.
This experiment was evaluated as an average of three samples tested.

2.4.3. Separation Index (SI)/Phase Separation

According to ASTM D7103, as an alternative method to softening point testing to ana-
lyze the rheological properties of the binder, a DSR test was conducted. In this, Superpave
test specifications were used to find the percentage of separation through Equations (1) and
(2) according to previous research studies [52–62]. This experiment was evaluated as an
average of three samples tested.

Separation index =
(Viscosity)max − (Viscosity)avg

(Viscosity)avg
(1)

Separation index =
(G ∗ /sinδ)max − (G ∗ /sinδ)avg

((G ∗ /sinδ)avg)
(2)

where
(G*/sinδ)max—Highest value between the upper and lower part of the cigar tube.
(G*/sinδ)avg—Mean value between the upper and lower part of the cigar tube.
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2.5. Statistical Analysis Method

A statistical analysis of the results of the experimental samples was performed
using SPSS (Statistical Package for the Social Sciences). To determine the variance, a
one-way ANOVA (analysis of variance) test was performed, and post hoc data analysis
was performed using the LSD (Least Significant Difference) method with 95% confidence
intervals, i.e., say α = 0.05. Key variables included the two types of rubber discs (treated
and untreated) and their replacement rates (5%, 10%, 15%, and 20%), and a one-way
ANOVA was performed on the data to find any significant differences in their means. In
the analysis of this study, the level of significance was set at α = 0.05, which specifies that
each result has a 95% probability of being true. After determining that there is a difference
between the sample means using one-way ANOVA, the LSD is calculated. LSD is defined
as the observed difference between two sample means that should explain the difference
in the respective population means. When calculating LSD, all pairs of sample means are
compared. The population means are reported as statistically different if the difference
between the two-sample means is greater than or equal to LSD [63].

3. Results and Discussion
3.1. Rotational Viscosity

The temperature necessitated to generate the asphalt at the mixing plant and the
workability of the asphalt mixture during field compaction are all determined by the
viscosity of the mixture. A high viscosity affects the optimal field density, which indirectly
affects the service life of the pavement. Figure 3 shows the values found by RV at 135 ◦C
and 180 ◦C for the original condition of both treated and untreated CRMA asphalt, with
the percentage of crumb rubber by weight of virgin asphalt binder replaced immediately
after 30 min of modification. At 135 ◦C, both the modified binder had higher viscosity
values compared to the controlled state modified binder as the percentage of crumb rubber
replacement increased. Compared to 0% controlled binder, the 20% untreated CRMA
binder showed about a 6-fold increment in viscosity values. Treated CRMA binder values
became so high that it was evidently indicating that the mix was unworkable, showing that
the data were not measured due to its high viscosity. In particular, the treated rubber had
higher viscosity values compared to untreated rubber, which means that the temperature of
the asphalt production temperature has to be increased in order to achieve the optimal field
compaction, but the viscosity decreased significantly, showing the influence of temperature;
i.e., as the temperature increases, the viscosity decreases. Figure 4 shows the results for
the top, middle, and bottom parts at 135 ◦C viscosity of CRMA binders for both treated
and untreated crumb rubber CRMA after conditioning. It can be seen from the graph that
as the substitute content for crumb rubber increased, the lower parts had higher viscosity
values compared to the upper and middle parts. The treated rubber CRMA becomes almost
unusable when the replacement percentage in the lower part of the sample exceeds 15%
because of its high viscosity not being measured. This demonstrates the effect of sediment
velocity on CRMA binders in terms of the increased replacement of crumb rubber content.
The study shows that the treated rubber settles more at the bottom of the tube at 135 ◦C
compared to untreated CRMA.
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Figure 4. Viscosity at 135 ◦C of the CRM binders of top, middle and bottom parts after conditioning.

As in the case of increasing the temperature to 180 ◦C, the viscosity starts to decrease,
and untreated rubber granules showed lower viscosity values at higher temperatures com-
pared to treated rubber-modified asphalt. The treated CRMA exhibited an approximately
4-fold increase in viscosity values compared to untreated rubber. This clearly shows that
the treated rubber has higher polar bonding with aromatic virgin binder compared to
untreated ambient ground crumb rubber. Figure 5 shows the viscosity test values at 180 ◦C.
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Figure 5. Viscosity at 180 ◦C of the CRM binders of top, middle and bottom parts after conditioning.

When a one-way ANOVA test was performed with a 95% confidence interval
between the means of the same population of both the untreated and treated CRMA binder,
considering only the upper and lower parts after the conditioning period, it was found
that there was no significant difference between the statistics average to 15% or more in
untreated binder and 20% in the treated binder in the top and bottom. Viscosity values
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were found to be significant between the untreated and treated binder. This means that the
statistical analysis follows the above bar chart result. A statistical analysis of the results of
viscosity of both untreated and treated CRMA binders as a function of tops and bottoms
with a 95% confidence interval is shown in Table 3.

Table 3. Statistical analysis results of the viscosity at 135 ◦C of CRM binders as a function of top and
bottom parts (α = 0.05).

Viscosity
(135 ◦C)

Untreated CRM Treated CRM
Original (%) Top (%) Bottom (%) Original (%) Top (%) Bottom (%)

5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
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M O
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%

) 5 - S S S N N S S S S S S
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p
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) 5 - N S S S S S S

10 - S S S S S S
15 - S S S S S
20 - S S S S
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) 5 - S S S
10 - S S
15 - N
20 -

S—Significant; N—Non-significant.

3.2. Viscoelasticity by DSR Method

The G*/sinδ property values from this test are generally used to analyze the permanent
deformation or plastic deformation or rutting property or viscoelastic property when it is
susceptible to the load of 1.00 kPa for a cycle of 10 rad/s at different temperatures. Figure 6
illustrates the experimental G*/sinδ values of both untreated and treated CRMA at various
temperatures (64 ◦C, 70 ◦C, and 76 ◦C) after modification, using different proportions of
replacement CRMA binders. It was noticed that when both treated and untreated CRMA
binders were subjected to a higher replacement content of crumb rubber, its resistance
to permanent deformation increased; especially, treated crumb rubber showed superior
resistance to permanent deformation. In addition, a rise in temperature had a direct impact
on resistance to permanent deformation. There is evidence that a high PG-76 can be
obtained with an even much lower percentage of treated rubber compared to a higher
percentage of untreated rubber.
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The permanent deformation values of the top, middle, and bottom portion of CRMA
binder with both untreated and treated rubber after the conditioning period measured
at different temperatures ranging from 64 ◦C, 70 ◦C, and 76 ◦C is shown in the figure
(Figures 7–9). As expected, the measured value decreased independently of the CRMA
content with the increasing test temperature in both treated and untreated rubber. In
addition, G*/sinδ increased at all test temperatures as the rubber particle content increased.
However, the data for the top, middle, and bottom showed a different trend compared to
the original CRM binders before conditioning. First, the upper G*/sinδ value maintained a
similar level up to the 15% crumb rubber content in untreated rubber and then increased
more than twice at 20%, and in the case of treated rubber, the values were found almost
similar until 5% and increased almost four times even at high temperature of 76 ◦C. In the
middle part, the value was found both for treated and untreated crumb rubber up to 5%,
similar to the top part, but the value increased from 10% CRMA, and the value was about
three times as high as the top part at 15% or more, and treated rubber witnessed superior
values compared with untreated rubber. The lower part showed a higher performance
rating (PG) of 76 or higher in both untreated and treated CRMA, which could be obtained
when the rubber content was added even at percentages less than 5%, and thereafter, the
value showed a tendency to increase gradually. The treated rubber witnessed almost more
than a 100% increase up to 15% CRMA and almost more than 400% at 20% content at the
higher temperature of 76 ◦C.
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conditioning.

In general, the top, middle, and bottom readings at 70 ◦C and 76 ◦C showed the same
trend as G*/sinδ at 64 ◦C.

The statistical importance of the variation in both untreated and treated CRMA content
was studied by comparing the baseline caveat to the top, middle, and bottom, utilizing
a one-way assessment of variance (Table 4). In general, the important difference within
each pure grade was seen similarly at all temperatures, and for this study, only a statistical
analysis for 64 ◦C based on this investigation is shown. The upper part verified that the
quantified values were not statistically significant up to a CRM content of 10% compared
to the result of 5% CRMA for the original condition. In the lower part, the values of 10%,
15%, and 20% CRMA binders were mostly significant among binders in each part at the
95% confidence level, meaning that the results of the bar chart are proven.



Sustainability 2023, 15, 10825 10 of 18

Table 4. Statistical analysis results of the G*/sinδ at 64 ◦C of CRM binders as a function of top and
bottom parts (α = 0.05).

G*/sinδ

Untreated CRM Treated CRM
Original (%) Top (%) Bottom (%) Original (%) Top (%) Bottom (%)
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S—Significant; N—Non-significant.

3.3. Multi-Stress Creep and Recovery Test

MSCR (Test Method D7405) is an alternative test to the DSR test method used for
storage stability. The MSCR test was performed at 64 ◦C and 76 ◦C according to AASHTOTP
70 by loading at 3.2 kPa to evaluate the viscoelastic properties of both untreated and
treated CRMA binders under more extreme conditions than the DSR test. Figure 10 shows
the results of Jnr and percent recovery of control CRMA binders. In general, increasing
the crumb rubber content allowed a decrease in the Jnr and an increase in the % rec,
meaning that the higher the CRM content, the higher the viscoelasticity of the binder. More
specifically in the Figure 11, the data from 0% and 5% with untreated CRMA levels were
not measured at 64 ◦C due to the low viscoelasticity of the samples, but the 5% treated
CRMA binder showed higher Jnr and % recovery values. The Jnr steadily decreased after
the 5% level for treated CRMA binders and up to the 20% level. It was also noted that
the untreated CRMA binders also followed a similar trend but showed higher values at
similar levels, except that at 5% and at 20%, the values for both treated and untreated
CRMA were found to be similar. In addition, when the test temperature was increased to
76 ◦C, the data were only measured from the 15% CRM binder since the binders softened at
higher temperatures as shown in the Figure 12. The value of 20% CRMA binder was only
measured, and untreated CRMA binders exceeded the values of treated CRMA binders by
a factor of two. In the % recovery study, both treated and untreated CRMA binders showed
a similar trend at 64 ◦C, with the exception of crumb rubber at 20%, where the % recovery
values of treated CRMA were comparatively better than untreated CRMA binders, but cut
at a higher temperature, both treated and untreated CRMA is similar.
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Using a one-way analysis of variance, the statistical significance of the change in Jnr
and % rec was examined for both treated and untreated CRMA binders, comparing the
original state to the top and bottom portions (Tables 5 and 6). In general, the original
condition Jnr values from the MSCR test were found to be 64 ◦C for untreated rubber,
which were most significantly different compared to treated rubber depending on the
crumb rubber levels. For the conditioned CRMA binders of the top and bottom pieces, a
significant difference was observed within each piece compared to the original condition
from top to bottom. In the case of statistical analysis for Jnr at 76 ◦C, due to the unmeasured
results, there was an insignificant difference within each part of the original, top, and
bottom. The % rec case showed a similar trend as the Jnr analysis.

Table 5. Statistical analysis results of the Jnr of CRM binders as a function of top, middle, and bottom
parts (α = 0.05).
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S—Significant; N—Non-significant.
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Table 6. Statistical analysis results of the % rec of CRM binders as a function of top, middle, and
bottom parts (α = 0.05).

% rec
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3.4. Separation Index/Phase Separation Results

To study the storage phase separation of untreated and treated CRMA binders, vis-
cosity values from the rotational viscometer test and G*/sinδ of the top and bottom parts
after conditioning are considered for this separation index study. The percent separation
index of both untreated and treated CRMA at temperatures of 135 ◦C and 180 ◦C is shown
in Table 7. At 135 ◦C, the rejection percentage of the 5% and 20% crumb rubber content is
lower compared to the 10% and 15% crumb rubber substitute. In untreated rubber and
on the other hand, the content in treated rubber with 15% and 20% was not measurable,
since their viscosity values were found to be high. At an elevated temperature of 180 ◦C,
the treated modified CRMA binders had less phase separation compared to untreated
rubber, and the 20% replacement rubber crumb content in both untreated and treated
CRMA performed better in this study compared to others.
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Table 7. Separation index from viscosity of CRM binders.

Binder
Viscosity

Top Bottom % Separation

135 ◦C

Untreated

CRM 5% 574.8 3162 69%

CRM 10% 637.5 7968.5 85%

CRM 15% 693.5 9879.5 87%

CRM 20% 2193.5 11,323.5 68%

Treated

CRM 5% 624.8 5259 79%

CRM 10% 756.0 12287.5 88%

CRM 15% 2031.0 None. None.

CRM 20% 11,149.5 None. None.

180 ◦C

Untreated

CRM 5% 86.25 793.5 80%

CRM 10% 93.75 1756 90%

CRM 15% 112 2478.5 91%

CRM 20% 449.5 2628.5 71%

Treated

CRM 5% 112.5 871.5 77%

CRM 10% 106 2474.5 92%

CRM 15% 324.75 3381 82%

CRM 20% 2282.5 5562 42%

Table 8 presents the G*/sinδ values of phase separation observed in CRMA binders at
64 ◦C. It was attested by this research that the CRMA binders at 5% and 20% grade had
less phase separation compared to those at 15% and 20% grade in untreated rubber, which
is similar to the viscosity study at 135. The treated rubber-modified asphalt, on the other
hand, had less phase separation at 20% grade compared to the other substitute content of
crumb rubber.

Table 8. Separation index from G*/sinδ of CRM binders.

Binder
G*/sinδ at 64 ◦C

Top Bottom % Separation

Untreated

CRM 5% 2.17 3.08 17%

CRM 10% 2.13 9.53 63%

CRM 15% 2.38 9.29 59%

CRM 20% 5.31 12.6 41%

Treated

CRM 5% 2.16 6.23 48%

CRM 10% 2.97 11.2 58%

CRM 15% 5.62 14.6 44%

CRM 20% 13.63 19.47 18%

4. Conclusions

To investigate the phase separation problems found during storage in regard to the
stability of treated and untreated 5%, 10%, 15%, and 20% CRMA binders, the binders
were oven conditioned for 48 h at 163 ◦C. The tests were undertaken using the rotational
viscometer and the Dynamic Shear Rheometer to ascertain the properties and separation
index (SI) of CRMA binders. From these results, the following outcomes were drawn for
storage consistency in this study.
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1. The addition of CRM increased viscosity at 135 ◦C and 180 ◦C for both treated
and untreated CRMA. The conditioned CRMA binders showed higher viscosity in the
bottom portion compared to the middle and top portions, which is due to the movement
of rubber particles during conditioning. Treated rubber exhibited higher viscosity values
than untreated CRMA, indicating the importance of high temperature in maintaining the
performance of treated CRMA.

2. Increasing crumb rubber content led to higher G*/sinδ values, but with increasing
temperature, G*/sinδ values decreased similar to the viscosity study. Treated rubber-
modified binder had higher values compared to untreated CRMA, indicating better resis-
tance to permanent deformation.

3. From the MSCR test, it is observed that the Jnr and % rec values show a similar
trend with the G*/sinδ results. However, some data were not quantified due to the higher
load than the DSR test.

4. Phase separation was significantly affected by temperature, with increasing temper-
ature resulting in more severe phase separation. Treated rubber mixed with fresh asphalt
binder had lower phase separation values compared to untreated CRMA at a replacement
extent of 20%.

5. The statistical data obtained aligns with the findings shown in the bar chart,
indicating an increasing separation index of the binder as the data illustrate the difference
between each sample.

6. The study found a discrepancy in the SI value between the test method proposed in
ASTM D7173 and the viscosity test method. As a result, it is recommended to reevaluate
the SI value using various experimental methods for asphalt binders that incorporate
different modifiers. This suggests the need for a comprehensive assessment of the SI value
in conjunction with other relevant testing techniques to accurately evaluate the SI value of
asphalt binders with different modifiers.

7. In future research, it is advisable to explore the use of various additives aimed at
enhancing the storage stability of asphalt binders. Additionally, a comprehensive evaluation
of asphalt mixtures based on the storage stability should be conducted, taking into account
their rutting and cracking performance, to ensure practical application.
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