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Abstract: The prediction of wind power output is part of the basic work of power grid dispatching
and energy distribution. At present, the output power prediction is mainly obtained by fitting
and regressing the historical data. The medium- and long-term power prediction results exhibit
large deviations due to the uncertainty of wind power generation. In order to meet the demand
for accessing large-scale wind power into the electricity grid and to further improve the accuracy
of short-term wind power prediction, it is necessary to develop models for accurate and precise
short-term wind power prediction based on advanced algorithms for studying the output power of a
wind power generation system. This paper summarizes the contribution of the current advanced
wind power forecasting technology and delineates the key advantages and disadvantages of various
wind power forecasting models. These models have different forecasting capabilities, update the
weights of each model in real time, improve the comprehensive forecasting capability of the model,
and have good application prospects in wind power generation forecasting. Furthermore, the case
studies and examples in the literature for accurately predicting ultra-short-term and short-term wind
power generation with uncertainty and randomness are reviewed and analyzed. Finally, we present
prospects for future studies that can serve as useful directions for other researchers planning to
conduct similar experiments and investigations.

Keywords: predictive models; weather research and forecasting (WRF); uncertainty; wind forecasting;
ultra short term and short term; wind power generation

1. Introduction

Of the various sources of renewable energy, wind energy is one of the main types
and is growing in use. Worldwide, wind energy reserves are very abundant, and the
annual energy that can be developed is about 5.3 × 107 GWh. The wind power industry
is mature, and the methods for renewable energy generation are easy to apply. Wind
energy will account for 6% of global power generation by the end of 2020, with an installed
capacity of 743 GW [1]. However, compared with traditional power sources, wind power
generation is affected by weather and the adjacent terrain environment and is extremely
unstable, random, intermittent, and inflexible. Various factors such as wind speed, wind
direction, temperature, humidity, atmospheric pressure, and altitude will affect wind
power generation. These variables are also interrelated, leading to large fluctuations in
wind power, which ultimately makes it difficult to achieve satisfactory results in wind
power forecasting. Wind power prediction involves applying state-of-the-art algorithms to
the field of wind power generation so that wind power generation can be better connected
to the electricity grid, and key technologies have developed rapidly. In the study of wind
power forecasting, wind power has volatility and discontinuity due to the instability of
the wind itself, which will cause serious difficulties in the scheduling optimization of wind
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power generation by the electricity grid. Therefore, many efforts and methods have been
introduced to solve the wind forecasting problem. Wind power forecasting can be divided
into physical methods, statistical methods, artificial intelligence (AI)-based methods, and
deep learning-based methods. Of these methods, the artificial intelligence method can be
adaptive and self-learning (e.g., BNN, knowledge graph) in various industries [2–4], smart
grids [5–7], and railway transportation [8], so it is suitable for dealing with the dynamic,
nonlinear, and complex characteristics of wind power. Accurate short-term forecasting
of wind power is of great significance for alleviating the pressure of power system peak
voltage and frequency regulation and wind power connected to the electricity grid.

In order to further improve the accuracy of short-term wind power forecasting, kernel
density estimation is used to estimate the probability density function of the random
variables required for predictive models to avoid the density leakage problem estimated
for probabilistic wind power forecasting (WPF) of a region at both the wind farm and
regional levels [9–11]. Quantile regression (QR) approximates the conditional probability
distribution of a random variable by quantiles. Numerical weather prediction (NWP)
data are often used as explanatory variables. Various QR models have been developed
for WPPF, such as quantile passive–aggressive regression [12], regression curve fitting
by WRF, and wind farm parameterization (WFP), as well as quantile regression neural
network (QRNN) for regional wind power forecasting (RWPF) [13,14]. In recent years,
spatiotemporal forecasting models have been increasingly researched due to their success
in improving forecasting accuracy [13]. Given the use of data from different farms and
sites to improve the performance of predictive models, spatiotemporal forecasting methods
require large amounts of data, which in turn require advanced methods to address the high
dimensionality of such situations. A convolution operation to capture the spatial–temporal
correlation between neighboring wind farms was based on the novel spatial–temporal wind
power predictor (CSTWPP) [15] and a spatiotemporal convolutional network (STCN), each
developed separately [16]. New ANN model predictive control-based models [14,17–22]
have been developed and offered for wind power prediction in microgrid applications and
use air density and wind speed as input parameters.

The main advantage of ensemble models is their diversity, which allows for provid-
ing a set of multiple forecasts of the same quantity based on different estimates of initial
atmospheric conditions in the WPPF, and ensemble approaches such as the CEEMDAN-
IBA-GPR model [23], multi-feature fusion/self-attention mechanism/graph convolutional
network (MFF-SAM-GCN), weighted multivariate time series motifs (WMTSM), and con-
ditional LP (CLP) have been combined with adaptive boundary quantiles (ABQs), wavelet
neural network (WNN) trained by the five algorithms [24–27], data preprocessing (EMD
and ICEEMDAN) with parameter optimization [28], and enhanced bee swarm optimization
(EBSO) to perform parameter optimization for least squares support vector machine [29]
toward probabilistic wind power forecasting, taking full advantage of the most recent
information and leveraging the strengths of multiple forecasting models. More recently
developed are machine learning methods, which are powerful training algorithms based
on artificial intelligence (i.e., neural networks). Due to their high computational intelligence
and accuracy, such methods have been widely used in the past few years to improve the
accuracy and performance of traditional WPPF models. The machine learning-based wind
speed predictions for k-NN and conditional KDE, Adaboost-PSO-ELM, and enhanced bee
swarm optimization (EBSO), to perform parameter optimization for least squares support
vector machine (LSSVM) [11,26–28,30,31] models, were proposed to identify meaningful
training data to reduce the volume of modeling data and improve the computing efficiency.
They have good generalization ability and robustness and can provide more accurate wind
power forecasting [32–44]. In order to comprehensively understand the research trends
in short-term wind power prediction technology in the past three years and further de-
velop the direction of future wind power prediction models, constructive suggestions were
provided for short-term wind power prediction, in order to better understand and improve
the use of AI methods as well as the correlation between the time resolution and the operation
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level of the prediction model. This paper further collected 62 papers on the power fluctuation
and randomness in the prediction of wind power, as well as the possible errors and omissions
in the original data, which were analyzed by different methods and achieved good results.
In the reviewed works, deep learning is a machine learning concept that provides superior
computation performance and flexibility by directly learning the best possible features of raw
time series data; for example, the authors of proposed novel data-driven models based on
the concepts of deep learning-based convolutional-long short term memory (CLSTM), mutual
information, evolutionary algorithms, neural architectural search procedures, and ensemble-
based deep reinforcement learning (RL) strategies [45–73]. The intention of hybrid model
forecasting methods [20,74–99] is to combine different forecasting models to increase the
accuracy and precision of forecasts, with their main advantage being that they combine
the advantages of each model used to provide the best forecast output. The advantage
of statistical-analysis-based approaches is that it can minimize the prediction error of the
output probability when there is sufficient historical data. By training and adjusting the
model, appropriate outputs can also be provided for input data that are not in the training
set [100–114]. Other statistical analysis methods, such as five-minute-ahead wind power
forecasts in terms of point forecast skill scores and calibration, 1% point analysis RL-based
ESS operation strategy, empirical dynamic modeling (EDM)-based probabilistic forecast,
etc., were introduced to improve the accuracy of ultra-short-term and short-term wind
power forecasts and provide a more reliable basis for wind power grid integration.

To date, several review papers have examined wind power prediction. Wang et al. [115]
gave an overview of wind power forecasting based on short-term and long-term meth-
ods. However, hybrid methods for AI-based wind forecasting have not been studied in
detail. A survey by Hanifi et al. [116] was mainly conducted on physical, statistical, and
hybrid methods to predict wind power generation. However, the authors explored some
AI neural network methods for predicting wind power forecasts, although critical issues
and challenges were not explicitly explored. Dhiman and Deb [117] delivered wind speed
and wind force forecasting techniques, although deep learning algorithmic methods and
their implementation are not covered. Lu, P. [118] proposed a classification of wind power
forecasts based on different horizons. Nevertheless, the survey of hybrid AI methods and
their implementation and limitations were not discussed in detail. Bazionis, I.K., et al. [119]
reviewed wind power generation forecasts using various parametric and nonparametric
approaches. A classification of wind forecasting methods is given according to timescales,
forecasting models, and output data. Hybrid machine learning and deep learning methods
have not been fully studied. Furthermore, implementation factors, optimization integra-
tion, and hybridization, which are critical issues for hybrid machine learning and deep
learning methods, were not outlined. Lipu, M. S. Hossain, et al. [120] presented an in-depth
investigation of wind power forecasting using artificial intelligence-based hybrid forecast-
ing approaches. Furthermore, various combinations of hybrid AI methods, influencing
factors, issues, limitations, and recommendations for achieving wind power forecasting
are presented.

In the paper, we did a lot of review work for the proposed paper. In the initial search
for this paper, a total of 317 papers were reviewed and identified using Google Scholar,
MDPI, IEEE Xplore, Engineering Village, and the Web of Science. Relevant 151 articles
were identified based on second-review keywords, title, abstract, article content, and the
journal’s main subject of interest. The final 106 papers were selected and analyzed based on
reviewing the impact factor, review process, citation, exploration of issues and challenges,
and future studies. Based on the temporal resolution, the number of AI methods used
in the model, and the accuracy of the model, the performance level of short-term wind
power prediction models is evaluated for the reviewed works, recommending prediction
models with better performance. In order to meet the needs of large-scale wind power
grid integration and further improve the accuracy of short-term wind power forecasting, it
is necessary to develop a short-term wind power forecasting model based on advanced
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hybrid AI algorithms to accomplish accurate, robust, and efficient wind power forecasting.
This was achieved through the following process:

1. This paper begins by summarizing the time resolution, model type, accuracy, and
parameters of current advanced wind power forecasting technologies and determines the
classifications, advantages and disadvantages, and contributions of the various wind power
forecasting models.

2. These models have different predictive capabilities, and the weights of each model
are updated in real time to improve the comprehensive predictive capabilities of the models,
which have good application prospects in wind power forecasting.

3. Case studies and examples in the literature of accurate ultra-short-term and short-
term wind power forecasting predictions with uncertainty and stochasticity are reviewed
and analyzed.

Finally, the conclusion is drawn, and existing issues in the methodologies are outlined.
Future research directions are presented.

2. Review of Research Status

European and American countries, such as Denmark, the United States, and Spain,
have developed relatively early in terms of studying wind power generation, and many
advanced results have been obtained as the basis for the maturation of research on wind
power forecasting systems [121,122]. Based on meteorological information, they have built
a relatively complete wind power forecasting system with the NWP system as the core.
Prediktor is a prediction system developed by Denmark’s Risø DTU National Laboratory
for Sustainable Energy and put into use in 1994 [123]. Denmark is in a leading position in
the development of wind power forecasting. For example, the WPPT forecasting system
uses a combination of adaptive least squares and exponential forgetting algorithms (least
squares and exponential forgetting algorithms), which can provide forecasts ranging from
0.5 to 36 h [124]. The Zephyr forecasting software developed by the Risø DTU National
Laboratory is very popular in Denmark. It combines physical models with adaptive least
squares and exponential forgetting algorithms to provide forecasts from 0 to 9 h and 36 to
48 h [125]. It uses a physical model and considers the impact of wind turbine wakes.
By combining statistical methods with physical methods, the eWind system developed
by American Truewind Company adopts a combination of physical and statistical fore-
casting methods that can upload real-time information and online in-depth analysis and
has the ability to accurately predict the next 48 h [126]. The WPMS forecasting system
developed in Germany is the most widely used forecasting software at present [127]. The
system is combined with a neural network on the basis of NWP forecasting and further
improves the forecasting accuracy of wind power. In Germany, ISET has developed the
forecasting system AWPT [128], which was put into operation in 2001 and uses the method
of combining NWP and neural networks mainly in 1- to 8-h forecasting. The following
year, the University of Oldenburg in Germany developed the Previento system, which
added typical physical models to the prediction system and could accurately obtain 2-day
prediction results [129]. The Siperolico forecasting software developed by Carlos III Uni-
versity in Spain, HIRPOM [130] in Ireland, and the LocalPred model of the Renewable
Energy Operation Centre (CORE) in Spain use both statistical and physical models [131].
The ANEMOS project has a total of 23 institutions from 7 countries, including Ireland,
France, and Spain, participating in the research and development that can predict the wind
power of large-scale offshore and land wind farms. Multiple NWP models are used in the
ANEMOS project, so the local meteorological department is required to provide numerical
weather prediction data [132]. After processing, physical and statistical methods are used
to make predictions, whose accuracy can reach about 10%.

Different prediction algorithms are selected for prediction according to differences in
regions, weather, and climate types. In addition to using physical methods for prediction,
the system can perform statistical analysis of historical wind power data, further improving
the accuracy of the prediction. In November 2008, the WPFS system was developed by
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China [133]. After a series of successful test experiments, the system became the first
mature wind power forecasting system in China. The system can effectively predict short-
term wind power within three days and ultra-short-term wind power within four hours.
The wind power generation forecasting systems currently used around the world are
summarized as shown in Table 1.

Table 1. Wind power generation forecasting systems around the world.

Name of Forecasting System R&D Institutions Methods

Prediktor Danish National Laboratory Physical methods
SIPREÓLICO University of Carlos III, Madrid, Spain Physical methods

HIRPOM University College Cork, Ireland Physical methods
Previnto University of Oldenburg, Germany Physical methods

WPFS Ver 1.0 system China Electric Power Research Institute Physical methods/Meta-heuristic
WPPT Copenhagen University, Denmark Statistical methods

AWPPS MINES ParisTech Statistical methods, Fuzzy ANN
RAL Appleton Laboratory, Rutherford, UK Statistical methods

GH Forecaster Garrad Hassan, UK Statistical methods
WPMS Germany-ISET Statistical methods, ANN
Zephry Risø National Laboratory Statistical/Physical methods

LocalPred-RegioPred Spanish National Energy Center Statistical/Physical methods
ANEMOS 23 scientific research institutions in 7 EU countries Statistical/Physical methods

eWind True Wind USA, Inc. Statistical/Physical methods
WEPROG University College Cork, Ireland Statistical/Physical methods

2.1. Reviews for Technologies and Applications

In recent years, relevant scholars have conducted theoretical research and practical sim-
ulation. The prediction type of wind speed has different definitions according to the length
of the cycle, and different researchers have different classifications as shown in Table 2,
mainly including ultra-short-term, short-term, medium-term, and long-term prediction.

Table 2. Classification of the review works based on the forecasting time scale.

Time Resolution Reviewed Works Forecasting Time Scale

1 min [22,29] Ultra short term
5 min [15,16,29,61,101,103] Ultra short term
10 min [15,28,30,36,37,43,55,63,64,70,72,81,95–97,103,107,112,113] Ultra short term
15 min [12,15,20,21,23,30,38,42,52,53,56,57,59,60,71,74,88,93,98–100,103,108,110,114] Ultra short term
30 min [15,16,26,30,45,47,59,74,83,90,103–105,108] Ultra short term

1 h [14,16,18,24,27,30,33,35,38–41,44,46,48–51,54,59,62,65–67,69,74–
77,80,83,86,90,91,94,102,106,108,111] Short term

2 h [16,25,30,35,59,80,83,86,90,94] Short term
3 h [16,30,35,59,79,80,83,86,90,94] Short term
4 h [25,30,35,59,78–80,83,86,89,90] Short term
6 h [35,86,89,90] Short term

12 h [35,86,89] Short term
24 h [9–11,17,29,35,53,58,79,80,82,84,85,87,89,92] Short term
48 h [31,32,46,89] Short term

72 h–1 week [13,29,34,89] Medium term
1 month–years [19] Long term

Long-term forecasting based on “month” and “year” is mainly used in the design of
wind farm operation plans and the evaluation of wind power resources for the planning of
wind farms. The medium-term forecast is usually used to predict the sampling points in
the next few days, or “week”, and is mainly used for troubleshooting and maintenance of
wind power equipment in the power grid. Short-term and ultra-short-term forecasting is
based on “hour” or “minute”, which is mainly used to adjust the reserve capacity of the
power system and economic dispatching to reduce the instability of the system caused by
wind power connected to the electricity grid, so as to conduct effective grid dispatching.
According to different modeling methods, wind power generation forecasting can be
divided into physical methods, statistical methods, artificial intelligence methods, and deep
learning methods. Depending on the different prediction objects, it can be divided into
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indirect corresponding wind speed prediction and direct corresponding power prediction,
as shown in Figure 1. According to the forecasting model, wind power forecasting can
be divided into direct forecasting and indirect forecasting. Direct prediction refers to the
establishment of a corresponding mathematical model based on the historical wind power
time series of the wind farm to predict future wind power [134].
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According to the prediction principles, wind power prediction can be divided into
physical methods, statistical analysis methods, artificial intelligence methods, methods
based on deep learning, and combined prediction models. In physical methods, the rela-
tively rough forecast value output by the numerical weather forecast system is analyzed
for making predictions based on the physical information around the wind farm and
meteorological information such as weather and temperature. The advantage of physical
methods is the lack of requirements for supporting historical wind farm power data. The
disadvantage is that they are very sensitive to initial parameters, such as terrain description
information. Inaccuracies in the initial parameters will cause large prediction errors. Statistical
analysis requires a large amount of history of wind power or wind speed for statistical analysis,
such as using Markov chains [12,15,135], regression analysis [29,30,34,41,113,114,136], Kalman
filtering [137], and ARMA [105,138] models to find the laws contained in historical data for
prediction. The advantage of the statistical method is that, under the premise of sufficient
historical data, the forecast error can be minimized in theory and the forecast accuracy is
high, but the disadvantage is that a large amount of historical data is required for support.
The deep learning method is an emerging prediction method that can use artificial intelli-
gence to establish an accurate model describing the nonlinear relationship between input
and output. It can predict the essence of wind energy, thereby improving the prediction
accuracy. Common methods include neural networks [139], wavelet analysis [98,140], and
support vector machines [133,138,139,141]. Hybrid predictive models of artificial intelli-
gence methods are becoming increasingly popular, not only increasing the complexity of
algorithms but also enhancing the forecasting of wind power generation. Typically, hybrid
predictive models are designed by combining two or three deep learning techniques or op-
timization algorithms with AI methods. This addresses the aforementioned shortcomings
of a single predictive model by finding optimal features, hyperparameters, and training
algorithms. The review focuses on wind power generation forecasting for time resolution
and the model type, accuracy, and parameters.

2.2. Problem

In order to use physical models for calculation or statistical methods for simulation,
the wind speed and wind direction of the wind farm over a short period of time in the
future must be predicted. These are the highly relevant meteorological parameters for wind
power to predict the ultra-short-term or short-term performance of the wind farm in the
future. The output power provides a basis for the power sector to execute power generation
scheduling, modeling, and expansion planning. The fluctuation of the wind is relatively
large, and there are often jumps in time that cause a high probability of random uncertainty.
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As the capacity of newly installed and operated wind turbines continues to grow, they
will occupy an increasing proportion of the electrical grid. However, the penetration
power of wind power generation cannot exceed its maximum value. If exceeded, the wind
turbine units connected to the power grid will pose a huge threat to the grid, making the
power system unable to perform normal, stable, and safe operations. In order to solve
the above problems, it is necessary to scientifically predict the power output of wind
farms according to the changing trend of wind, wind speed, and wind direction so as to
improve the controllability of wind power generation. If the output power of wind power
generation can be more accurately predicted through parameters such as wind change
trends, wind speed, and wind direction, then the predicted data will be uploaded to the
power dispatching center. The power dispatch center can scientifically and efficiently
control power generation and distribution based on these data. Reasonable arrangements
can fundamentally reduce the impact of wind power generation on the electrical grid and
greatly increase the grid connection rate of wind power generation. Accurate wind power
prediction solves the problem of grid connection and reduces the operating cost of wind
farms. Therefore, wind power prediction technology has attracted the global attention of
wind power fields, scholars, enterprises, and departments and is of great significance to the
development of wind power.

Most prediction systems combine physical and statistical concepts, and their accuracy
is limited by the numerical weather prediction model (NWP). When the forecast time
exceeds 6 h, the numerical weather prediction (NWP) should reduce the temporal and
spatial scale of the wind field to convert the local wind speed into electrical energy and then
estimate the power of the entire region for a single wind field. The prediction error is about
10–15% of the root mean square error (RMSE) for the capacity of the whole wind farm.
However, with the increasing capacity of wind turbines, the requirements for the accuracy
of wind power generation prediction will be stricter. The traditional math equation for
calculating power generation cannot directly reflect the rapid change in wind speed, and
there is always a great error between the calculated value and the actual value.

2.3. Comparative Study of the Reviewed WPPF Models and Methodologies

In the past decade, research on wind power generation prediction has become in-
creasingly popular. Most models use numerical weather prediction (NWP) and on-site
measurement data (SCADA) as the basis, read the data from monitoring points, and then
use the obtained wind speed and output data to predict wind power. However, due to the
confidentiality of data sources, most prediction models rarely have a complete theoretical
basis and historical data; therefore, the research is limited to a single site and region. A
single prediction may result in higher forecast accuracy. Once considering multiple regions
or large-scale spatial prediction at scattered meteorological stations, the results must be
questionable. In addition to the increase in offshore wind turbines and the large amount of
investment in private wind farms, persuading private wind farms to provide substantial
wind turbine information (wind power generation, operating conditions, etc.) is a major
challenge. Therefore, it is necessary to devote efforts to the prediction of large spatial scales.
In this paper, the contribution of the current advanced wind power forecasting technology
is summarized, outlining the distinct advantages and disadvantages of the various wind
power forecasting models. These forecasting models have different forecasting capabilities,
update the weights of each model in real time, improve the comprehensive forecasting
capability of the model, and have good application prospects in wind power load fore-
casting. Finally, this paper remarks on the contributions, advantages, disadvantages, and
approaches of the reviewed works in terms of wind power forecasting. In previous wind
power prediction studies, most researchers used past meteorological data for evaluation.
However, we were able to obtain more data, such as satellite data, future meteorological
data, etc., due to the advanced information techniques. In the surveyed literature, it was
found that more than 50% of the literature on wind power prediction used more input
data than previous studies without optimal feature-based data preprocessing. Meanwhile,
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the prediction structure methods used are becoming increasingly complex, resulting in
longer computation times. Some papers in the review literature also propose to preprocess
historical wind data to reduce training times, thereby achieving effective data screening
and improving the accuracy of wind power prediction.

This section classifies and explains different hybrid methods obtained from the re-
viewed works on wind power prediction based on artificial intelligence, including neural
networks, machine learning, optimization algorithms, deep learning, hybrid predictive
models combining two or three deep learning techniques or optimization algorithms, and
statistical analysis methods.

A. Neural Network (NN)-based approaches

AI, or neural networks (NNs), have demonstrated excellent self-learning ability, high
accuracy, and robustness when predicting wind power. This section classifies various neural
network approaches for wind power forecasting, including the Elman neural network
(ELM), the feedforward neural network (FNN), the back-propagation neural network
(BPNN), the radial basis function (RBF) neural network, the extreme learning machine, the
improved deep mixture density network model, and Poisson resampling. Neural networks
(NNs) have the strength to address highly nonlinear and complex wind power problems.
However, AI or neural networks (NNs) have some shortcomings; for instance, they have a
local minimum trap, overfitting issues, a less general performance, and a slow convergence
speed. A summary of neural network (NN)-based approaches for wind power forecasting
in the reviewed works is presented in Table 3.

Table 3. Summary of Neural Networks (NNs)-based approaches for wind power forecasting.

Ref Model Type Parameters Used Accuracy Future Studies

[14]
A quantile regression neural
network (QRNN) for regional
wind power forecasting (RWPF)

Enhancing the abilities of
nonlinear mapping and
dealing with massive data

NMAE:
DQR:9.086; QRNN:9.479
SBL:13.451; IFPA:13.967
NRMSE:
DQR:10.917; QRNN:10.227
SBL:14.185; IFPA:14.538

-To verify the model validation
for the four-season test.

[17] Improved deep mixture density
network model

Wind speed, wind direction,
wind vector, wind power NRMSE = 0.138

-To avoid the problem of the
curse of dimensionality when
the number of wind
farms increases
-To further consider spatial and
temporal information.

[18] New artificial neural network
(ANN) models

Wind speed, wind direction,
wind power output

(MARE) = 7.5%; Rj = 5.4% (mean
value of the Pearson correlation
coefficient)

To improve the performance of
the new model for the long-term
forecasting of wind power

[19] A fuzzy logic approach
and ANN Wind speed, air density RMSE = 1.04%; MAD = 0.91%

MSE = 1.05%

Wind power prediction
technique with integration to the
grid would be analyzed for
considering load scheduling and
demand side management.

[20]
An ensemble neural forecast
(ENFF) with three neural
predictors 1.ELM 2. FNN 3.RBF

Wind speed, meteorological Errors around 0.6 m/s

Planning framework and
operation strategy are developed
for the storage providing virtual
inertia support (VIS) in a low
inertia power system.

[21]
Day-ahead numerical weather
prediction (NWP) with neural
network

The persistence method
with BP three rolling
prediction effect

The model accuracy improved
by 7.61% and the RMSE reduced
by 8.76%

Generalization and robustness of
the BP neural network model
will be the focus of
future research.

[22]
-A classification model with the
output wind power.
-Use of Poisson re-sampling

The random forest with
Poisson re-sampling and
setting the parameters
by oneself

Mean square error (MSE)
GBRT: 0.224; MLP: 0.117
Random forest with Bootstrap
sampling: 0.111
Random forest with Poisson
re-sampling: 0.096

To improve the accuracy and
speed of prediction for the
characteristics of big data in
wind power by parallel
modeling of the
prediction algorithm.
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Table 3. Cont.

Ref Model Type Parameters Used Accuracy Future Studies

[23] Dual-meta pool method Wind farm power MAE = 2.42, RMSE = 2.67 and
MAPE = 0.12.

The prediction accuracy can be
improved by using
multi-source data.

[24]

Gated recurrent unit (GRU)
network combined with
ensemble empirical mode
decomposition(EEMD)

Wind speed (m/s)
Wind power (kW)
Wind direction

RMSE(MW) = 0.2949
To apply it to the wind power
prediction of offshore
wind farms.

B. Machine-learning (ML)-based approaches

Machine-learning-based methods are emerging prediction methods that can establish
accurate models to describe nonlinear relationships, predict the essence of wind energy, and
improve prediction accuracy. The use of machine learning techniques with optimization
algorithms is very effective for day-ahead wind speed prediction. A machine learning
strategy may effectively reduce computing time through a data regression algorithm. Due
to the variable nature of wind speed and its relationship with meteorological variables,
it is possible to study the accuracy of integrating physical forecasting methods into ma-
chine learning models. Additionally, higher accuracy and better generalization ability are
achieved with machine-learning wind power prediction models. However, it is difficult to
select effective data feature values to evaluate the error of wind speed prediction due to the
significant changes in wind speed data. Machine learning (ML)-based approaches for wind
power forecasting in the reviewed works are summarized as shown in Table 4.

Table 4. Summary of Machine-learning (ML)-based approaches for wind power forecasting.

Ref Model Type Parameters Used Accuracy Future Studies

[25]

Weighted multivariate
time series motifs
(WMTSM) and conditional
LP (CLP) combined with
the adaptive boundary
quantiles (ABQs)

Wind speed, wind power Both MAE and RMSE of less
than 10%

The advanced method of dynamic
analysis, which can accurately describe
the characteristics of wind power
time series.

[26] Ensemble learning models
(GRF, RF, XGB)

Wind power, wind speed,
gearbox bearing
temperatures

R2 = 98.9; RMSE = 50.36;
MAE = 23.63

To consider spatio-temporal dependence,
which is not considered in ensemble
learning models and machine
learning models,
for improving prediction quality

[27]

-Wavelet neural network
(WNN) trained by ISCA,
ELM, RBF, MLP, and PSO.
-The best performing
models are the WNN
trained by ICSA and
ELM-based NN models.

Selecting parameters by
using particle swarm
optimization

The average nRMSE for WNN
trained by ISCA and ELM are
5.4059% and 6.925%;
The average nMAE for WNN
trained by ISCA and ELM are
4.2893% and 5.4787%.

To improve for large errors due to time
by using five hybrid NN algorithms for
short-term prediction of wind power.

[28]

Enhanced bee swarm
optimization (EBSO) to
perform the parameter
optimization for least
squares support vector
machine (LSSVM)

Picking parameters for
LSSVM by enhanced bee
swarm optimization
(EBSO)

DR-SVM
VMED(m/s): 6.895
MAE (m/s): 0.723
RMSE(m/s): 0.932
MAPE(%): 11.87
CPU time(s): 148.15

To calculate errors using nMAE
and nRMSE.

[29]

The state of the art of
wind speed and power
forecasting models for
wind turbines located in
different segments of
power systems

Data preprocessing (EMD
and ICEEMDAN) and
parameter optimization

No description

To investigate whether the correction of
the obtained forecast values can
significantly reduce the error caused by
the forecast models within the
postprocessing data techniques in
hybrid models.
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Table 4. Cont.

Ref Model Type Parameters Used Accuracy Future Studies

[30] The Adaboost-PSO-ELM
method

Wind speed, wind
direction, wind power

MAPE = 0.0372; NBE = 0.4621
RMBE = 0.2950; R2 = 0.9857

-To consider reconstructing the
training samples;
-To select specific indicators as training
samples for short-term wind power
prediction to further improve prediction
performance based on numerical
weather forecast (NWP) data.

[31]

Salp swarm
algorithms–extreme
learning machine
(SSA-ELM)

Wind speed, wind
direction, temperature,
atmospheric pressure, and
other data are sampled
every 10 min

MAPE = 1.2677
RMSE = 0.2576

-To avoid the over-fitting phenomenon of
the ELM and improve its
generalization ability.

[32] Priori-guided and
data-driven hybrid model

Wind speed, wind
direction, and wind power

MAE = 0.0861, RMSE = 0.1262,
R2 = 0.8333, AR = 87.38%

-The online learning approach;
-To apply wind power forecasting to
turbine control or economic dispatch to
facilitate the better operation of the wind
turbines connected to the power grid.

[33] Intelligent hybrid
prediction framework Wind speed MAPE = 2.62 and RMSE = 0.14

The more efficient and advanced
methods in the prediction sub-models
may be beneficial to further improve the
performance of the proposed framework.

[34] ELM-based quantile
regression model

Historical data on wind
power

Reliability and skill
score are reduced by 10% to 33%.

- Improving structures of NNs and
adjusting network parameters;
-The quantiles provided by the proposed
method can enclose actual wind power
output data more accurately.

[35] Stacked physics-informed
machine learning model

Ambient temperature,
humidity, wind speed,
wind direction, irradiance,
and atmospheric pressure

RMSE = 5% and R2 = 0.95
Future work involves the employment of
new and unexplored ML methods
striving for deeper learning.

[36] Cyber-secure generalized
supermodel

Wind speed, temperature,
humidity, radiation

RMSE = 0.02, MAE = 0.007
MAPE = 0.60
R2 = 0.84

-Sensitivity analysis of the correlation
between input and output variables;
-Users and operators of power grids can
make the best decision in selecting input
data to achieve maximum
forecasting accuracy.

[37] Online transfer
learning model

Active power, wind speed,
wind direction, vane
position, and temperature

PA = 0.934
MAE = 84.837
RMSE = 134.837

-Improve the prediction accuracy of the
proposed online transfer
learning method;
-Advanced neural networks can be used
to replace the ConvLSTM
neural network.

[38] Discrete wavelet
transform

Wind speed, wind
direction, air temperature,
air humidity, and air
pressure.

Anemometric height
100 m RMSE [m/s] = 0.383
150 m RMSE [m/s] = 0.368
120 m RMSE [m/s] = 0.375

-The proposed transformer model,
integrated with wavelet transform, can
be applied to other multivariate time
series forecasting tasks.

[39]
Improved kernel
density estimation
(IKDE)

wind speed, wind
direction, and wind power
of the wind farm, and
numerical weather
prediction (NWP) data.

Mean skill score=-0.527
-The effect of outliers for our forecasting
model shall be addressed in
future research.

[40] Goddard earth observing
system model

Wind speed (m/s)
Wind power (kW)
Wind direction

RMSE [kW] = 76.18

To incorporate the uncertainty of GEOS
FP weather forecasts against MERRA-2
reanalysis into data set to be used for
output power prediction for each hour of
the time horizon ahead.

[41] Support vector
regression (SVR)

Wind speed (m/s)
Wind power (kW) RMSE/MW = 14.7435

-To reduce the number of charging and
discharging cycles of hybrid energy
storage devices;
-To prolong the operation life of the
system, and improve the overall
performance of the system.



Sustainability 2023, 15, 10757 11 of 40

Table 4. Cont.

Ref Model Type Parameters Used Accuracy Future Studies

[42] Gradient-boosting
machine (GBM)

Wind speed (m/s)
Wind power (KW) NMAE = 5.15%

To expand the periods of the test set for
various months and seasons of
wind-power forecasting.

[43]

Improved hunter-prey
optimization (IHPO)
algorithm-based extreme
learning machine (ELM)

Data from the SCADA
systems
Wind speed (m/s)
Wind power (kW)

RMSE(kW) = 50.55 To improve the prediction accuracy for
wind power.

[44] Kernel extreme learning
machine (KELM) Wind data Reliability performance

parameter P (%) = 90.92
To explore the relevance of the
implications for BRICS countries.

C. Deep-learning-based approaches

In recent years, machine learning algorithms have been widely introduced to the field
of wind power prediction, and a large number of researchers have proven that ANNs are
prone to overfitting during training. This is manifested by the small error when training
samples are substituted into the model, but when testing samples are applied to the model,
the error suddenly increases, and the generalization ability is insufficient. Based on this,
a deep neural network is proposed that has at least three network layers. Through the
structure of a multilayer perceptron with multiple hidden layers, the deeper features are
mined, and the unsupervised training and supervised learning fine-tuning methods are
combined to further improve the accuracy of classification or prediction and avoid the
phenomenon where shallow ANNs easily fall into local optimal values. Deep learning
methods include the deep belief network, convolutional neural network, recurrent neural
network, and long short-term memory network. Many reviewed papers attempted to use
the convolutional neural network (CNN) to process unstable wind power data and use its
efficient data feature extraction ability to improve the running speed. They used the unique
time memory characteristics of long short-term memory (LSTM) to predict short-term wind
power. Due to the fact that the direct prediction method uses a set of constant parameters to
predict short-term wind power, it is impossible to accurately describe the power variation
pattern. In order to improve the accuracy of short-term wind power prediction, recent
works used a rolling prediction method, where various parameters change depending on
the wind farm data and each rolling energy follows the instantaneous wind power variation
pattern. Finally, wind power rolling prediction models based on the CNN-LSTM were
established, and experimental verification and a comparative analysis were conducted.
Table 5 summarizes the hybrid wind power prediction methods based on deep learning in
the reviewed works.

Table 5. Summary of Deep-learning (DL)-based approaches for wind power forecasting.

Ref Model Type Parameters Used Accuracy Future Studies

[15]
A convolution-based
spatial–temporal wind power
predictor (CSTWPP)

Historical wind power MASE = 190.02
RMSE = 7.49

CSTWPP model is essentially a
multi-task model, predicting all the
wind farms’ future power at the
same time.

[16]
The spatiotemporal convolutional
network (STCN) with a directed
graph convolutional structure.

-Historical power data
-STCN parameters
selected by oneself

MAEs = 3.17%
RMSEs = 2.88%,

A wind power forecasting
framework will be investigated to
ensure data security for multiple
wind farms.

[45]
A deep optimized convolutional
LSTM-based ensemble reinforcement
learning strategy (DOCLER)

Wind power RMSE = 7.1322%
MAE = 4.6713%

Optimization of grid
integration issues.

[46]

A variational mode decomposition
(VMD) and convolutional long
short-term memory network (Conv
LSTM) model

Wind power

MRE(KW) = 0.016
MAE(KW) = 792
MSE(KW) = 1,568,305.38
RMSE(KW) = 1252.32

Other intelligent algorithms to
optimize the proposed model
are studied.
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Table 5. Cont.

Ref Model Type Parameters Used Accuracy Future Studies

[47] A multi-source and temporal
attention network (MSTAN)

Wind speed, pressure,
temperature, humidity,
and wind direction

NRMSE = 0.154
NMAE = 0.110

-Novel spatial attention or spatial
feature extraction modules should be
merged into MSTAN;
-The applicability of MSTAN at other
time resolutions should be verified.

[48]
Two-dimensional convolution neural
network trained by improved
accidental floater PSO

Fine-tuning the weights of
TDCNN by
proposed AFPSO

MAPE:3.76
NMAE:2.46
NRMSE:3.12

Using AFPSO algorithms will lead to
a longer modeling time.

[49]

Deep neural network: LSTM method
(best); MLP (second best)
while using SVR, KNNR, and
physical model with an
expert correction

More LSTM parameters
and setting these
parameters by oneself

GBT, RF, PHYS(v1&v2)→
KNNR, MLP, LSTM with
additional expert
SS:0.5925;
nMAE[%]:11.3055;
nRMSE:0.1618;
nMBE:0.0146

The proposed ensemble methods are
also applicable to short-term
generation forecasting for other
renewable energy sources (RES).
-Input data requires pre-processing
to extract features to solve long
running time due to too much
input data.

[50]

-Optimizing the hyperparameters of
the LSTM network by the modified
PSO algorithm
-A PSO_LSTM model

Selecting parameters
by PSO

MPSO_ATT_LSTM
MAPE: 4.6%;
MAE: 211.5 kW
Device capacity
> 20,000 kW

It is required to avoid overfitting in
optimization algorithms and
modeling. Therefore, training data
and test data are usually required to
be evaluated together.

[51] Advanced deep learning techniques
Encoder–Decoder LSTM

Setting parameters
by oneself

Annual and
monthly errors

Additional meteorological and site
determination factors such as the
amount of rain, azimuth for solar
irradiation, wind direction, etc. for
windspeed forecasting could
be considered.

[52] The CNN-MLSTMs-T Model Wind power RMSE = 0.1998;
MAE = 0.1523

The combination of the sample
similarity analysis idea and other
hybrid models will be our future
research focus.

[53] Generative moment matching
network (GMMN) Historical wind power

PINAW = 8.66 MW;
PICP = 84%
RMSE = 127.10;
MAE = 0.6855 MW

The WindGMMN can be extended to
the robust optimization of
distribution networks.

[54] Bidirectional long short-term
memory (Bi-LSTM) Manual adjustment layers

Error can be divided into
training, test, and
validation errors

New optimization algorithms or the
integration of multiple optimization
algorithms will be investigated to
optimize the forecasting model.

[55] Multi-step informer network (MSIN) Manual selection
of parameters

Multi-step informer
network (MSIN) improves
forecast accuracy by 29%
compared with the
informer network
for RMSE

To consider the non-trivial
correlations of meteorological
variables without relying on single
historical data in forecasting.

[56]

Long short-term memory neural
network (LSTM) with the improved
particle swarm optimization
algorithm (IPSO)

Determining the LSTM
and DENSE layers, the
number of neurons

VMD-CNN-IPSO-LSTM
MAE:2.92668;
RMSE:3.59604
MAPE:0.20147;
adj-R2:0.96639

To examine a multi-step
decomposition model for feature
extraction through different neural
networks, such as graph
convolutional neural networks for
implicit mining.

[57]
Spatiotemporally multiple clustering
and I–CNN-BILSTM deep
learning network.

Historical power and
meteorological data

MAPE(%) = 4.86,
MAE = 18.64,
abd RMSE = 28.45.

The uncertain power prediction of
multiple wind farms with
spatio-temporal coupling in
extreme weather.

[58]

1.The model input data organization
framework
2.The unified forecast based on
STC-DPN
3.The single site error correction of
TCN-LSTM.

Wind speed,
wind direction

MAE = 2.071,
RMSE = 2.431,
COR = 0.568

To apply the strategies and models
proposed to more research fields,
such as wind power forecast or wind
turbine fault early warning.
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[59]
Temporal inception convolutional
network (TICN) wind speed interval
prediction model

Wind speed PICP = 0.994
PINAW = 0.087

It may have a better effect on some
short-term prediction occasions.

[60] Hybrid deep learning model
Wind speed, air
temperature, and air
pressure

MAE = 1.59, RMSE = 3.73
and MAPE = 8.13.

-To tune the parameters of the model
using advanced optimization
algorithms.
-To reduce computation time and
provide more accurate results.

[61] Multi-Task GCN (MTGCN)
Temperature, humidity,
weather, historical wind
power

PICP = 0.9634,
PINAW = 0.0363,
CWC = 0.2178

To utilize advanced ML techniques
such as transformer to further
improve wind power forecasting
performance.

[62] CNN-ED-LSTM model
Air temperature, pressure,
wind direction, wind
power

MSE = 0.0102
MAPE = 46.24
MAE = 0.0623
RMSE = 0.1012

-To improve the accuracy of the
CNN-ED-LSTM model in WPPA,
hyperparametric optimization
strategies using intelligent
algorithms to efficiently enhance DL
models to obtain optimal values of
hyperparameters.

[63] Long short-term memory (LSTM)
neural network Actual historical data

RMSE (MW) = 0.94
MAE (MW) = 0.67
MAPE (%) = 49.71

To extend to the power prediction
derived from wind over a large area.

[64] Seq2Seq model

The historical wind speed,
wind direction, and total
power output of 24 wind
turbines with a 10-min
resolution

RMSE = 129.3
MAE = 81.1

To implement an adaptively sized
time window on the input variables
based on cross-correlation analysis

[65] Long short-term memory (LSTM) Actual historical data RMSE(MW) = 1.27
MAE(MW) = 0.90

A good starting point can range from
1 × 10 without the time of day and
numerical weather prediction
information -Easily be incorporated
in the extension work.

[66] Deep learning

Historical data on
measured weather and
numerical weather
predictions (NWPs)

NRMSE = 0.16
MAPE = 0.15

Using historical weather
measurements as input allows the
prediction model to compensate for
the errors in weather predictions

[67] Gated reference unit (GRU)

Ambient temperature,
direction of the wind flow,
speed of the wind, and
wind power generated
from the wind turbine.

Mean Square Error = 0.130

The GRU network is better suited to
extract extremely non-linear and
complex data from an input data set
in real time to boost wind speed
prediction.

[68] A deep learning model (gated
recurrent unit, GRU)

Meteorological wind
speed, wind direction, and
wind power data

RMSE = 111.9766 To implement multistep wind power
forecasting based on deep learning.

[69] Residual CNN-based deep
forecasting method.

Meteorological wind
speed, wind direction, and
wind power data

1-h ahead.
RMSE = 0.9947

To examine in detail different
decomposition approaches

[70] Bidirectional long short-term
memory network (BiLSTM)

Numerical weather
prediction (NWP)
Wind speed
Wind direction
Temperature

RMSE/MW = 1.0822

-To develop probability forecasting
based on single point forecasting in
order to realize the quantitative
description of wind energy
uncertainty;
-To better serve the multi-aspect
optimization decisions of the power
system.

[71]
The Encoder–Decoder framework is
constructed with LSTM as the basic
unit

Wind direction
Wind speed (m/s)
Wind power (kW)

RMSE = 0.1243

To significantly affect the
performance of such data-driven
forecasting methods. These remain
our further research questions.
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[72]

Long short-term memory (LSTM)
network using an improved Adam
optimizer with loss shrinkage
(LsAdam)

Data from the SCADA
systems
Wind speed (m/s)
Wind power (kW)

Train set
MSE(×10−3) = 3.5961
Test set
MSE(×10−3) = 2.1628

The trained model will have better
performance since the learning rate
is iteratively tuned with past
loss-changing information.

[73] Long short-term memory (LSTM) Temperature, humidity,
pressure, wind power, RMSE(%) = 10.23 To improve the prediction accuracy

for wind power

D. Hybrid predictive model approaches

Hybrid predictive models combine two or three deep learning techniques or include
optimization algorithms. By combining multiple algorithms with some strategies, the
prediction accuracy of wind power can improve to achieve the desired effect. Generally
speaking, hybrid predictive models can be divided into two categories. The first category
combines several different modeling algorithms with different weight values to predict
wind power. For the same wind power dataset, each single algorithm will obtain different
forecasting results. Some algorithms have better prediction performances, and some algo-
rithms have lower prediction accuracies. Therefore, each algorithm involved in forecasting
is given a certain weight value, and then the algorithms are combined to predict the wind
power data. In the second category, one or several processing algorithms are added at a
certain stage of the complete prediction model. These hybrid models are distinguished
based on different processing steps. The first method preprocesses the input wind power
dataset, for example, by using the wavelet decomposition algorithm to decompose the
wind power sequence, which can reduce noise. The second method uses optimization
algorithms to find the best hyperparameters in the prediction process. The third method
adds processing algorithms to the predicted errors after the prediction. The fourth method
introduces different processing algorithms in two or three stages of the prediction process
simultaneously. A summary of the hybrid model approaches for wind power forecasting
in the reviewed works is given in Table 6.

Table 6. Summary of hybrid model approaches for wind power forecasting.

Ref Model Type Parameters Used Accuracy Future Studies

[20]

An ensemble neural forecast
framework (ENFF) with three neural
predictors for wind speed
forecasting below.
Elman neural network (ELM)
Feedforward neural network (FNN)
Radial basis function (RBF)
neural network

Wind speed,
meteorological Errors around 0.6 m/s

Planning framework and operation
strategy are developed for the
storage providing virtual inertia
support (VIS) in a low-inertia
power system.

[74] The CEEMDAN-IBA-GPR model Historical wind power
data Stand deviation = 10.42

Optimal dispatching of isolated or
grid-connected MG considerations of
economic cost, net pollutant
emission, and operational security
objectives will be the focus of
future work.

[75]

A multi-feature fusion self-attention
mechanism graph convolutional
network (MFF-SAM-GCN)
forecasting model

Hyperparameter
optimization of the
predictive model by
Bayesian optimization
(BO)

RMSE of the proposed
(MFF-SAM- GCN) model
is 0.0284, while the
SMAPE is 9.453%, the
MBE is 0.025, and
R2 is 0.989.

New optimization algorithms or the
integration of multiple optimization
algorithms will be investigated to
optimize the forecasting model.
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[76]
The WD-IGFCM-LSTMS model for
the accuracy of short-term wind
power forecasting (WPF) approach

The best parameters
determined by the IGWO
algorithm

Case A:
NMAE 10.32%;
NRMSE 14.59%
CR: 85.41%; QR: 91.53%
Case B:
NMAE 10.18%;
NRMSE 13.52%
CR: 86.48%; QR: 91.53%

-The forecasting accuracy for
short-term WPF can be improved by
correcting NWP data;
-The possibility of extending the
wave-oriented approach to NWP
data correction will be further done.

[77]
Generalized regression neural
network (GRNN) and support vector
machine (SVM)

Turning GRNN and SVM
parameters by oneself

The GRNN model gives
the CC value of 0.956,
RMSE of 28.82
The SVR model gives a CC
value of 0.965 and an
RMSE of 44.40.

A new technique for feature selection
is needed to design electricity load
forecasting for this type of area,
which is connected to multiple
electricity grid systems.

[78] The WPD-VMD-SSA-IGWO-
KELM model Wind speed NMAE = 11.2%

MAPE = 4.2%

-The suitable length of the train set is
variable when
wind power significantly changed.
-The error sequence can be used to
correct the prediction.

[79] Variational mode Decomposition
(VMD) and Random forest (RF)

NWP data containing 24
meteorological factors and
wind power trend
component data.

NRMSE(%) = 11.421
NMAE(%) = 8.152

The implicit law of wind
power sequence in frequency and
time domain.

[80] Hybrid
VMD-CNN-GRU-based model

Wind power, wind speed,
wind direction,
temperature, pressure, air
density and humidity.

RMSE = 1.5651,
MAE = 0.8161,
MAPE = 11.62%,
and R2 = 0.9964.

The impact assessment and
cost-benefit analysis should be
performed in future work.

[81]
Spatiotemporally multiple clustering
and I-CNN-BILSTM deep
learning network.

Historical power and
meteorological data

MAPE (%) = 4.86,
MAE = 18.64,
abd RMSE = 28.45.

The subsequent research will focus
on the uncertain power prediction of
multiple wind farms with
spatio-temporal coupling in extreme
weather.

[82]
The hybrid forecasting method
based on the corrected NWP data
and the SC.

Temperature, humidity,
wind direction, wind
speed.

RMSE = 1.238,
MAPE = 0.325,
MAE = 0.7002

To introduce advanced artificial
intelligence and machine learning
methods to assist the automatic
scene division of the complex input
data.

[83] MMMD-K-means-SDAE-
LSTM model

Wind speed, wind
direction, wind power
data

NMAE = 6.43,
NRMSE = 9.59

-The operating costs of the model for
computational time and hardware
costs are higher than those of a
simple forecasting model.
-The time horizon for effective
forecasts is short (30 min to 24 h).

[84] LSTM-WPRE model

Wind speed, wind
direction, air temperature,
relative humidity, and
pressure

MAPE = 0.094,
rRMSE = 0.112

-The overall running time should
decrease;
-The proposed model should be
suitable for newly installed wind
farms.

[85]

Outlier detection, decomposition of
time series, effective feature
selection, and prediction of each time
series decomposed.

Wind direction, wind
speed, or wind power

NRMSE = 0.1020
NMAE = 0.0803

The economic, technical, and
environmental benefits achieved
from high-accuracy wind power
forecasting.

[86]

KHC algorithm for clustering,
components extraction and selection
with SVD, and building SVR
forecast model.

Wind power, wind
direction, wind speed,
temperature, pressure,
and density

MAE = 0.273
RMSE = 0.343

With the increasing number of wind
turbines a more efficient and
effective measurement of similarity
of weather patterns between
different wind turbines.

[87]
GBRBM-DBN consists of the PCA,
NWP, and SC for wind power
forecasting.

Wind direction, wind
speed, rainfall,
temperature, surface
sensible heat, air pressure,
and air density

RMSE = 2.6018,
MAPE = 0.2859,
MAE = 2.3857

The utilization of the adaptive
learning step technique further
improves system accuracy.
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[88] ST-GWO-MSVM model Wind power
NMAE = 3.3221,
NRMSE = 4.64875,
FB = 0.0029, DA = 0.8342

To improve the performance of
ST-GWO-MSVM.

[89] FCM-WOA-ELM-GMM Model

Wind speed, wind
direction, air pressure,
temperature, and
humidity

MAE = 3.8%,
RMSE = 5.24%

To improve the calculation accuracy
of the probability density
distribution of wind power
forecasting errors.

[90] Seasonal Autoregressive Integrated
Moving Average (SARIMA) model Historical wind velocity RMSE = 13.09

MAPE = 1.03

If the time series is non-stationary,
the study needs to use differencing
or de-trending techniques to make it
stationary before applying the
AR method.

[91] Historical wind climate model and
Physical model

Wind speed and weather
data

RMSE = 13%
MAE = 20.7%

These span the areas of resource
assessment, wind power forecasting,
and validation, as well as market
instruments.

[92] Hybrid prediction method Wind power and direction
MAPE = 16.87%
MAE = 27.1%
CI = 0.968

The region’s correlations between
different renewable energy systems
on the performance of the
prediction model.

[93]
Multi-modal Multi-task
Spatiotemporal Attention Network
(M2STAN) model

Wind direction, wind
speed, temperature,
atmospheric pressure, and
air density

RMSE = 6.27%
MAE = 4.01%

To explore efficient and reliable
machine learning hyperparameter
optimization methods.

[94] AMC-LSTM hybrid model

Historical wind power,
torsion angle, wind speed,
impeller speed,
temperature, generator
speed, wind direction

MSE(e−2) = 0.8951
MAE = 0.0505
RMSE = 0.0946

-To integrate multi-scale extended
features
-To improve short-term wind power
prediction accuracy.

[95]
Gaussian mixed clustering-Deep
neural network probabilistic
forecasting (GMC-DeepNN-PF)

Wind direction, wind
speed, wind power

RMSE(MW) = 56.6893
MAPE(%) = 4.839
MAE(MW) = 42.0201

-To expand wind direction and time
properties for improving the
accuracy of WPF.

[96]

Self-attention temporal
convolutional network Long-short
term memory
(SATCN-LSTM)

Wind speed, air density,
wind direction,
temperature, and surface
pressure.

RMSE = 0.680 No description

[97]
Multiple stacked bi-directional long
and short-term memory (Bi-LSTM)
networks

Wind direction
Wind speed (m/s)
Wind power (kW)

RMSE(×10−2) = 6.47473

To develop more efficient and
accurate prediction methods for
wind power prediction by exploiting
adaptive denoising.

[98]

The Proposed Hybrid Intelligence
Model
XGBoost, Tree, SVR, and BPNN
methods

Converting wind data to
wavelet information RMSE = 1.8313

The proposed hybrid model will be
of great attraction and practical
application in power systems.

[99] Long short-term memory (LSTM) Wind speed (m/s)
Wind power (kW) RMSE = 2.63109

-To use a multi-step decomposition
model;
-The sub-sequence obtained from the
decomposition is passed through
different neural networks for feature
extraction.

E. Statistical-analysis-based approaches

The statistical analysis prediction model establishes the nonlinear functional relation-
ships among various input meteorological data and output parameters (wind farm output
power value) in the historical data through one or more algorithms. According to this
model, NWP and other information are used as inputs to predict the future output power of
the wind farm. The advantage of statistical prediction is that it can minimize the prediction
error of the output probability when there is sufficient historical data. By training and
adjusting the model, appropriate outputs can also be provided for input data that are not
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in the training set. The disadvantage of statistical methods is that they rely heavily on raw
historical data. Table 7 demonstrates a summary of statistical analysis-based approaches
for wind power forecasting in the reviewed works.

Table 7. Summary of statistical analysis-based approaches for wind power forecasting.

Ref Model Type Parameters Used Accuracy Future Studies

[9] Modified hidden
Markov model

Wind speed, wind
direction, wind power

RMSE = 3.093
MAE = 2.451

The error transfer mechanism from
wind speed forecast (WSF) to wind
power forecast (WPF) are of great
interest for the improvement of WPF.

[10]

Distance-weighted kernel
density estimation (KDE)
and regular vine
(R-vine) copula

Wind power output,
wind speed

RMSE = 0.1089
MAE = 0.075

As computing becomes faster and
less expensive, the task of achieving
enough scenarios will become easier
in the future.

[11] The k-NN and conditional
KDE models Historical wind power MAE = 3.18; RMSE = 4.63; R2 = 0.94

More work needs to be done in terms
of bandwidth selection for
high-dimensional datasets in KDE
based approaches.

[12]

A quantile
passive–aggressive
regression (QPAR) model
for online convex
optimization problems

Wind power

Pinball loss (PBL) = 13.3
Average coverage error
(ACE) = 4.86%, Winkler score
(WKS) = 78.71 and Continuous
ranked probability score
(CRPS) = 26.21

Addressing this missing data
problem is necessary for the actual
implementation of these methods.

[13] Spatiotemporal quantile
regression (SQR) Wind power data RMSE = 16.62%; MAE = 11.23%

To enhance predictive effects and
computational efficiency for wind
power prediction.

[100] Higher-order multivariate
Markov chain (HMMC)

Wind power; PV power,
Heat index NRMSE = 2.59

-The HI index was utilized as an
additional meteorological variable.
-The dynamic update of the model
parameters was applied to the wind
power forecast.

[101]

Five minute-ahead wind
power forecasts in terms
of point forecast skill
scores and calibration

To deduce the value of
kernel methods for
parameter adjustment

The error value is represented by a
picture rather than a simple number.

Future work will focus on extending
this approach to other variables, e.g.,
temperature, wind speed, wind
direction; additional forecast
horizons; investigation of other
kernel machines; and development
of other adaptive models.

[104]
Empirical dynamic
modeling (EDM)-based
probabilistic forecast

Historical wind turbine
power CRPS (%) = 5.12

The real-time WTP measurements
are added to the reconstructed state
space during the forecast process.

[105] Multi-class autoregressive
moving average (ARMA) Historical wind power RMSE = 127.10

MAPE = 1.25%

-To improve the interpretability of
the combined models for further
accuracy enhancement;
-To incorporate the spatial correlation
features into the classification and
prediction.

[106]
Renewable energy is
directly distributed to
power dispatch

Incorporating renewable
energy into the power
flow

With an increase in power by 1.6
times, there is a decrease in energy of
RES by 15-19.

-To generalize the model and
evaluate the model accuracy

[107] Weather research and
forecasting model.

Wind power, wind speed,
atmospheric and density

MAE = 15% (summer) and
MAE = 26% (winter)

To improve large variance in winter
model output.

[108] WRF forecasting model;
CCMP satellite data Wind power, wind speed,

WRF model:
RMSE = 1.68 to 2.85 m/s
CCMP satellite data:
RMSE = 1.79 to 2.89 m/s

To focus on the effects of the sea
breeze across the region studied, the
prediction of these conditions, and
their impact on wind farm power
generation.

[109] Transformer Wind power and NWP
data

8-step ahead
RMSE = 7.51
16-step ahead
RMSE = 10.88

To further explore machine learning
strategies for small sample data,
such as data augmentation and
transfer learning.
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Table 7. Cont.

Ref Model Type Parameters Used Accuracy Future Studies

[110] SVR with RBF kernel

Number of wind turbines
Installed capacity (MW)
Manufacturer type
Hub height of tower/s (m)
Cut-in/Cut-out wind
speed (m/s)
Rated wind speed (m/s)
Swept area of a wind
turbine (m2)

RMSE = 8.3404(Spring)
RMSE = 6.6873(Summer)

To reduce computation time to
enable the use of a smaller subset
with 5-day data or even less.

[111]
ACE in the
dynamic-indirect GP
(DYINGP) mode

Wind speed (m/s)
Wind power (kW)
Wind direction

NRMSE = 3.66

The coefficients could be controlled
with state-of-the-art algorithms due
to the covariance functions being
very important in the GP results.

[112]

Secondary evolutionary
generative adversarial
networks (SEGAN) and
dual-dimension attention
mechanism (DDAM)
assisted bidirectional gate
recurrent unit (BiGRU)

Wind speed (m/s)
Wind power (kW)
Wind direction

RMSE = 119.645 (kW)
MAE = 83.179 (kW)
MAPE = 0.354%

-To consider the combination of the
proposed SEGAN-DDAM-BiGRU
with transfer learning.
-To better address the wind power
prediction problem without
sufficient historical data
available.

[113] Support vector
regression (SVR) Wind data RMSE (kW) = 66.26

To be used as a reference for grid
power generation planning and
power system economic dispatch.

[114] Support vector
regression (SVR)

Wind power data
Meteorological data RMSE(MW) = 373

The reanalysis data used in this
paper may not fully represent the
real data in practical applications,
which affects the actual prediction of
future wind power.

3. State-of-the-Art Approaches for Short-Term Wind Power Forecasting

The prediction effects of different predictive models have their own advantages and
disadvantages. The hybrid prediction method involves optimizing and combining the
results of the data processing of different models according to a specific strategy so as
to obtain better wind power prediction results and ultimately achieve the purpose of
improving the accuracy of wind power prediction. In the final analysis, the combined
forecasting method is used to optimize the forecasting results, and as long as the time
series scale of the power forecasting output corresponds to the combined forecasting of
the model, there is no limit to the relevant algorithms used for each forecast. At present,
due to the large amount of data that can be provided by wind farm numerical weather
prediction (NWP), combining NWP information to improve the accuracy of wind power
forecasting has become the main research direction in hybrid wind power forecasting.
Statistical methods were used to predict wind power generation in the past and achieved
the purpose of predicting wind power generation through wind speed prediction. Due
to a large amount of historical data, we currently use the analysis and selection of data
features to reduce the training sample space and improve the extraction of more useful
data from the database, thereby reducing the amount of data, shortening the running
time, and obtaining good prediction results. Then, a wind power generation model is
established based on support vector machines as a predictive method suitable for nonlinear
regression analysis. Its internal parameters will affect the accuracy of the regression
analysis. Therefore, the bee colony algorithm is used to better solve the parameter values.
In order to reduce the prediction error, we aim to minimize the error and use the bee
colony optimization algorithm to solve the parameter setting problem of the support
vector machine, which not only increases the integrity of the prediction model but also
improves the prediction accuracy. We use meteorological observation stations for long-term
recording and monitoring to obtain relevant wind speed and power generation data, and
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data regression technology is used to preprocess the input data to remove parameters that
reduce the predicted value, thereby reducing network input parameters.

The work described in this paper is shown in Figure 2, and the short-term wind power
forecasting model is discussed in depth. The latest approaches to short-term wind power
forecasting in the past three years are reviewed to provide an important reference in wind
power grid integration. In order to improve the accuracy of wind power forecasting, this
paper gives a detailed overview of the contributions, advantages, and disadvantages of
various delivered wind power forecasting models and future research. These advanced
forecasting methods can be roughly classified into kernel density estimation, quantile
regression methods (QR), artificial intelligence/neural networks (NN), ensemble methods,
spatiotemporal forecasting, machine learning, deep learning, hybrid model forecasting, and
other statistical analysis methods. These proposed novel short-term wind power forecasting
models provide very useful information for power system operation and control with high
renewable energy penetration.
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In recent years, various research institutions and scholars have adopted different
state-of-the-art approaches to improve the problems of power fluctuation and randomness
in wind power forecasting, as well as possible errors and omissions in the original data.
Certain advancements have been made, but there are still some issues that need to be
urgently solved. First of all, in the future, the sample space can be further expanded, and
the dimension of data samples can be increased to predict wind data diversity. According
to the wind power data with different characteristics, the prediction model is further
optimized to increase its applicability. Secondly, according to the characteristics of the
existing hybrid model, the parameter optimization method is further improved to ensure
that the prediction model has high prediction accuracy at different time sampling rates,
making it suitable for different prediction occasions.

4. Scientific Contributions, Advantages, and Disadvantages of Reviewed Works

In the process of predicting wind power, each prediction model has its own advantages
and disadvantages. Due to the research limitations, it is difficult to achieve high-precision
predictions or different types of predictions with a single prediction model. With the
continuous increase in wind power grid connection capacity and the increase in wind power
penetration power, the Department of power system dispatch has implemented increasingly
high requirements for the scheduling and prediction accuracy of wind power. Based on
this, establishing a combined prediction model for wind power prediction by integrating
the advantages of various prediction models is of great significance for improving the
accuracy of wind power prediction. By predicting wind power, it can effectively reduce
the operating costs of wind farms, enhance the advantages of wind power participation
in the grid connection, and improve the impact on the power system during large-scale
grid connections of wind power. Therefore, conducting research on wind power prediction
based on artificial intelligence algorithms and optimizing prediction models has practical
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value in engineering for improving the accuracy of wind power prediction and the reliability
of grid connection scheduling.

Artificial intelligence methods are widely applied to improve the efficiency of renew-
able energy systems. In Section 2, different hybrid methods for wind power prediction
based on artificial intelligence are classified and explained, including the neural network,
machine learning, algorithm optimization, deep learning, hybrid model, and statistical
analysis prediction methods, as shown in Figure 2. This work reviews comprehensive
wind power prediction methods based on artificial intelligence and its models by assessing
their contributions, advantages and disadvantages, performance, error analysis, and future
work, as shown in Tables 3–7. The implementation and influencing factors are clearly
discussed, including data preparation, feature selection, accuracy, and verification, as well
as an exploration of the key issues and challenges associated with hybrid wind power
prediction methods based on artificial intelligence. This section compares the performance
and error analysis of five classifications of prediction methods. Three papers with good
wind power prediction results and two or three papers for which the prediction results need
to be improved were selected from every prediction model classification for analysis and
comments. We provide selective future suggestions and directions for further improving
the accuracy of wind power hybrid prediction methods based on artificial intelligence.

4.1. Neural Network (NN)-Based Approach

Akhtar, I., et al. [19] developed a fuzzy logic approach and an ANN model for the
prediction of wind power outputs. The root mean square error (RMSE) of the proposed
fuzzy logic approach with neural networks (NNs) was calculated to be 1.04% and ob-
tained excellent results compared with other neural network (NN)-based approaches. The
proposed models can be employed for the estimation of wind speed and wind power
generation for any location in the world for which there is complete information, while it is
difficult to estimate wind power during the summer period in which wind speed is very
low. The wind power forecasting technique with integration into the grid will be analyzed
to consider load scheduling and demand-side management in future research.

Medina, S. V., and Ajenjo, U. P. [18] studied the efficiency and stability of ANN models
by varying the number of prior 1 h periods. Improvements in the model performance,
efficiency, and stability of ANN-based WPF models were studied. However, the suggested
hybrid technique with a MARE of 7.5% achieved worse forecasting results than other
methods due to the disadvantages of the ANN Model in the short-term prediction of wind
power generation.

Sun, Y. et al. [21] proposed a day-ahead numerical weather prediction (NWP) model
with a neural network. The hybrid approach combining the neural network and persistence
method used the NWP information and time windows to improve the low forecasting accu-
racy. The RMSE (%) of the hybrid technique was computed to be 8.76%, and disappointing
results were obtained. The relevance of the day-ahead method is doubted due to the great
change in the wind. The setting of neural network parameters is a big issue.

4.2. Machine Learning (ML)-Based Approaches

An, G. et al. [30] proposed the Adaboost-PSO-ELM method for wind power prediction.
This model has good generalization ability and robustness, providing a more reliable basis
for power grid dispatch. The MAPE estimation of the proposed technique was computed
to be 0.0372. The obtained results show higher accuracy and better generalization ability
with the Adaboost-PSO-ELM wind power prediction model. The disadvantage of this
method is that the training samples are selected based on experience. It is considered that
the reconstruction of training samples and the selection of specific indicators as training
samples for short-term wind power prediction could be used to further improve the
prediction performance based on numerical weather forecast (NWP) data.

Moayyed, H. et al. [36] studied the cybersecurity of wind power forecasting and the
robustness of the proposed forecasting models under exposure to a False Data Injection
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Attack (FDIA). The proposed model computed an RMSE of 0.02, an MAE of 0.07, and a
MAPE of 0.60, indicating better wind power forecast accuracy than that of other methods,
as shown in Table 2. The accurate performance and high generalizability of the cyber-
resilient global supermodel in forecasting wind power in various regions were shown.
When predicting wind power generation in a large area, poor internet connectivity can
cause the optimization of the local parity model to fail, and the server model can have
difficulty converging. A sensitivity analysis of the correlation between input and output
variables was presented so that the users and operators of power grids can make the best
decision when selecting input data to achieve maximum forecasting accuracy.

Liu, L., et al. [37] introduced a novel online transfer learning method for automatic
system-wide updates. To improve forecasting accuracy, this work proposes a novel online
transfer learning model that can achieve system-wide updating and rapid forecasting. The
result indicated that this technique delivered unsatisfactory wind power forecasting results
compared with the other existing strategies, having an RMSE of 134.837 and an MAE of
84.837. Although the methods of multisource data processing and the structure of the
prediction model have been improved, there is still significant room for improvement.
The advanced neural network can be used to replace the ConvLSTM neural network and
improve the prediction accuracy of the proposed online transfer learning method.

Liao, S. et al. [44] suggested the mutual information coefficient (MIC) and supported
vector regression. The reanalysis data from ERA5 provide more meteorological information
for the framework. However, the RMSE (MW) of the proposed SVR-based approach
accounted for 373, showing a large error for wind power forecasting. In this paper, by
adopting the ERA5 reanalysis dataset as the input, a short-term wind power prediction
framework was proposed by combining the light gradient boosting machine (LightGBM),
the mutual information coefficient (MIC), and nonparametric regression. The results in this
paper may underestimate the error. The used reanalysis data may not fully represent the
real data in practical applications, which affects the actual prediction of future wind power.

4.3. Deep-Learning-Based Approaches

Xiong, B., et al. [94] suggested that the hybrid methods effectively alleviate the in-
termittent and volatile characteristics of wind and significantly improve the prediction
accuracy. The suggested hybrid technique, with an MAE of 0.0505 and an RMSE of 0.0946,
achieved better forecast results than the other conventional models. The proposed AMC-
LSTM hybrid model is capable of integrating multiscale extended features and providing
better performance for short-term wind power forecasting. From the above-mentioned
information, we know that the redundancy of the long-term trend information in the origi-
nal time series data and the differences in the importance of input features are important
factors that lead to poor prediction performance. Future research directions include the
integration of multiscale extended features and the improvement of short-term wind power
prediction accuracy.

Yu, G.Z. et al. [57] proposed an I–CNNBILSTM hybrid neural network with an im-
proved attention mechanism, which uses the point CNN to extract the spatial features of
multiple WPFs with point cloud distributions and establishes the BILSTM to learn the
temporal features. The proposed technique was found to be excellent with respect to
execution performance and accuracy. The mean absolute percent error (MAPE) (%) of the
proposed approach was 4.86%. The local and global spatiotemporal correlation information
of the clusters was deeply mined to improve the prediction accuracy and model the training
speed. However, the processing capacity of complex power fluctuations under extreme
weather conditions, such as typhoons, is insufficient. Subsequent research will focus on
the uncertain power prediction of multiple wind farms with spatiotemporal coupling in
extreme weather.

Liu, Xingdou, et al. [58] suggested an STC-DPN unified forecast model with good
versatility. An independent TCN-LSTM hybrid model was used for single site error correc-
tion. The VMD was also used for noise reduction in the wind speed monitoring sequence
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and to extract the high-frequency components of the NWP wind speed for error correction.
The proposed model delivered the best wind power prediction accuracy in comparison to
other methods in terms of MAE (2.071) and RMSE (2.431). The proposed method has good
versatility and is suitable for wind speed forecasting in complex wind farm terrain, such
as hills, without being affected by the arrangement of wind turbines. The forecast error
of physical methods in the first few hours is too large due to the lack of accuracy in the
modeling data, but it can be robust for longer-term forecasts. The proposed strategies and
models will be applied to more research fields, such as wind power forecasting or wind
turbine fault early warnings.

Zhang, J. et al. [63] developed a long short-term memory (LSTM) neural network, in
which the key characteristics are extracted using a convolutional neural network (CNN),
and a long short-term memory (LSTM) neural network is used to establish the mapping
relationship between key characteristics and power generation. The results illustrated a
lower forecasting accuracy, indicating an MAE of 0.67 MW, an RMSE of 0.94 MW, and a
MAPE of 49.71%. The correlation modeling method considered the influences of wind
speed, wind direction, and temperature on the output power of wind farm clusters using
waveform similarity, trend consistencies, and monotony correlation characteristics. It
affects the element values of the spatiotemporal correlation characteristic matrix, which, in
turn, affects the extracted spatiotemporal correlation characteristics. Further investigations
could extend to power predictions derived from wind over a large area.

4.4. Hybrid Predictive Model Approaches

Zou, Y. et al. [24] conducted a Bi-LSTM network and a 1D-CNN with a parallel connec-
tion to form a multifeature fusion (MFF) framework, which can extract the spatiotemporal
correlation features of the load data. The eigenvalue can be found to reduce the data. The
results presented a higher forecasting accuracy with an RMSE of 0.0284 and an R2 value
of 0.989, enhancing the feature extraction capability of the 1D-CNN network through a
self-attention mechanism. More LSTM parameter settings need to be adjusted, indicating
a deficiency in this model. New optimization algorithms or the integration of multiple
optimization algorithms will be investigated to optimize the forecasting model.

Cui, Yang, et al. [84] proposed an LSTM-WPRE model to forecast day-ahead WPREs
and wind power generation with a time resolution of 15 min. The assessment outcomes re-
vealed that the technique delivered high accuracy, with a MAPE of 0.094. The LSTM-WPRE
model performed better than all of the benchmarking methods based on various evalua-
tion metrics assessed over four typical months. The drawback of the LSTM-WPRE is its
relatively longer execution time. The overall running time should decrease. The proposed
model should be suitable for newly installed wind farms in further research works.

Yan, J., et al. [91] developed a state-of-the-art hybrid model with uncertainty quantifi-
cation through the modeling chain of wind and wind power forecasting to improve the
certainty and reliability of the forecasts. The RMSE and MAE of the proposed model were
estimated to be 13% and 20.7%, respectively. In order to ensure the improvement of the
data quality, it is necessary to clean the data samples before model training. Future studies
could span the areas of resource assessment, wind power forecasting, and validation, as
well as market instruments.

Zheng, J.Q., et al. [92] proposed a hybrid framework to forecast multiple forms of
energy generation. The framework consists of an A-LSTM layer that captures the nonlinear
temporal characteristics of the weather conditions and power generation, a CNN layer
that mines the correlations of multiple energy sources, and a linear layer that considers
the linear temporal characteristics of each energy source. The recommended hybrid CNN
model showed unsatisfactory accuracy in short-term wind power predictions with several
deep learning frameworks, with an RMSE and MAE of 27.1% and a MAPE of 16.87%,
respectively. The accuracy of the prediction models should be improved in further studies.
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4.5. Statistical-Analysis-Based Approaches

Wang, Z. et al. [10] introduced the distance-weighted kernel density estimation (KDE)
and regular vine (R-vine) copula. The model is more accurate and flexible than the Gaussian
copula model. The prediction outcomes demonstrated that wind power prediction with the
novel techniques was superior to that with other forecasting strategies, achieving RMSE
and MAE values of 0.1089 and 0.075, respectively. Abundant bivariate copula functions are
available to make the model more accurate. Nevertheless, it needs a complex structure and
has a large hardware requirement. As computing becomes faster and less expensive, the
task of achieving enough scenarios will become easier in the future.

Yu, Y. et al. [13] proposed a spatiotemporal quantile regression (SQR) model, which
is a new nonparametric probabilistic prediction method. The values of the RMSE and
MAE were estimated to be 16.62% and 11.23%, respectively, indicating the low accuracy
of regional wind power probabilistic prediction. It is difficult to generalize the prediction
model. Additionally, a complex, nonlinear, and high-dimensional structure is required for
the proposed model. Future work can be carried out by enhancing the predictive accuracy
and computational efficiency of wind power prediction.

Dong, Y. et al. [105] suggested the multiclass autoregressive moving average (ARMA)
model, which has a lower training complexity, ensuring a higher prediction accuracy
compared with traditional models. The results revealed that the proposed approach
delivered the best results of the statistical analysis-based models, with a MAPE of 1.25%.
The seasonality and randomness of wind power are considered with moderate model
complexity to effectively guarantee the convergence speed and efficiency of the training
process. If the input data are nonstationary, meaning that the proposed data preprocessing
fails, the proposed model may not be able to obtain accurate prediction results. The spatial
correlation features can be incorporated into the classification and prediction for further
accuracy enhancement.

Meng, A.B. et al. [112] proposed a novel prediction model to address the few-shot
learning problem of wind power prediction in newly built wind farms based on secondary
evolutionary generative adversarial networks (SEGAN) and the dual-dimension attention
mechanism (DDAM)-assisted bidirectional gate recurrent unit (BiGRU). The proposed
hybrid approach acquired RMSE, MAE, and MAPE values of 119.645 (kW), 83.179 (kW),
and 0.354 (%), respectively, in comparison to the FFBPNN method. The proposed hybrid
method assures higher accuracy in short-term wind power prediction. In the near future,
the proposed SEGAN-DDAM-BiGRU can be considered with transfer learning to better
address the wind power prediction problem when sufficient historical data are not available.

Feroz, R.M.A., et al. [107] suggested the weather research and forecasting (WRF) model
integrated with the wind farm parameterization (WFP) scheme for the wind speed and
power forecasting of a utility-scale, onshore wind farm situated in complex terrain. The
proposed model demonstrated unsatisfactory forecasting results, achieving an average
MAE of 15% (summer) and an MAE of 26% (winter), respectively. The WRF model exhibited
lower accuracy during the winter season, with high RMSE values for wind speed and high
NMAE values for the power output of individual turbines. The large variance in the model
output for winter can be improved in future work.

4.6. Evaluation of Prediction Method Levels and Research Limitations

Figure 3 shows the evaluation structure of wind power forecasting. In the process of
short-term wind power prediction, the last prediction result is simply regarded as the true
historical power value. Therefore, the prediction model with a long time resolution is prone
to error accumulation, and the reliability of the prediction will gradually decrease. Selective
transmission of the encoding information from the last moment to the next prediction preserves
the dependency of information in multi-step prediction while also alleviating the phenomenon
of error accumulation and slowing down performance degradation. In summary, the methods
based on multi-source information proposed in this paper evaluated the reviewed short-term
wind power prediction models using various error indicators at different time resolutions.
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To demonstrate the predictive effectiveness of this proposed method, the AI methods,
time resolution, and prediction accuracy of each prediction model in the reviewed papers
were evaluated using the prediction method level, and the research limitations of each
prediction model were analyzed as shown in Table 8. At the same time, the wind power
prediction models of 1–3 AI methods proposed in this paper are analyzed for the prediction
results of the wind farms under study. In the distribution diagrams of evaluation indica-
tors for short-term wind power prediction models, as shown in Figures 4–6, benchmark
algorithm models that are significantly superior to the average value are selected, and the
excellent wind power prediction models are recommended to provide useful directions
for other researchers planning to conduct similar experiments and investigations. They
can effectively track the real power trend, be close to the real trend, and have certain
engineering practicalities.

Table 8. Summary of prediction method level and research limitations for wind power forecasting.

Ref Methods/Models Time Resolution Accuracy Prediction
Method Level

Research
Limitations

[9] 6 24 h RMSE = 3.093
MAE = 2.451 3 A

[10] 6 24 h RMSE = 0.1089
MAE = 0.075 4 A

[11] 2,3,6 24 h MAE = 3.18; RMSE = 4.63; R2 = 0.94 4 A,C

[12] 4,6 15 min

Pinball loss (PBL) = 13.3
Average coverage error (ACE) = 4.86%, Winkler
score (WKS) = 78.71 and Continuous ranked
probability score (CRPS) = 26.21

3 A,C

[13] 6 72 h–1 week RMSE = 16.62%; MAE = 11.23% 5 A,E

[14] 1 1 h

NMAE:
DQR:9.086; QRNN:9.479
SBL:13.451; IFPA:13.967
NRMSE:
DQR:10.917; QRNN:10.227
SBL:14.185; IFPA:14.538

3 B,E
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Table 8. Cont.

Ref Methods/Models Time Resolution Accuracy Prediction
Method Level

Research
Limitations

[15] 4 15 min MASE = 190.02
RMSE = 7.49 3 A,E

[16] 4 5 min~1 h MAEs = 3.17%
RMSEs = 2.88%, 3 B,F

[17] 1 24 h NRMSE = 0.138 4 A,B

[18] 1 1 h
Mean absolute relative error (MARE) = 7.5%;
Rj = 5.4% (mean value of the Pearson correlation
coefficient)

3 C,F

[19] 1 1 month-years RMSE = 1.04%; MAD = 0.91%
MSE = 1.05% 5 C,D,E

[20] 1,2 15 min Errors around 0.6 m/s 3 E,F

[21] 1 15 min The model accuracy improved by 7.61% and the
RMSE reduced by 8.76% 3 B,D,F

[22] 1 1 min

Mean square error (MSE)
GBRT: 0.224; MLP: 0.117
Random forest with Bootstrap sampling: 0.111
Random forest with Poisson re-sampling: 0.096

2 A,F

[74] 5 15 min~1 h Stand deviation = 10.42 3 A

[75] 5 1 hr
RMSE of proposed (MFF-SAM- GCN) model is
0.0284, while the SMAPE is 9.453%, the MBE is
0.025, and R2 is 0.989.

3 B,E

[25] 5 2 h, 4 h Both MAE and RMSE of less than 10% 3 C,D,F

[26] 2,3 30 min R2 = 98.9; RMSE = 50.36;
MAE = 23.63 3 C,E

[27] 1,2,3 1 h

The average nRMSE for WNN trained by ISCA,
ELM, RBF, MLP, WNN trained by PSO are
5.4059%, 6.925%, 10.294%, 12.407%, and 17.038%.
The average nMAE for WNN trained by ISCA,
ELM, RBF, MLP, and WNN trained by PSO, are
4.2893%, 5.4787%, 8.2527%, 9.5773%,
and 13.4847%.

3 D,E,F

[28] 2,3 10 min

DR-SVM
VMED(m/s): 6.895
MAE (m/s): 0.723
RMSE(m/s): 0.932
MAPE(%): 11.87
CPU time(s): 148.15

3 D,F

[29] 2,3 1~5 min, 24 h,
72 h–1 week No description 4 A,B

[30] 2,3 10~30 min, 1–4 h MAPE = 0.0372; NBE = 0.4621
RMBE = 0.2950; R2 = 0.9857 4 D

[31] 2,3 48 h MAPE = 1.2677
RMSE = 0.2576 5 A

[45] 4 30 min RMSE = 7.1322%
MAE = 4.6713% 3 A,B

[46] 4,2 1 h,48 h
MRE(KW) = 0.016
MAE(KW) = 792
MSE(KW) = 1,568,305.38 RMSE(KW) = 1252.32

5 C,D

[47] 4,2 30 min NRMSE = 0.154
NMAE = 0.110 3 A,C

[48] 4,3 1 h

Average error of four seasons
MAPE:3.76
NMAE:2.46
NRMSE:3.12

3 C,D
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Table 8. Cont.

Ref Methods/Models Time Resolution Accuracy Prediction
Method Level

Research
Limitations

[76] 4,5 1 h

Case A:
NMAE 10.32%; NRMSE 14.59%
CR: 85.41%; QR: 91.53%
Case B:
NMAE 10.18%; NRMSE 13.52%
CR: 86.48%; QR: 91.53%

3 A,B

[49] 4,6 1 h

INT_OUT_EXT[GBT, RF, PHYS(v1&v2)→KNNR,
MLP, LSTM] with additional expert
SS:0.5925; nMAE[%]:11.3055
nRMSE:0.1618; nMBE:0.0146

3 A,C,D

[50] 4,3,2 1 h

MPSO_ATT_LSTM
MAPE: 4.6%;
MAE: 211.5 kW
Device capacity > 20,000 kW

3 A,B,F

[51] 4,2 1 h Annual and monthly errors 3 D,F

[52] 4,1,2 15 min RMSE = 0.1998; MAE = 0.1523 3 C,E

[53] 4,1 15 min PINAW = 8.66 MW; PICP = 84%
RMSE = 127.10; MAE = 0.6855 MW 3 E,F

[54] 4,2 1 h Error can be divided into training, test, and
validation errors 3 A,F

[55] 4,2 10 min
Multi-step informer network (MSIN) improves
forecast accuracy by 29% compared with the
informer network for RMSE

2 C,D

[56] 4,2,3 15 min
VMD-CNN-IPSO-LSTM MAE:2.92668;
RMSE:3.59604
MAPE:0.20147; adj-R2:0.96639

3 A,B

[77] 5 1 h
The GRNN model gives a CC value of 0.956, an
RMSE of 28.82, and the SVR model gives a C value
of 0.965 and RMSE value of 44.40.

3 C,F

[78] 5 4 h NMAE = 11.2%
MAPE = 4.2% 3 A,E

[100] 6 15 min NRMSE = 2.59 3 A,C

[101] 6 5 min The error value is represented by a picture rather
than a simple number. 2 D,F

[102] 6 1 h
1% point analysis gap to the optimal solution,
which requires complete information, including
future values

3 C,D

[103] 6 5~15 min No description 2 C,D,F

[104] 2,6 30-min CRPS (%) = 5.12 3 F

[105] 4,6 15 min RMSE = 127.10
MAPE = 1.25% 2 C,E

[106] 6 1 h With an increase in power by 1.6 times, there is a
decrease in the energy of RES by 15–19. 3 E,F

[79] 5 3 h~24 h NRMSE(%) = 11.421 NMAE(%) = 8.152 4 C,E

[80] 5 1 h~24 h RMSE = 1.5651, MAE = 0.8161, MAPE = 11.62%,
and R2 = 0.9964. 4 E

[57] 1,4 15 min MAPE (%) = 4.86, MAE = 18.64, RMSE = 28.45. 3 C,D,F

[81] 1,3 10-min
RMSE = 0.0921, MAPE = 0.0081, MAE = 0.0706
PICP = 0.982, PINAW = 0.025, CPIA = 0.973
APL = 0.0267, CRPS = 0.053

3 D,F

[82] 5 24 h RMSE = 1.238, MAPE = 0.325, MAE = 0.7002 5 D

[58] 1,2 24 h MAE = 2.071, RMSE = 2.431, COR = 0.568 4 A,C

[23] 1,4 15 min MAE = 2.42, RMSE = 2.67 and MAPE = 0.12. 3 D,E
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Table 8. Cont.

Ref Methods/Models Time Resolution Accuracy Prediction
Method Level

Research
Limitations

[59] 4,5 0.25 h~4 h PICP = 0.994
PINAW = 0.087 3 B,C

[32] 2,5 48-h MAE = 0.0861, RMSE = 0.1262, R2 = 0.8333,
AR = 87.38% 5 C,D

[83] 5,1 30 min to 24 h NMAE = 6.43, NRMSE = 9.59 4 A

[84] 5,4 24-h MAPE = 0.094, rRMSE = 0.112 4 A

[60] 4 15 min MAE = 1.59, RMSE = 3.73 and MAPE = 8.13. 3 A,C

[85] 5 24 h NRMSE = 0.1020
NMAE = 0.0803 4 C,D

[86] 5 1 h~12 h MAE = 0.273
RMSE = 0.343 4 E

[107] 6 10 min MAE = 15% (summer) and MAE = 26% (winter) 3 D,F

[87] 5,4 24 h RMSE = 2.6018, MAPE = 0.2859, MAE = 2.3857 4 C,E

[88] 5,3 15 min NMAE = 3.3221, NRMSE = 4.64875,FB = 0.0029,
DA = 0.8342 3 A,E

[61] 4 5 min PICP = 0.9634, PINAW = 0.0363,
CWC = 0.2178 2 A,B

[89] 5 4 h~72 h MAE = 3.8%, RMSE = 5.24% 5 E

[90] 5 30 min ~ 6 h
1~7 days

RMSE = 13.09
MAPE = 1.03 3 E,F

[91] 5,6 1 h RMSE = 13%
MAE = 20.7% 3 A,D

[92] 5,4 24 h
MAPE = 16.87%
MAE = 27.1%
CI = 0.968

3 A,B

[33] 5,2 1 h MAPE = 2.62 and RMSE = 0.14 3 C,F

[34] 4,3 1 week reliability and skill
score are reduced by 10% to 33%. 3 F

[35] 5,2 1~24 h RMSE = 5% and R2 = 0.95 4 A

[93] 5,4 15 min RMSE = 6.27%
MAE = 4.01% 3 A,C

[94] 5,4 1~3 h
MSE(e-2) = 0.8951
MAE = 0.0505
RMSE = 0.0946

4 C,E

[36] 1,4 10 min

RMSE = 0.02
MAE = 0.007
MAPE = 0.60
R2 = 0.84

3 C,D

[37] 1,4 10 min
PA = 0.934
MAE = 84.837
RMSE = 134.837

2 A,C

[95] 5,4 10 min
RMSE(MW) = 56.6893
MAPE(%) = 4.839
MAE(MW) = 42.0201

3 A,B

[62] 4,1 1 h

MSE = 0.0102
MAPE = 46.24
MAE = 0.0623
RMSE = 0.1012

4 A,F

[63] 6,1 10 min
RMSE (MW) = 0.94
MAE (MW) = 0.67
MAPE (%) = 49.71

3 C,E
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Table 8. Cont.

Ref Methods/Models Time Resolution Accuracy Prediction
Method Level

Research
Limitations

[38] 2,4 Anemometric height

Anemometric height
100 m RMSE [m/s] = 0.383
150 m RMSE [m/s] = 0.368
120 m RMSE [m/s] = 0.375

3 A

[108] 6 1 h

WRF:
RMSE = 1.68 to 2.85 m/s
CCMP:
RMSE = 1.79 to 2.89 m/s;

4 D

[64] 4,6 10 min. RMSE = 129.3
MAE = 81.1 2 B

[65] 2,1 1 h RMSE(MW) = 1.27
MAE(MW) = 0.90 3 A

[66] 4,2 1 h NRMSE = 0.16
MAPE = 0.15 3 C,E

[96] 5,2 10 min RMSE = 0.680 3 A,B

[39] 3,2 1 h Mean skill score = −0.527 3 A

[67] 2,4,5 1 h MSE = 0.130 3 A,C

[68] 4,3,2

-No description
-Establishing wind
power curves for

wind turbines

RMSE = 111.9766 2 E,F

[69] 1,4 1 h 1-h ahead.
RMSE = 0.9947 3 B,C

[97] 1,2,5 10 min RMSE(×10−2) = 6.47473 3 A

[109] 3,6,2 -No time unit written 8-step ahead RMSE = 7.51
16-step ahead RMSE = 10.88 2 E

[24] 1,3 1 h RMSE (MW) = 0.2949 4 A

[110] 6,3 15 min Spring RMSE = 8.3404
Summer RMSE = 6.6873 3 A,D

[111] 4,6 1 h NRMSE = 3.66 4 A

[112] 4,1,6 10 min RMSE = 119.645 (kW) 3 A,B

[40] 2,6 1 h RMSE(kW) = 76.18 4 C,D

[70] 2,5 10 min RMSE(MW) = 1.0822 3 A,B

[98] 5,4 15-min RMSE = 1.8313 3 A

[71] 4,1 15 min RMSE = 0.1243 3 C,D

[72] 4,2 10 min

-Train set
MSE (×10−3) = 3.5961
-Test set
MSE (×10−3) = 2.1628

3 B

[41] 3,2 1 h RMSE(MW) = 14.7435 3 F

[73] 2,3

-No description
-Establishment of

wind turbine power
capacity

RMSE (%) = 10.23 2 A,B

[42] 3,2 15 min NMAE = 5.15% 3 C,D

[43] 2,3 10 min RMSE (kW) = 50.55 2 A,B

[99] 5,3 15 min RMSE = 2.63109 3 A,B

[113] 3,6 10 min RMSE (kW) = 66.26 2 B,D

[44] 3,2 1 h Reliability performance parameter P (%) = 90.92 4 E,F

[114] 2,3 15 min RMSE(MW) = 373 3 C,D,F
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In order to enable other researchers planning to conduct similar experiments and
investigations in wind power prediction to have a clear understanding of the correlation
and impact of AI method types and time resolution on evaluating the level of wind power
prediction models, and to provide useful guidance in the paper. The distribution regions
between the time resolution and prediction method level of the reviewed paper prediction
models are shown in Table 9, and the best wind power prediction model under current
research conditions was quickly determined in 106 references.
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Table 9. Distribution region between time resolution and prediction method level for models of
reviewed works.

Methods Distribution
Region Reviewed Works Distribution

Region Reviewed Works

1

A1 [13,19] G1 [25,77,90]

B1 [82,89] H1 [14,18,75,77,100,106]

C1 [10,17] I1 [45]

D1 [79,80,85,86] J1 [15,16,21,60,74,107]

E1 [108] K1 [22,61,101,103]

F1 [9]

2

A2 [31,32] G2 [34]

B2 [46] H2 [59,92]

C2 [35,58,84,87,94] I2 [33,39,48,49,51,54,65,66,76,91]
[41,69]

D2 [24,40,44,62,111] J2 [26,47,104]

E2 [83] K2 [12,20,23,28,36,42,53,57,63,70–
72,81,88,93,95,96,98,99,110,114]

F2 [29,30] L2 [37,43,55,64,105,113]

3

A3 [11] References [29,30,46,83] using two methods as shown in Figure 5 are even better
than the average value of Method 2, which is worth recommending for future
studies of wind power prediction models. References [38,68,73,109] are eliminated
due to a lack of time resolution and a non-wind power prediction model.

B3 [27,50,67]

C3 [52,56,97,112]

4.7. Evaluation of Excellent Wind Power Prediction Models

There are a total of 33 reviewed papers in Figure 4, with their average values falling at
Time Resolution = 3.12 and Prediction Method Level = 3.33; in Figure 5, there are a total
of 63 reviewed works whose average values fall at Time Resolution = 3.80 and Prediction
Method Level = 3.21; and there are a total of 10 reviewed papers in Figure 6, with an average
of Time Resolution = 3.75 and Prediction Method Level = 3.13. It can be seen that the current
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prediction is mainly based on a 1-h prediction, with a recommendation level of around
3 from Figures 4–6. However, the distribution diagram of Method 2 in Figure 4 shows that
Time Resolution and Prediction Method Level are better than Method 1 and Method 3. It
has been the main research trend in wind power prediction models in recent years. Among
these 106 references, References [29,30,46,83] using two methods as shown in Figure 5 are
even better than the average value of Method 2, which is worth recommending for future
studies of wind power prediction models. References [38,68,73,109] as shown in Figure 6
can be eliminated due to a lack of time resolution and a non-wind power prediction model.

5. Future Studies and Development

Various advanced wind power forecasting methods have been developed over the
past few years to help plan and use wind power as efficiently as possible. These methods
are used for experiments, and relevant results have been obtained for solving the issues
of power fluctuation and randomness in wind power forecasting and the possible errors
and omissions of the original data. Based on the latest advances in artificial intelligence,
machine learning, and deep learning methods, this paper conducts a comparative analysis
in terms of time resolution, parameters used, accuracy, and research limitations and reviews
the contributions to the development, advantages, and disadvantages of the latest hybrid
wind power forecasting models. However, there are still some issues that need to be
improved. The following are the main aspects that can be further studied:

(1) In terms of wind speed prediction, the current study only selects a walrus station
for research based on historical data. However, wind speeds are necessarily different in
different regions. The geographical environment, weather, or climate-related factors (wind
direction, humidity, etc.) where the weather station is located are not included in the
forecast. Studying the influence of the physical environment will definitely improve the
accuracy of wind speed prediction; in addition, the time period is also a factor affecting the
prediction. The impact of different time solutions on the forecast results is explored, and
they may even be incorporated into the future meteorological data of the meteorological
bureau as an input factor, thereby improving the forecast accuracy.

(2) In terms of wind power modeling, wind power generation models will perform
differently in different regions. The same wind speed corresponds to different wind field
settings, setting directions, and even the structure of wind turbines (generator speed,
blade angle, etc.), resulting in differences in power generation. Most studies only build
relationships between wind speed and wind power. If the influence of the wind turbine
itself can be further considered, the power generation model will be more complete.

(3) In terms of wind power forecasting, weather forecasts are selected in combination
with data characteristics, and wind power generation is indirectly predicted using power
generation models. We wonder if it is possible to directly sample power generation and
effectively find its own characteristics for prediction, which requires further development;
in addition, according to the characteristics of different wind fields, more suitable functions
for identification and even other artificial intelligence methods such as neural networks or
deep learning methods may be applied for prediction [142–146]. Whether adaptability can
improve prediction accuracy is also a very important issue.

(4) The present forecasting methods for short-term wind power of wind farms gener-
ally only consider the data of normal wind speed and normal operation of wind turbines,
and it is difficult to achieve high accuracy for short-term wind power when the wind speed
drops. Therefore, it will be of practical significance to consider short-term wind power
forecasting under the actual operation scenarios of wind farms.

(5) WRF based on other initialization times and longer ahead-time. The error transfer
mechanism from wind speed forecasting (WSF) to wind power forecasting (WPF) is applied
for the improvement of WPF. The forecasting accuracy of short-term WPF is enhanced by
correcting NWP data. Various data preprocessing methods for a WPG system model have been
investigated, such as singular value decomposition, from the system perspective [147,148]. Real-
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time WTP measurements are added to the reconstructed state space during the forecasting
process, making the forecast more flexible.

(6) The accuracy and speed of prediction of the characteristics of big data in wind
power are improved by parallel modeling of the prediction algorithm. Next, the spatial
correlation features are incorporated into the classification and prediction, and the feasibility
of the model is verified using different datasets, with the development of new or the
integration of multiple optimization algorithms [149–151] for use in the forecasting model
to improve the interpretability of the combined models for further enhancement of accuracy.

(7) Wind power generation is very important for dispatching and regulation of the
power system when connected to the grid. Due to the influence of the change in wind power
generation on the voltage and frequency of the power system at any time, based on the basic
view of a large-scale or decentralized wind power system combined with pumped-storage
power stations, adjustable biomass power stations, or energy storage battery systems, wind
power can be stably transmitted to improve the flexibility of power dispatching.

(8) Robust optimization of the grid integration issues of wind power and distribution
networks is applied using WindGMMN. A wind power prediction technique with integra-
tion into the electricity grid should consider load scheduling, demand-side management,
etc. In addition, optimal dispatching of isolated or grid-connected MG considering eco-
nomic cost, net pollutant emission, and operational security objectives will be the focus of
future research work.

6. Conclusions

Wind energy is inexhaustible. Wind power generation can effectively reduce the
consumption of energy resources and has good development prospects. However, un-
controllable factors such as wind intermittency and random fluctuation represent great
challenges. Large-scale grid-connected wind power will inevitably affect the stability of the
power system, so accurately predicting wind power generation is an urgent matter. The
accuracy of wind power generation prediction depends on the way in which the prediction
model is built, which in turn affects the accuracy of weather prediction. In the face of the
advent of big data, the limited use of effective data can allow us to reduce resource con-
sumption. Therefore, in this paper, many state-of-the-art predictive models of wind power
generation based on artificial intelligence (AI)-based and deep learning-based algorithms
were reviewed. Among the many artificial intelligence methods, support vector machines
with good results when processing nonlinear features were selected for regression analysis
as they can not only effectively analyze data but can also improve prediction accuracy. This
paper mainly expounds on the research background and significance of papers published
in recent years. Secondly, the status of this research is explained from a global perspective.
Next, the research content of the reviewed literature is described. Finally, conclusions are
drawn, and prospects for future research are presented.

This review evaluates the latest studies on international wind power forecasting
models over the past three years, categorizing them according to the time resolution,
model type, and forecasting principle and comparing them in terms of their wind power
forecasting errors and evaluation indicators. Key recent research efforts [9–114], published
between 2020 and 2023, are reviewed. Most of these works aim to cover the field of ultra-
short-term and short-term wind power forecasting, which has grown significantly in the
past few years. Second, this paper reviews recent advances in AI-based wind hybrid
methods published from 2020 to the present, highlighting their contributions to model
development and their advantages and disadvantages. Furthermore, these advanced
algorithmic hybrid models are classified, compared, and analyzed accordingly in terms
of temporal resolution, parameters used, accuracy, and study limitations. Therefore, the
research reviewed in this work covers state-of-the-art algorithms and recent advances in
wind power forecasting. The contributions to this review article are as follows:

This review (a) focuses on ultra-short-term and short-term forecasting models; (b) eval-
uates the state-of-the-art algorithms in WPPF; (c) evaluates the accuracy, advantages, and
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disadvantages of various novel hybrid models; (d) explores existing challenges and is-
sues such as wind data diversity, algorithm structure, implementation, hyperparameter
tuning, optimization ensemble problems, and AI hybrid problems; and (e) describes the
development of efficient AI-based hybrid ultra-short-term and short-term wind power
forecasting methods and future possibilities. It provides future research directions and
presents the challenges of the existing wind power forecasting methods, and addressing
these challenges is the focus of the further development of AI-based wind power hybrid
models, including focusing on improving the accuracy of existing models, improving spa-
tiotemporal forecasting models, effectively utilizing deep learning models, and improving
the selection and analysis of input data. A total of 33 reviewed papers (Methods of 1)
have proposed a short-term wind power prediction model based on an AI method, which
outperforms computer operation efficiency and results in a long calculation time. Based on
this defect, there are 63 reviewed papers (Methods of 2) that use two AI-based methods to
make short-term wind power predictions. The results obtained in each step are used in the
next step of prediction to reduce the error accumulation problem caused by parameters.
This has been the main trend in prediction models in recent years. However, the problem
of past poor computer performance resulting in long computing times is solved due to
the future of parallel, fast computing on computers. Although there are currently only
eight reviewed papers on Method 3, all of the latest papers adopt short-term wind power
prediction with three AI methods. As long as the AI algorithms can break through existing
research limitations, parallel and fast computing by computers will solve the current short-
comings, and it will become mainstream research for short-term wind power prediction
models in the future. More innovative ideas for future research on wind power prediction
are expressed as follows:

(A) To preprocess the input data to identify data characteristics to make the data more
distinctive or minimize data dimensions to reduce computational time.

(B) Model structure and hyperparameter optimization, such as core functions or
modeling parameters, can be achieved by optimizing parameter adjustments, which can
effectively improve the accuracy of the model in training and testing and also avoid
excessive matching during training.

(C) There are parallel operations in the model structure, which often combines var-
ious modeling methods for parallel modeling and uses different weight ratios to adjust
prediction accuracy. These methods have a complex structure and too many parameter
adjustments for each method, resulting in a long calculation time that should be improved
in future works.

(D) The prediction models for wind power can be established using cross-validation
combined with grid search to improve their accuracy and reliability. In the case of cross-
validation, many parameters need to be manually specified or optimized using algorithms.
The adjustment process is called hyperparameter tuning. Therefore, the grid search method
will preset several hyperparameter combinations for the model, and each group of hy-
perparameters will be evaluated through cross-validation, and the optimal parameter
combination will be selected to establish the new model.

(E) Input signals are first classified and features extracted using feature engineering.
Then, a tree classifier method is used to rank features from high to low in importance, elim-
inating low-ranked features, and defining high discriminative feature values from several
feature parameters before incorporating them into intelligent diagnostic model operations.
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NWP Numerical Weather Prediction
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WPG Wind Power Generation
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GPR Gaussian Process Regression
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WMTSM Weighted Multivariate Time Series Motifs
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WNN Wavelet Neural Network
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LSTM Long-Short Term Memory
CLSTM Convolutional-Long Short Term Memory
DOCLER Deep Optimized Convolutional LSTM-Based Ensemble Reinforcement Learning
SVM Support Vector Machine
DR-SVM Distributionally-Robust Support Vector Machines
SOM Self-Organizing Map
k-NN k-Nearest Neighbors
KNNR K-Nearest Neighbour Based Routing Protocol
KDE Kernel Density Estimation
ELM Extreme Learning Machine
KELM Kernel Based Extreme Learning Machine
Adaboost Adaptive Boosting
PSO Particle Swarm Optimization
LSSVM Least Squares Support Vector Machine
GMMN Generative Moment Matching Network
WindGMMN Wind Power Using Generative Moment Matching Networks
MSIN Multi-Step Informer Network
WPD Wavelet Packet Decomposition
VMD Variational Mode Decomposition
SSA Salp Swarm Algorithms/Singular Spectrum Analysis
IGWO Improved Grey Wolf Optimization
GRNN Generalized Regression Neural Network
SVR Support Vector Regression
HMMC Higher-Order Multivariate Markov Chain
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MSTAN Multi-Source and Temporal Attention Network
ARMA Auto-Regression Moving Average
ARIMA Autoregressive Integrated Moving Average
MRE Mean Relative Error
MAE Mean Absolute Error
MBE Mean Bias Error
RMSE Root Mean Squared Error
MAPE Mean Absolute Percent Error
nMBE Normalized Mean Bias Error
nRMSE Normalized Root Mean Squared Error
R2 Coefficient of Determination
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