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Abstract: Recently, the rapid development of the bike-sharing system (BSS) has dramatically influ-
enced passengers’ travel modes. However, whether the relationship between the BSS and public
transit is competitive or complementary remains unclear. In this paper, a difference-in-differences
(DID) model is proposed to figure out the impact of the dockless BSS (DBSS) on bus ridership. The
data was collected from Shanghai, China, which includes data from automatic fare collection (AFC)
systems, automatic vehicle location (AVL) systems, DBSS transaction data, and point-of-interest
(POI) data. The research is based on the route-level, and the results indicate that shared bikes have a
substitution impact on bus ridership. Regarding all the travel distance, each shared bike along the
route leads to a 0.39 decrease in daily bus ridership on the weekdays, and a 0.17 decrease in daily
bus ridership on the weekends, respectively, indicating that dockless shared bikes lead to a stronger
decrease in bus ridership on weekends compared to weekdays. Additionally, the substitution effects
of shared bikes on bus ridership gradually decays from 0.104 to 0.016 in daily bus ridership on
weekends, respectively, with the increase in the travel distance within 0–3 km. This paper reveals that
the travel distance of passengers greatly influences the relationship between the DBSS and public
transit on the route level.

Keywords: dockless bike-sharing system; DID; automatic fare collection system; transit ridership

1. Introduction

The appearance of a bike-sharing system (BSS) provides city residents with a new way
to commute during daily life. Compared with other transportation modes, the BSS is more
environmentally friendly and flexible, especially for short trips. In recent years, the BSS
has attracted the attention of passengers and governments and has been widely operated
in large numbers of countries all over the world, especially in China. There are mainly
two types of BSSs, docked and dockless, which are deployed at present. The docked BSS
requires physical stations to place shared bikes, and its users have to rent and return bikes
at designated stations, while the dockless BSS (DBSS) does not require expensive, space-
hungry docking stations [1]. The DBSS typically utilizes GPS technology and intelligent
lock devices on their bikes [2]. These features allow users to easily locate and unlock
bikes using a mobile app or by other means of authentication, which thereby provides
convenience, security, and accountability in dockless bike-sharing systems. Furthermore,
they enable users to easily access and return bikes at their desired locations, while also
deterring theft and unauthorized use of the bikes. The GPS technology also allows the
bike-sharing company to track the bikes, monitor their usage patterns, and optimize their
operations. Due to these characteristics, the DBSS gradually dominated the BSS market in
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China for its convenience of renting or returning and is considered as an effective solution
to meet the need of the last-mile problem.

The BSS has developed rapidly all over the world in recent years. Generally, the shared
bike is identified as one short-distance and medium-distance travel mode, while public
transit is regarded as a medium-distance and long-range travel mode [3]. However, the
relationship between the BSS and public transit is controversial. Conventionally, several
researchers believe that cycling is an alternative to public transport [4], and that the BSS
might reduce public transit use by competing with the bus and rail transits [5–7]. They
were worried in that the BSS would have a negative impact on the development of the
transit system as the BSS could act as a substitute for short-distance travel. Campbell and
Brakewood [8] found that the expansion of the bike-sharing system has led to a significant
reduction in bus ridership in New York City. Liu et al. [9] examined the modal preferences
for the last-mile connection to urban rails in Beijing, China, focusing on the choice between
the bus and bike-sharing systems. However, they only focused on moderate distances
(0.5–3 km) and found that bike-sharing is a rival and suitable alternative to the bus. Fishman
et al. [10] also found that BSSs not only replaced car trips, but also reduced public transit
to some extent. Brakewood et al. [11] found the Citi Bike bike-sharing program had a
significant negative impact on bus ridership at the route level. The proliferation of shared
bikes may have resulted in a reduction of over 500 trips per route for bus ridership in
Manhattan, where there are more shared bicycle stations. In Brooklyn, which has fewer
shared bicycle stations, the average bus ridership per route on weekdays was approximately
375 trips. Ma et al. [12] observed the impacts of the modal shift by considering different
kinds of bike-sharing systems and stated that users of shared bikes reduced their use of
the bus/tram, car, private bike, and walking. The findings of Kim and Cho [13] suggested
that shared bikes can compete with public transit, especially in non-residential areas. At
the same time, they can enhance connectivity with rail transit, regardless of the land-use
characteristics. Chen et al. [14] examined the potential modes of substitution behavior
influenced by dockless bike-sharing for four travel purposes: commuting for work or
education, sports and leisure, grocery shopping, and shopping/dining, among other
recreational activities. Their results indicated that for most respondents, the DBSS had
the potential to replace walking or public transit. The study also revealed that younger
respondents of dockless shared bikes were more likely to replace recreational activities that
involved public transit with the dockless shared bikes.

Other researchers have noticed that the BSS could be beneficial to the supplement
of public transit. Ma et al. [15] found a positive correlation between public transit and
shared bicycle usage at the station level, whereby a 10% increase in bicycle trips resulted
in a 2.8% increase in public transit ridership. Fuller et al. [16] found that during a public
transit strike, the usage of shared bikes increased by 57%, indicating that shared bikes can
serve as a complementary mode of public transit during such strikes. Ashraf et al. [17]
utilized Poisson-gamma models to examine the impacts of the Citi Bike—a bike-sharing
program—on the subway ridership in New York City (NYC). Their results revealed that
bike-sharing trips within a quarter-mile radius of subway stations were significantly associ-
ated with an increase in subway ridership. For every 10% increase in bike-sharing trips,
the average daily subway ridership increased by 2.3%, respectively. Jin et al. [3] conducted
a case study of Beijing to evaluate the substitution of bike-sharing ridership on public
transit based on the operating data of bike-sharing schemes and public transit data. Their
results indicated that the BSS did not cause an overall reduction in public transit ridership.
However, within 2 km, public transit ridership did decrease, while transfers increased with
the rising shared bike usage. They also observed that the decrease in short-distance transits
and the increase in near transfers were highly relevant to the spatial distribution of the
shared bikes. The usage and distribution of shared bikes are important for efficiency, and
thus BSS enterprises and traffic management departments first need to understand the
competitive and cooperative relationship between the BSS and public transit, especially in
how the BSS influences short-distance public transit usage [6].
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A few studies have suggested that the relationship between bike-sharing and public
transport is complex. Shaheen et al. [18] discussed the modal shift that resulted from
individuals participating in four public bike-sharing systems in North America. Three of
the four largest cities experienced a decrease in bus and rail usage due to shared bikes.
In Montreal, Toronto, and Washington D.C., 50%, 44%, and 48% of respondents, respec-
tively, said they had reduced their use of the railways. But in the Twin Cities, 15% of
respondents reported an increase in their use of the railways, while only 3% said that their
use of railways had decreased. Martin and Shaheen [19,20] assessed the use of shared
bikes and public transport in Washington, D.C. and Minneapolis, and they found that in
the urban central environment with a high population density, shared bikes, and public
transit were competitive, and that the use of shared bikes reduces the travel frequency
of public transport. In lower-density regions on the urban periphery, the complementary
relationship can be further strengthened. Kong et al. [21] proposed three types of rela-
tionships between bike-sharing and public transit: mode substitution, mode integration,
and mode complementarity, and investigated the factors affecting their relationship. Their
results revealed that it was not where the bike-sharing trip takes place that predominantly
determines its relationship with public transit, but rather the bike-share users’ travel char-
acteristics. Cui et al. [22] also proposed three relationships between bike-sharing and public
transit: competition, integration, and complementation. Their results demonstrated that
bike-sharing can significantly compete with public transit in New York City. The existence
of this competition benefits socioeconomically disadvantaged commuters, and ultimately
promotes a certain degree of transportation equity.

Despite lots of work in researching the influence of the docked BSS on public transit,
the impact of the DBSS on public transit systems is still ambiguous. Since the DBSS can
remove the limitation of the physical stations, and its users can drop off shared bikes almost
everywhere and anytime, it is therefore much more attractive to passengers, and thus has a
greater influence on bus ridership when compared with the traditional docked BSS. On
the one hand, with dockless shared bikes, riders can reach nearby transit stations faster
and easier to take public transit, which may contribute to the usage of public transit. On
the other hand, the DBSS may lead to the modal shift of passengers from public transit
to bike-sharing and cause direct competition with the public transit system. This study
aimed to figure out whether DBSS complements or competes with public transit, and how
this relationship changes with the passenger’s travel distance. Thus, an advanced statis-
tical approach termed the difference-in-differences (DID) was developed to examine the
relationship between the DBSS and the transit system in Shanghai using the check-in/check-
out data of the DBSS along with public transportation card data from the automatic fare
collection (AFC) systems.

With the rapid development of the DBSS all over the world, it is rather essential to
figure out the impact of DBSS on public transit for the public transportation department,
DBSS operators, and urban managers to improve the bike distribution strategy and adjust
the policy on DBSS management.

The major contributions of this study can be summarized as follows:
(1) The impact of the DBSS on public transit ridership at route levels with different

travel distances is measured using multi-source data;
(2) A set of DID models are proposed to deal with the endogenous factor between the

different bus stations and routes.
The remainder of this paper is organized as follows. Section 2 provides the description

of the multi-source data and describes the methods used in this study. Results of the models
at the route-level are illustrated in Section 3, followed by the conclusions and discussions
in Section 4. Section 5 demonstrates the main findings and future research direction.
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2. Materials and Methods
2.1. Study Area

Shanghai, which is located on the southern estuary of the Yangtze River, is one of the
four direct-administered municipalities of China. As one of the world’s largest cities, it
serves as a global financial center, a major hub for trade and commerce. As of 2021, the
population of Shanghai has been estimated to be over 24 million people, making it the
most populous city in China and one of the most populous in the world. Shanghai has
a land area of approximately 6340 square kilometers (2448 square miles), and consists of
16 administrative districts, as shown in Figure 1. The Huangpu River runs through the
city, dividing it into two main areas: Puxi and Pudong. The seven districts in Puxi (shown
on the right side in Figure 1), along with the Lujiazui area in Pudong, are regarded as the
core areas of Shanghai. These districts encompass the central and most developed parts of
the city, featuring a blend of historical sites, commercial centers, cultural landmarks, and
residential areas.
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The public transit system in Shanghai is well-developed, and includes an exten-
sive network of metro lines, buses, and taxis. The metro system, in particular, is highly
efficient, and is widely used by both residents and visitors alike for commuting and trav-
eling around the city. As of December 2021, there are 20 metro lines operational with
508 stations in Shanghai. Furthermore, there are more than 300 bus lines with more than
6000 bus stations operated to transfer more than 1 million passengers every day. All these
buses have installed an AFC system so that passengers can use their public transportation
cards to pay their fee conveniently instead of using cash. Non-motor vehicles, such as
bikes and bike-sharing services, also play a significant role in Shanghai’s transportation
landscape. Bike-sharing services, especially the DBSS, have gained popularity in recent
years, providing a convenient and eco-friendly option for short-distance travel. According
to the 2017 Shanghai Comprehensive Transportation Annual Report, the public transit
system accounted for 33.2% of travel in Shanghai, while non-motor vehicles, including
bike-sharing, made up 16.3%, respectively.

2.2. Dataset

There are three types of datasets in this paper: (1) DBSS transaction data from Mobike
Technology Co., Ltd., Beijing, China (2) bus location data from the automatic vehicle
location (AVL) systems, and bus ridership data from Shanghai Public Transport Card Co.,
Ltd., Shanghai, China and (3) point-of-interest (POI) data. The collected bus location data
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only includes data from the Pudong District. Therefore, in this paper, the data scope of all
kinds of data has been limited to within the Pudong District.

The DBSS dataset was collected from Mobike, which is a well-known bike-sharing
operator that was founded in China in 2015. It launched its services in Shanghai, and
quickly expanded to other cities and countries worldwide. This dataset covered the bike-
sharing trip orders made from 1 August to 31 August in 2016, respectively, and contains
17,684 unique users, 306,926 bikes, and 1,023,603 orders, respectively. As shown in Table 1,
each trip order contained the following information:

â Trip characteristics, including the trip start and end time, and latitudes and longitudes
of the start and end locations;
â Trajectory-related information, including a temporal range of the trajectory and a se-
quence of intermediate GPS points;
â Other information, such as order ID, bike ID, and user ID.

Table 1. Part sequence of Mobike’s bike-sharing transaction records.

Order ID Start time Start GPS End time End GPS Trajectory

940184 2016/8/26 8:21 121.54, 31.161 2016/8/26 8:30 121.532, 31.149
121.532,31.149
121.533,31.149

. . . . . .

940185 2016/8/26 8:21 121.454, 31.223 2016/8/26 8:33 121.451, 31.234
121.450,31.233
121.451,31.232

. . . . . .

940186 2016/8/26 8:21 121.488, 31.212 2016/8/26 8:27 121.492, 31.207
121.488,31.211
121.489,31.211

. . . . . .

940187 2016/8/26 8:21 121.458, 31.168 2016/8/26 8:29 121.461, 31.172
121.458,31.167
121.458,31.168

. . . . . .

940188 2016/8/26 8:21 121.357, 31.107 2016/8/26 8:36 121.366, 31.104
121.357,31.107
121.357,31.108

. . . . . .

Before further analysis, orders with abnormal durations were removed. Previous
research have suggested that bike-sharing orders with trip durations of less than 2 min
or greater than 120 min, respectively, should be filtered out [23]. These orders may have
been made due to two situations: firstly, some users may just want to check the status of
their accounts rather than ride the bike; secondly, they may have difficulty in picking up or
returning the bike on time [24]. Additionally, orders with abnormal start and end locations
that are beyond the administrative boundaries of Shanghai were also be excluded from
the dataset.

Bus ridership data originated from the Shanghai AFC (auto fare collection) and AVL
(automated vehicle location) systems in April 2015 and August 2016, respectively. It con-
tained bus trip orders made from 1 April to 30 April in 2015, respectively, which encompassed
3,706,097 unique users, and 33,775,443 orders, and from 1 August to 31 August in 2016, which
contained 3,482,130 unique users, and 31,074,774 orders, respectively.

As shown in Table 2, each trip order from the AFC data contains the date, boarding
time, bus line, and user ID. However, the boarding location is not included as the AFC
data was not originally designed for transit performance measures. To find out the bus
transit ridership at the station level, it is necessary to estimate the boarding location of each
bus trip.
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Table 2. Part sequence of the AFC data records.

User ID Date Boarding Time Line

200154 2016/8/1 16:15:50 991
101584 2016/8/5 7:24:00 174
101585 2016/8/9 17:20:06 782
200169 2016/8/23 9:09:32 581
190897 2016/8/24 20:18:48 796

Note: User IDs are not fully presented in the table to guard the privacy of bike-sharing users.

Based on the approach proposed by Ma et al. [25], we can estimate the passengers’
boarding location and correspondingly calculate the stop-level bus ridership by matching
the bus arrival time from the AVL system and the passenger boarding time from the AFC
system (see Figure 2). Table 3 shows the detailed information of AVL system, including
terminal station ID, line number, station ID and so on. The proposed algorithm is applied
as follows:
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Table 3. Part sequence of AVL data records.

Terminal Line Status Station Direction Gateway

050A0025 614 0 70860001 1 2016/8/1 7:27
050A0025 614 1 70860001 1 2016/8/1 7:29
050A0025 614 0 73850000 1 2016/8/1 7:31
050A0025 614 1 73850000 1 2016/8/1 7:32
050A0025 614 0 74830001 1 2016/8/1 7:33

Step 1: for each publication transportation card record, use the route name, the
boarding time, and the AVL records to match the boarding stations;

Step 2: randomly retrieve one record that is flagged as unvisited. Flag this record as
visited and form a cluster for this record;

Step 3: check the spatial relationship between the last visited record and other unvis-
ited records. If a spatial relationship exists (within 200 m), then this record is included in
the cluster formed in Step 2 and flagged as visited;

Step 4: if the number of total records is less than 4, then these records of this card are
flagged as noise and dropped; otherwise, the new cluster is confirmed;
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Step 5: continue to process the unvisited rest records from Step 2 through Step 4 until
the records are all flagged as visited;

Step 6: boarding/alighting stations can be acquired by utilizing the most frequent way
within each cluster;

Step 7: for each record, figure out the passing stations using the boarding station,
the alighting station, and the bus route information from the AFC system. Cumulate the
distance between two adjacent stations to obtain the corrected trip distance of the record.

To figure out the impact of buildings/infrastructures nearby the bus station, point-of-
interest (POI) data was collected from the Gaode Map application programming interface
(API). A number of studies have shown that the frequencies of POIs are able to disclose
and classify the urban land use and the built environment [2,26]. Similar to Ma et al. (2019),
the POIs were selected by the rule of thumb. As a result, the POIs considered in this study
include restaurants, shopping malls, enterprises, public facilities, hotels, and transport
facilities, which are in a 100 m buffer around each bus stop. External stations refer to
traffic service-related POIs, such as long-distance bus stations, taxi stops, ferry stations,
import/export ports, railway stations, airports, and parking lots.

2.3. Methodology

To figure out the influence of the DBSS on bus ridership, we can directly compare bus
ridership before and after the DBSS was operated widely. However, the endogenous factor
between these different bus stations and routes, such as economic development, geographic
location, and travel demand may lead to an inaccurate evaluation of the influence of the
DBSS. Thus, in this paper, we used difference-in-differences (DID) to examine the difference
in bus routes ridership with different amounts of shared bikes nearby. The DID method has
been widely used to evaluate the impact of policy interventions by comparing the variation
of outcomes between the treated groups and the control groups. We used this approach to
remove the inherent biases from comparisons over the ridership of bus stations and routes.
Figure 3 shows the overall logical flow of the adopted methodology. Firstly, the stop-level
bus ridership was obtained by matching the bus arrival time from the AVL system and
the passenger boarding time from the AFC system, and then aggregated them into the
route-level bus ridership. Secondly, the number of shared bikes and different POIs within
a 100 m buffer of each bus station was obtained based on the bus station’s coordinates.
Thirdly, the bus ridership data was divided into the treated groups and the control groups
based on the number of shared bikes along the route, while the POI data was treated as
control variables that may impact the bus ridership. Lastly, the route-level DID model
was established to examine the impact of dockless bike-sharing on bus ridership, and the
impact of the DBSS on bus ridership with different travel distances was also considered.

To be specific, for the route-level DID model, the treated group refers to the bus routes
with shared bikes along the routes, and the control group includes bus routes without the
shared bikes. The standard to classify with or without shared bikes is a threshold of the
number of shared bikes along the route. Each station’s shared bike number refers to the
number of shared bikes within a 100 m buffer, and the number of shared bikes along the
route is the aggregation of the station’s number at the route level. In this case, the treated
group included 198 bus routes with more than 50 shared bikes along the route, and the
control group included the remaining 109 bus routes, respectively. The influence of the
shared bikes on the bus routes was acquired using the following DID model to compare
the variation in bus ridership between the treated groups and the control groups:

Equation (1):

BusRidersit = α + β0TimeIndicatet + βBikeIndicatei
+βTimeIndicatet × BikeIndicatei × BikeRidersit + µControlsit + εit

(1)

where t is the date index; i is the bus route index; BusRidersit and BikeRidersit refer to
the daily bus route ridership and the number of shared bikes along the routes, respec-
tively; TimeIndicatet is a dummy variable which indicates whether the DBSS is operated;
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BikeIndicatei is a dummy variable that equals to 1 if the number of shared bikes along the
route is greater than 50; Controlsit represents a set of control variables that may impact bus
ridership; β indicates the difference in ridership of different bus routes; α is the constant
intercept; and εit is the Gaussian error term.
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3. Results

A route-level DID model was proposed to figure out the influence of shared bikes
and other control variables on bus ridership. Table 4 shows the descriptive statistics of the
variables in the DID model. The average daily bus ridership at the route level, sharing
bike usage along routes, the number of bus stations, and the number of different POIs (i.e.,
residences, restaurants, shopping malls, education centers, enterprises, subway stations,
external traffic facilities, and service places) around each route were all counted. Bus
ridership at the route level refers to the total ridership of all the buses with the same route
ID. Table 4 indicates that the average daily bus ridership on the weekdays was more than
twice in comparison with the weekends, and bus ridership on the weekdays was also found
to have a more significant standard deviation. However, in contrast to bus ridership, the
average number and standard deviation of daily bike ridership on the weekdays were both
fewer than that on the weekends, indicating that the usage trend between the shared bike
and bus has been reversed.

Table 4. Descriptive Statistics of Variables.

Variable Mean Std. dev Min Max

Bus riders 1433.9 1849.01 1 13,805
Busriders (weekday) 1670.21 2134.69 1 15,588
Bikeriders (weekday) 6.44 19.19 0 196
Busriders (weekend) 784.02 1083.55 0 8903
Bikeriders (weekend) 6.61 19.82 0 197

Station_amount 39.17 27.25 2 146
Enterprise 130.96 181.57 0 923
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Table 4. Cont.

Variable Mean Std. dev Min Max

Shopping 332.66 358.51 0 1914
Restaurant 269.85 268.81 0 1284

Subway 5.69 8.27 0 52
External station 36.21 38.36 0 205

Service 19.99 23.17 0 100
Residence 40.53 43.7 0 210
Education 37.36 39.58 0 205

3.1. Results of the Route-Level DID Model

In this paper, the route-level DID model, as displayed in Equation (1), was estimated
in four cases to figure out the impact of the weekday and weekend situations, along with
the control variables (POI). Considering that the POIs that were located along the route
greatly contributed to bus ridership, the control variables were subsequently included in
both Case (b) and Case (d), while they were not incorporated in Case (a) and Case (c).
Table 5 shows the regression results of the DID model in these four cases.

Table 5. Impact of variables on bus ridership within all travel distances.

Variable
Case (a)

Weekday without
Control Variables

Case (b)
Weekday with

Control Variables

Case (c)
Weekend without
Control Variables

Case (d)
Weekend with

Control Variables

TimeIndicate −161.937 *** −72.571 * −201.483 *** −53.450 **
BikeIndicate 2002.561 *** 891.856 *** 1035.214 *** 232.483 ***

β (DID) −0.362 ** −0.390 ** −0.100 *** −0.172 ***
Enterprise - 0.264 - 0.498

Shopping mall - −0.973 ** - −0.039
Restaurant - 3.915 *** - 2.197 ***

Subway - 35.459 ** - 31.930 **
External station - −11.056 *** - −13.869 ***

Service - −1.539 - −0.981
Residence - 7.386 *** - 6.692 ***
Education - 13.361 *** - 8.629 **
Intercept 549.490 *** 90.276 335.943 *** −63.376

R2 0.170 0.517 0.130 0.453

* p < 0.1. ** p < 0.05. *** p < 0.01.

Table 5 shows that shared bikes reduced bus ridership in all the cases, especially in
Case (b) and Case (d), which both included the control variables. When it comes to Case (a)
and Case (c), which excluded the control variables, the impact of shared bikes turned out
to be decreased. The low R-squared values of Case (a) and Case (c) indicate an endogeneity
issue when the DID model excluded the control variables. In Case (b), each shared bike
along the route led to a 0.39 decrease in daily bus ridership on the weekdays. Meanwhile,
each shared bike led to a 0.17 decrease in daily bus ridership on the weekends. These
results indicate that shared bikes have a substitution effect on the bus transit, whether
on the weekdays or the weekends. Furthermore, passengers were more likely to use
shared bikes instead of taking buses on the weekdays than on the weekends. The dummy
variables TimeIndicate in all cases were negative and indicated that the daily average
bus ridership at the route level in 2016 decreased by 72 on the weekdays and 53 on the
weekends, respectively, influenced by the time factor. In Case (b) and Case (d), enterprise
and service variables were both found to be insignificant, indicating that the number of
enterprises and service places along the bus route has no significant impact on the bus
ridership. Educational institutes, such as schools, universities, and libraries, generated an
average of 13.4 and 8.6 of daily trips on each route on the weekdays and the weekends,
respectively. Meanwhile, residential areas generated an average of 7.4 and 6.7 daily trips
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per route on the weekdays and the weekends, respectively. The two above-mentioned
coefficients were determined to be significant as passengers often transport by buses near to
these education and residential areas, especially on the weekdays. The number of subway
stations also had a great impact on bus ridership, which indicates that passengers are more
likely to take buses with an increasing number of subway stations along the route. Each
subway station contributes to average increases of 35.5 and 31.9 bus ridership per route on
the weekdays and weekends, respectively.

3.2. Result of Travel Distance Analysis on the Route Level

In this paper, the impact of the DBSS on bus ridership with different travel distances
was also considered. Figures 4 and 5 show the travel distances of the total shared bike trips
and bus ridership within 5 km. Figure 5 shows that the number of shared bike trips within
2–3 km on the weekdays was significantly higher than that on the weekends. However,
there was no notable gap between trips on the weekdays and trips made on the weekends
within other travel distances. Figure 4 shows that both on the weekdays and weekends,
the amount of bus ridership within the different travel distances in April 2015 was larger
than that of August 2016 in general. The gap of ridership within 2–3 km, and between
April 2015 and August 2016 on the weekdays, respectively, was significantly higher than
that on the weekends. These results indicate that the travel distance is also a critical factor
for passengers to consider their travel methods. Thus, in this paper, another set of DID
models was estimated to figure out the impact of the travel distance on the influence of
shared bikes. Table 6 shows the regression results of the DID model based on different
travel distances on the weekdays/weekends.
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Figure 4. Travel distance distribution of the shared bikes.

Cases (e), (g), (i), (k), and (m) were based on the data on the weekdays, while Cases
(f), (h), (j), (l), and (n) were based on the data on the weekends, respectively. Cases (e) and
(f), Cases (g) and (h), Cases (i) and (j), Cases (k) and (l), and Cases (m) and (n) separately
include the ridership with a travel distance range from 0–1 km, 1–2 km, 2–3 km, 3–4 km,
and 4–5 km, respectively.

Table 6 includes the cases within 0–3 km, and shows that shared bikes reduce bus
ridership within 0–3 km. In Case (e), each shared bike along the route led to a 0.104 decrease
in daily bus ridership while the decrease in Case (f) was only 0.051, respectively. Such a
difference was also found to exist between Case (g), Case (h), Case (i), and Case (j). These
results indicate that the substitution effect of shared bikes on bus ridership is weakened on
the weekends. Meanwhile, by comparing the decrease in these six cases, it is shown that
the substitution effect of shared bikes on bus ridership was also reduced when the travel
distance increases. Restaurants generated an average of 1.435 and 0.851 daily trips on each
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route on the weekdays and the weekends based on the ridership within 1 km, respectively.
Educational institutes also show a positive effect on the ridership within 1 km, which
generated an average of 9.167 and 6.242 daily trips per route on the weekdays and the
weekends, respectively. Meanwhile, residences generated 9.167 daily trips on the weekdays,
6.242 on the weekends within 1 km, and 0.567 on the weekdays and 0.091 on the weekends
within 2 km, respectively. These variables above can generate ridership significantly within
a short distance but can hardly generate ridership when the travel distance gets larger.
However, the subway can generate ridership regardless of the travel distance. Each subway
along the route can generate ridership ranging from 6.224 to 15.694 on the weekdays,
and 2.721 to 7.648 on the weekends, respectively. Other variables, including enterprises,
shopping malls, restaurants, and services have no significant influence on bus ridership.
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Table 6. Impact of variables on bus ridership within 0–3 km travel distance.

Variable
Case (e)
0–1 km

Weekday

Case (f)
0–1 km

Weekend

Case (g)
1–2 km

Weekday

Case (h)
1–2 km

Weekend

Case (i)
2–3 km

Weekday

Case (j)
2–3 km

Weekend

TimeIndicate −58.411 ** −33.502 ** 21.023 ** 13.231 ** 14.817 5.708
BikeIndicate 490.093 *** 224.854 *** 94.687 *** 40.929 *** 94.107 *** 32.877 ***

β (DID) −0.104 ** −0.051 ** −0.041 *** −0.025 *** −0.037 *** −0.016 ***
Enterprise 0.821 ** 0.262 0.011 0.042 0.070 −0.006

Shopping mall −0.150 −0.086 0.029 0.004 −0.075 −0.032
Restaurant 1.435 ** 0.851 *** 0.097 0.035 0.200 * 0.092 *

Subway 15.694 ** 7.648 6.378 *** 2.721 ** 6.224 *** 3.144 ***
External station −8.901 *** −4.800 *** −0.844 * −1.476 ** −1.159 −0.860 ***

Service −0.727 −0.786 −0.280 * 0.043 −0.017 0.043
Residence 7.513 *** 4.377 *** 0.811 *** 1.271 *** 0.526 0.455 **
Education 9.167 *** 6.242 *** 0.567 * 0.091 0.789 0.627 **
Intercept 0.465 9.236 3.247 −10.547 * 6.128 4.031

R2 0.502 0.466 0.206 0.182 0.247 0.335

* p < 0.1. ** p < 0.05. *** p < 0.01.

Table 7 includes the cases within 3–5 km. These results indicate that each shared bike
has no significant impact on bus ridership within 3–5 km, both on the weekdays and the
weekends. Other variables such as residences, subways, and restaurants have a positive
influence on bus ridership. Each external station decreases the ridership along each route.
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Table 7. Impact of variables on bus ridership within 3–5 km travel distance.

Variable
Case (k)
3–4 km

Weekday

Case (l)
3–4 km

Weekend

Case (m)
4–5 km

Weekday

Case (n)
4–5 km

Weekend

TimeIndicate −4.631 −4.002 3.640 −0.386
BikeIndicate 38.539 12.563 ** 45.030 *** 21.391 ***

β (DID) −0.013 −0.007 −0.010 −0.004
Enterprise 0.055 0.015 0.117 0.037

Shopping mall −0.018 −0.006 0.026 0.014
Restaurant 0.167 ** 0.101 ** 0.393 *** 0.198 ***

Subway 4.441 *** 2.400 *** 3.882 1.391 **
External station −0.475 −0.335 ** −1.347 *** −0.793 ***

Service −0.056 −0.028 −0.472 * −0.204 **
Residence 0.904 *** 0.521 *** 0.635 *** 0.399 ***
Education 0.129 0.148 0.770 *** 0.476 ***
Intercept 13.315 3.210 5.884 −0.072

R2 0.326 0.397 0.324 0.406
* p < 0.1. ** p < 0.05. *** p < 0.01.

These results indicate that the travel distance of passengers strongly impacts the
relationship between bike-sharing usage and bus ridership.

4. Discussion

The results of these regress experiments show that whether on the weekdays or the
weekends, the usage of shared bikes decreases bus ridership in Shanghai. DID models
were proposed to figure out the relationship between shared bike usage and bus ridership
on the route level. These route-level models also included some potential control variables
(POIs) along the routes.

From the result of the proposed models, we can conclude that shared bike usage
has a substitution impact on bus ridership. This result is largely consistent with previous
findings concerning docked bike-sharing research [13,14]. Chen et al. [14] found that the
majority of respondents were found to potentially substitute dockless bike-sharing systems
for walking or public transit. Considering all the ridership, the reduction in bus ridership
was more significant on the weekdays than on the weekends. This result may be caused
by passengers’ different travel purposes. On the weekdays, most passengers travel for
commuting. To avoid traffic jams and get shorter commuting times, passengers are more
likely to use shared bikes instead of taking buses to commute short distances or for the
last-mile connection to the urban rails. Thus, the substitution impact of shared bikes on
bus ridership was significantly stronger on the weekdays than on the weekends in short
travel distances. This result also confirmed what Shaheen et al. proposed [18] in that it is
important to distinguish between commuting trips, utility-oriented trips, and leisure travel
purposes when assessing the bike-sharing mode substitution.

The substitution impact of shared bikes on bus ridership gradually decayed in daily
bus ridership with the increase in travel distance to within 3 km. This result is consistent
with Liu et al. in that bike-sharing is a rival and suitable alternative to the bus on a moderate
distance (0.5–3 km) [9]. Additionally, shared bikes have no impact on bus ridership if the
travel distance is between 3 km and 5 km, respectively. This is intuitive in that if the travel
distance is too long, traveling by a shared bike will be exhausting and time-consuming
compared with a bus. As a result, the substitution effect of shared bikes on the bus was
deemed to not be significant.

Limitations also exist in the proposed model. Firstly, only data collected from Shanghai
was utilized in this paper. Secondly, there was no uniform identity system between
the DBSSs and the AFC systems, meaning it was difficult for us to capture the transfer
activities between the shared bikes and buses. These research limitations call for future
improvements. One research direction would be to validate the model in other research
areas (e.g., Beijing, China, and New York, USA). Another improvement in the future could
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also be to examine the impact of other traffic modes on public transit ridership by utilizing
new data, especially emerging traffic modes, for example, self-driving taxis [27].

5. Conclusions

To figure out whether DBSSs are complementary or competitive to the public bus
transit, this paper proposed route-level DID models to capture the impact of shared bikes
and POIs nearby the route on bus ridership. These DID models were used to find out the
difference in bus ridership before and after the large-scale operation of the shared bikes.
POIs, including subways, restaurants, and residences along the bus routes were taken into
consideration in the proposed DID model as control variables.

A case study was conducted on 2015–2016 transit smart data and dockless sharing bike
data in Shanghai, China. The number of bus ridership decreased after the operation of the
shared bikes, and route-level bus ridership with shared bike usage significantly decreased
compared with the ridership without shared bike usage. The proposed route-level DID
model thereby shows that there is a competitive relationship between the DBSS and public
transit, and that shared bikes have a substitution impact on bus ridership on both the
weekdays and the weekends. In addition, the relationship between the DBSS and public
transit was also affected by passengers’ travel distance. With each increase in the number of
shared bikes, bus ridership significantly decreased on weekdays by 0.104, 0.041, and 0.037
within 0–1 km, 1–2 km, and 2–3 km, respectively. In contrast, this decrease tended to be
lower on the weekend. This result shows that shared bikes have a degressive substitution
impact on bus ridership with the increase in the travel distance. Moreover, when the travel
distance is more than 3 km, shared bikes have no significant impact on bus ridership.

This paper estimated a comprehensive model to analyze the impact of the date,
environment along the route, and shared bikes on bus ridership in Shanghai, China. The
results of this paper can further help the public transportation department and the DBSS
operators to adjust their management strategy and relocate the location of these shared
bikes on the weekdays and the weekends.
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