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Abstract: The study seeks to better comprehend the ecological footprint of the United States by
analyzing the effects of digital financial inclusion (FinTech) as well as renewable and non-renewable
energy usage. Data from 2005 Q1 to 2020 Q4 were analyzed using the quantile autoregressive lag
(QARDL) method. It also used Granger causality in quantiles to analyze the correlation between
variables and draw conclusions about their relative importance. Quantile-wise, the error correction
parameter is statistically significant with the predicted negative sign, as shown by the results obtained
using the QARDL method. Indications are mounting that the relationship between these variables
and the United States’ ecological footprint is returning to its long-term equilibrium. However, in the
long/short-run period, across all quantiles, economic growth and consumption of non-renewable
energy have a positive impact on the ecological footprint. The environmental Kuznets curve (EKC)
theory was also examined, which holds that an inverted U-shaped link exists between economic
growth and environmental degradation. The QARDL study’s findings corroborated the presence
of an EKC in the US, lending credence to the theory that while economic growth at first promotes
environmental deterioration, further progress ultimately promotes environmental improvement.
The study additionally checked the results of the QARDL test for robustness using the ARDL
approach. Recommendations for public policy are included in the paper for consideration by
legislators and policymakers.

Keywords: ecological footprint; EKC; FinTech; renewable energy; QARDL; United States;
economic growth

1. Introduction

To agree on steps to combat climate change and keep temperatures below a 1.5 ◦C
increase, government leaders and environmental experts convened at the 26th United
Nations Climate Change Conference (COP26) in the first half of November 2021. The goals
of COP26 underscore the interconnectedness of finance, sustainability, and technology.
Green FinTech describes this merging of financial and environmental technologies, which
will be essential in achieving sustainable development. We divide a country’s ecological
footprint by its population to obtain its per-capita footprint. To live within Earth’s resources,
the world’s ecological footprint must match the biocapacity per person, which is 1.6 global
hectares. A country with an ecological footprint per person of 6.4 global hectares uses four
times as much material as the Earth can renew and recycle. The US has seven times India’s
and twice China’s ecological footprint per person. The footprint helps nations to improve
sustainability and quality of life, local authorities to maximize public project returns, and
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individuals to realize their global footprint. The US has the second-largest ecological
footprint after China, which has four times the US population. The existing population of
the United States is using twice as much of the renewable natural resources and services
that are available in the country as can be replenished. Alaska, Montana, South Dakota,
Wyoming, and Arkansas have the smallest ecological footprints per citizen. According to
the data presented in Figure 1, the states of Arizona, California, Colorado, Florida, and
Virginia have the largest ecological footprints for their respective populations. Texas and
Michigan have the most abundant natural resources, according to biodiversity, which is a
measure of how bio-productive land is. Rhode Island (RI), Delaware, and Arizona are the
three states in the United States that have the lowest biocapacity. California, Florida, and
Texas are the three states that have the biggest ecological gaps in the United States. South
Dakota and Montana are home to some of the most important ecological preserves in the
United States.
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Following China in terms of total carbon emissions, the United States ranks in second
place [1]. Recently, the economy of the United States, which was the second-largest emitter
of greenhouse gases (GHG) in 2017, set a goal for a significant reduction in the amount of
GHG emissions by approximately 27% in 2025 when compared to the level of emissions
in 2005 [2]. In order to tackle challenges related to global warming and other dangers
to the environment, a synergistic plan to manage excessive levels of CO2 emissions is
required. Spending money on research and development could end up being the most
productive tactic. This is because lowering carbon emissions and encouraging the growth of
eco-friendly economies necessitate the creation of new environmentally friendly products
and technologies [3,4].

The 27th Conference of the Parties, often known as COP27, brought together nations
from all around the world in an effort to raise the bar for achieving already established goals
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as well as to enhance commitments. Programs and initiatives hosted by the United States
concentrate on the ways in which the leadership of the United States is delivering solutions
to the climate crisis and the approaches by which the United States is engaging with allies
from across the world. In order to bolster climate ambition and ensure substantial results at
the 27th Conference of the Parties (COP27), the United States exhibits a steadfast dedication
to collaborating with international allies. With the overarching objective of advancing the
global trajectory towards attaining a state of net-zero emissions by the year 2050, the United
States assumes a pivotal role in combating the looming climate catastrophe, consistently
upholding this responsibility both presently and in the future.

The use of FinTech has the potential to make significant contributions toward achieving
environmental sustainability in the United States. By financing the installation of solar
panels, advancing renewable energy sources, and monitoring environmental impact, it
can aid in the reduction of ecological footprints. Loans for firms and individuals trying
to mitigate their environmental effect are possible due to FinTech, which also facilitates
the flow of capital into environmentally conscious businesses. The switch to renewable
energy, however, calls for heavy spending on infrastructure, R&D, and mass acceptance of
clean energy technology. This is where the importance of the connection between financial
inclusion and FinTech really emerges. By making it simpler to secure funding for renewable
energy projects, FinTech platforms can encourage more people and businesses to adopt
this clean energy technology. Renewable energy initiatives can now gain access to capital
from a wider spectrum of investors by utilizing digital platforms, crowdfunding, and
peer-to-peer financing.

Reducing a state’s or nation’s ecological footprint can be accomplished in a number of
effective ways, but one of the most powerful is to make the switch to renewable energy.
Earlier this year, California made history by becoming the first state to produce more
than 5% of its electricity from utility-scale solar. However, there are currently six states
that are further ahead of California in terms of overall dependency on renewable energy.
Hydropower, on the other hand, accounts for the vast bulk of these states’ renewable
energy resources; nevertheless, this resource is already being heavily utilized and is very
location-dependent. Despite this, it is evident that the United States is planning for a future
in which FinTech and renewable energy play a considerably larger role, and the majority
of states still have a significant chance to tap into renewable energy in order to lower the
carbon intensity of their economies. Although the United States cannot function without
energy, the majority of its principal sources cannot be maintained indefinitely. The existing
fuel mix is linked to a wide variety of negative effects on the surrounding environment,
and countries such as the United States that produce a sizable portion of the world’s output
and are mostly responsible for global warming. However, the United States also has one of
the highest concentrations of financial technology worldwide.

The United Nations’ declaration of climate change as a “code red” emergency has
highlighted the urgency of climate-related concerns. Financial services organizations have
been found to annually dispatch 5.2 billion paper documents to customers, resulting in
a loss of 2.4 million trees. FinTech is making the sector greener by eliminating paper,
cutting energy waste, and tracking environmental impact in real time. FinTech can expedite
the transition to a greener economy by equipping financial institutions and consumers
with sustainable practices. Carbon emissions will not disappear overnight, but adopting
new technology could help meet current and future environmental concerns. The first
crucial point to make is that renewable energy consumption has a negative impact on the
ecological footprint, in contrast to the positive impact that using non-renewable energy
sources has. However, the United States has not joined the Kyoto Protocol or made any
other global commitment to reduce its ecological footprint, despite its outsized influence
on the worldwide energy market, international concerns, and its share of global production
and emissions. This is a fascinating subject because Figure 2a shows that in both 1990 and
2020, around 87% and 83% of world energy consumption originated from fossil fuels in the
USA, respectively. It can be seen in Figure 2b that renewable energy contributed only 4% of
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final energy consumption in 1990, but that amount is projected to surge to 10% by 2020.
However, we believe the United States government should be open to trying to employ
renewable energy and do what it can for the environment.
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This research examines the interplay between FinTech, economic growth, renewable
energy, non-renewable energy, and ecological footprint, making a contribution to global
discourse on environmental sustainability. Additionally, in order to confirm the environ-
mental Kuznets curve (EKC) hypothesis, a more recent estimation technique, the QARDL
approach, is utilized in order to gain new insights into the analysis of the United States. The
QARDL model uncovers non-linear patterns and explores implications within the context
of the EKC hypothesis. These unique aspects contribute to the novelty of our research
and differentiate it from existing studies in the field. In conclusion, the Quantile Granger
Causality Strategy, which is currently the method that has proven to be the most reliable,
is used to investigate the causality test. Due to the fact that the development of financial
technology in a nation has a negative effect on its ecological footprint, our research has
shown that this type of growth is beneficial to the process of shifting towards a low-carbon
economy. Our findings, which are both enlightening and applicable, contribute significantly
to the resolution of a contentious issue about the ambiguous role that FinTech development
and renewable energy play in the improvement or destruction of the environment. These
findings also provide regulators and policymakers with knowledge, which enables them to
promote the agenda of FinTech development with more assurance and determination.

The remaining portions of the paper are organized as follows: In the following section,
a literature assessment is presented that focuses on the connection between FinTech and
renewable energy, with the goal of finding a solution to the problem of climate change.
After that, the third section illuminates the intricacies of the models and methodological
framework used to conduct empirical research. Moving on, the outcomes of our study are
detailed in Section 4, along with a discussion of how these results compare to prior research
in the same field. Finally, Section 5 of this study presents our conclusion, with key findings
for scholars as well as policymakers.

2. Review Literature

The ecological footprint, which is associated with FinTech, renewable energy, economic
growth, and non-renewable energy sources, can be a representation of environmental
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deterioration. The associated environmental Kuznets curve (EKC) suggests that there is an
inverted U-shaped relationship between economic growth and environmental degradation.
The EKC theory states that high income levels bring about a reversal of environmental
deterioration and pollution that occurred during the early stages of economic development.
As a result, when more people are able to participate in the economy, the environment
benefits. That is to say, environmental pollution indicators have an inverse U-shaped
relationship with economic growth [5–7]. Since the introduction of the EKC idea, numerous
further investigations have been conducted within the EKC framework [8–12] and are
included in this group of studies. Even for the same countries and regions, during the
early phases of economic development, the EKC hypothesis anticipates that environmental
quality might deteriorate; however, this deterioration will be followed by an improvement
as income levels raised. For instance, whereas Ref. [13] found evidence to support the EKC
hypothesis for the United States, Ref. [14] found no evidence to support the notion that the
EKC hypothesis is accurate for the same nation.

The literature on environmental topics during the past two decades has given extensive
attention to the effects of technological progress, alternative energy sources, economic
development, and ecological footprint. Researchers are split into two camps, with the first
believing that technological advances have helped the environment as a whole by reducing
ecological footprints and increasing energy efficiency [15–19], and according to the second
set of studies, technology has a negative impact on the environment because of the massive
ecological footprint it leaves behind when used and consumed [20,21]. The interesting
view is that technology is a double-edged sword, positively affecting the environment
through the creation of more effective infrastructure systems, smarter cities, and energy-
saving industries, and negatively through the manufacture, use, and eventual disposal
of technological devices. However, new technologies are promoted as the best way to
curb rising pollution. Based on the current discussion, it is obvious that the environmental
impact of global economic development and technological advancement is multifaceted
and understudied, and that conventional linear approaches and one-dimensional proxies
are unable to capture this complexity [22].

As a direct consequence of the so-called “fourth industrial revolution”, a significant
amount of progress has been made in the field of technology. In this light, it is anticipated
that the financial sector will be one of the key beneficiaries of the growth of established
businesses as well as the introduction of novel technology [23]. Additionally, the financial
technology sector has witnessed great expansion, which has been accompanied by enor-
mous increases in both the quantity invested and the rates of return [24]. The widespread
adoption of these financial technologies can be attributed to a number of variables, includ-
ing but not limited to demography; social system; financial climate; knowledge; income
level; accessibility; velocity; cost of maintenance; and so forth [25–28].

Previous study has proven a link between financial innovations and their influence on
banking systems and economic growth within countries [29–31]. According to [32], which
proposes the technology compared to an innovative-growth approach, developments in
financial technology and innovations can have positive and detrimental impacts on the
growth of the economy [29,33,34], contend that financial innovations facilitate risk sharing,
cultivate industry integration, and enhance resource allocation efficiency. However, it
is essential to observe that the excessive credit provision that may result from financial
innovations may contribute to financial crises [35]. Currently, FinTech has altered the
financial environment and had far-reaching impacts on economies around the world [36].
On top of that, it has made banks and the overall financial system more effective [37]. That
is to say, the rise of e-banking and other examples of FinTech has increased efficiency and
competitiveness among banks [38]. FinTech is the primary factor propelling the growth of
stock markets [39]. Even though the relationship between FinTech and economic, financial,
and banking development has been well studied, there is an absence of research that
examines how FinTech is linked with the environment [40]. This is despite the fact that
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rapid financial innovations and development have positive externalities, such as increasing
financial inclusion and decentralizing financial services.

However, digitalization’s results are energy-saving because of increased energy effi-
ciency and industry shifts. A country can increase its economy’s energy efficiency through
the use of ICT (information and communication technology). It is still unknown how
exactly digitalization affects the tertiarization of the economy; however, there is evidence
to suggest it has an energy-reducing effect. If we are going to talk about how cutting-edge
technology is changing the banking industry, we have to talk about how it is changing the
economy as a whole, too. As a result, there has been a rise in the worldwide production
and consumption of ICT goods and services, which has led to higher demands for power
and other environmental costs [41]. The importance of ICT in raising both productivity
and efficiency has been well recognized. However, there is still no agreement on how it
will affect the ecosystem in the long run. There is strong empirical evidence linking the
use of ICT to the reduction of GHG emissions, as shown by a number of different studies.
On the other hand, some people argue that the widespread use of ICT products and ser-
vices increases worldwide CO2 emissions because of the increased need for power [42].
Additionally, Ref. [43] examines the influence of ICT on power consumption in developing
countries using panel data analysis techniques such as the dynamic generalized method of
moments (GMM), pooled ordinary least squares (OLS), fixed effects, and random effects.
Different methods provide different findings; for example, dynamic-GMM and pooled
OLS analyses show a negative and statistically insignificant association between ICT and
power use.

However, the fact is that all these studies look at how cryptocurrency might damage the
ecosystem. Nevertheless, there is noticeably less research on the subject of how the growth
and development of FinTech have altered an economy’s ecosystem. As such, a recent
literature review has been provided by [44], focusing on the intersection of technology
and ecology. The authors have stated that innovation and sustainability are the two key
drivers of financial business today. This subject has been studied, but only in a limited
capacity. FinTech, however, is now being viewed as potentially instrumental in addressing
climate change and its effects. Therefore, it is crucial to comprehend the complexities that
go beyond blockchain and cryptocurrencies, as well as how the growth of the FinTech
ecosystem is connected to the economic ecosystem as a whole. To address this gap, this
study provides an empirical evaluation of the connection between FinTech advancement
and environmental quality, arguing that the more advanced a country’s financial ecosystem,
the higher the quality of its environment would be. The impact of FinTech on ecological
footprint in the presence of renewable and non-renewable energy, GDP, and its square
relied on the work of [45–47].

This study primarily contributes to FinTech, an innovative financial strategy that uses
information technology and includes all necessary financial services activities. While there
is a growing body of research looking at how blockchain and cryptocurrencies might affect
environmental impacts, we are not aware of any that evaluates the relationship between
FinTech development and ecological well-being. Moreover, we hypothesize that less en-
vironmental harm will occur in countries with more advanced FinTech ecosystems. The
connection is explained through a number of pathways, including new developments in
systems and processes, increased efficiency, green finance, etc. We have also argued that
technological progress is enabled by strategic corporate investment and well-timed govern-
ment regulation. Therefore, governments play a crucial role in fostering an atmosphere
conducive to eco-friendly inventions.

3. Data and Modelling Strategy
3.1. Data

This study examined 2005 Q1–2020 Q4 time-series data. After completing the annual
data collection and quarterly data transformation using the match-sum approach as con-
ducted by [48], according to the changes proposed by [49], the Quantile Autoregressive
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Distributed Lag Model (QARDL) requires long data series, and the quadratic match sum
method solved this problem. This method lowers data variance and modifies periodic
irregularity, transforming frequency information from low to high. In light of this rationale,
the analysis compares the impact on ecological footprints with the growth of per capita
energy consumption, renewable energy, and financial inclusion indicators such as ATM
density per 100,000 adults, bank branch density per 100,000 adults, commercial bank de-
posit accounts per 1000 adults, and commercial bank borrowers per 1000 adults. Financial
technology accounts for mobile phones’ significance in helping Americans access financial
services. Table 1 defines and sources variables.

Table 1. Data variables and sources.

Parameters Symbol Metrics Resources

Ecological footprint EFP Global hectares per person GFN
Economic Growth GDP GDP per capita WDI

Financial Technology FTEC Financial Inclusion, Digital Payments, and Resilience World Bank—Global Findex

Renewable energy REN Geothermal, biomass, and wind energy in the total
energy used. WDI

Non-renewable energy NRE Energy consumption per capita (kWh) WDI

3.2. Modelling Strategy

This study studied a time series that extends from 2005 to 2020. Quarterly data were
derived from the annual data using the match-sum approach, as in [48]. Using a quadratic
match sum approach proved useful for dealing with the large data series necessary for
QARDL’s application, as suggested by [49]. This method is useful for transforming low-
frequency data into high-frequency data because it permits the adjustment of periodic
abnormalities through the diminution of informational discrepancies. Using advanced
econometric techniques, the sequential testing framework consists of five distinct steps to
investigate the relationships between variables. Quantile Unit Root Test, Quantile Autore-
gressive Distributed Lag Model (QARDL) Test, Wald Test, Quantile Granger Causality Test,
and Autoregressive Distributed Lag (ARDL) Test are included. The framework offers a
rigorous method for analyzing complex economic phenomena, thereby providing valuable
insights for policy formulation and the decision-making processes. This study’s modeling
strategy is depicted in Figure 3 below.

Sustainability 2023, 15, x FOR PEER REVIEW 7 of 21 
 

deposit accounts per 1000 adults, and commercial bank borrowers per 1000 adults. Finan-

cial technology accounts for mobile phones’ significance in helping Americans access fi-

nancial services. Table 1 defines and sources variables. 

Table 1. Data variables and sources. 

Parameters Symbol Metrics Resources 

Ecological footprint  EFP Global hectares per person  GFN 

Economic Growth GDP GDP per capita WDI 

Financial Technology FTEC 
Financial Inclusion, Digital 

Payments, and Resilience 

World Bank—

Global Findex 

Renewable energy REN 

Geothermal, biomass, and 

wind energy in the total 

energy used.  

WDI 

Non-renewable energy  NRE 
Energy consumption per 

capita (kWh) 
WDI 

3.2. Modelling Strategy 

This study studied a time series that extends from 2005 to 2020. Quarterly data were 

derived from the annual data using the match-sum approach, as in [48]. Using a quadratic 

match sum approach proved useful for dealing with the large data series necessary for 

QARDL’s application, as suggested by [49]. This method is useful for transforming low-

frequency data into high-frequency data because it permits the adjustment of periodic 

abnormalities through the diminution of informational discrepancies. Using advanced 

econometric techniques, the sequential testing framework consists of five distinct steps to 

investigate the relationships between variables. Quantile Unit Root Test, Quantile Auto-

regressive Distributed Lag Model (QARDL) Test, Wald Test, Quantile Granger Causality 

Test, and Autoregressive Distributed Lag (ARDL) Test are included. The framework offers 

a rigorous method for analyzing complex economic phenomena, thereby providing valu-

able insights for policy formulation and the decision-making processes. This study’s mod-

eling strategy is depicted in Figure 3 below. 

 

Figure 3. Modeling Strategy. 

  

Figure 3. Modeling Strategy.



Sustainability 2023, 15, 10663 8 of 21

3.2.1. Unit-Root Test

We study the matter of whether or not the time series is stationary by employing a
technique that was developed by [50] called the Quantile Auto-Regressive (QAR) unit root
test. It is helpful to validate the stationarity of time series data using the QAR approach of
the unit root test at the conditional variance and at each quantile of the conditional proba-
bility distribution. In addition to this, [51] extended the QAR model by including variables
as well as a linear trend. We make use of a mechanism called Xi, which is a time series
method that has been demonstrated to be strictly steady through the use of prior evidence.
The formula that we have been using to construct MX

i := (Xi−1, . . . , Xi−o)
′ ∈ Ro. We utilize

the function FX
(
. | MX

i
)

in order to calculate the conditional distribution of Xi given MX
i .

This allows us to determine how likely it is that any given value of Xi will cur.
In order to calculate the conditional distribution of Xi given MX

i , we make use of the
function FX

(
. | MX

i
)
. Using the Equation (1) below, we can conduct the quantile unit root

test, which is adapted to the chosen quantile linear regression model.

QX
π

(
Xi | MX

i

)
= γ1(π) + γ2(π)i + β(π)Xi−1 + ∑n

k=1 βk(π)∆Xi−k + F−1
v (π), (1)

where QX
π

(
. | MX

i
)

is the π-quantile of FX
(
. | MX

i
)
, γ1(π) denotes drift, i is a linear trend,

β(π) is the constraint which tests the persistence, and or each quantile, π ∈ ∂ ⊂ [0, 1], the
error terms are conditionally scattered, denoted by the inverse function F−1

v . Therefore,
a special persistence parameter (β) is used for conditional dispersion of Xi quantiles. In
this instance, we use the t-statistics provided by [50,51] to test the Ho : β(π) = 1, which is
obtained by the deployment of the t-statistics over the available quantiles π ∈ .

3.2.2. Quantile Autoregressive Distributed Lag Model (QARDL)

Ecological footprints (EFP), gross domestic product (GDP) and its square, FinTech
development (FTEC), renewable energy (REN), and non-renewable energy (NRE) were
used in the QARDL model proposed by [49] to demonstrate the long- and short-term nexus
between these variables. As a result, we have used the QARDL framework within the EKC
framework to examine the short-term and long-term relationships between the variables
of interest. Additionally, the Wald test has been used to investigate both temporary and
permanent equilibriums by analyzing the quantiles of reliability metrics. The basic idea of
QARDL was developed from the classic ARDL model, as seen in Equations (2) and (3):

Yt = α + ∑o
i=1 β1Yt−ji + ∑

p
i=1 β2X1t−ji + ∑

q
i=1 β3X2t−ji + ∑r

i=1 β4X3t−ji+

∑m
i=1 β5X4t−ji + ∑n

i=1 β6X5t−ji + εt,
(2)

or

EFPt = α +
o
∑

i=1
β1EFPt−ji +

p
∑

i=1
β2GDPt−ji +

q
∑

i=1
β3GDP2

t−ji

+
r
∑

i=1
β4FTECt−ji +

m
∑

i=1
β5RENt−ji +

n
∑

i=1
β6NREt−ji + εt.

(3)

In the aforementioned formula, εt stands for the white-noise error term defined by{
EFPt, GDPt, GDP2

t, FTECt, RENt, NREt
}

and {o, p, q, r, m, n} indicates the orders of lag depicted
using Schwarz Information Criterion (SIC). Moreover, EFPt, GDPt, GDP2

t, FTECt, RENt, NREt
indicate the natural logarithm series of ecological footprints, gross domestic product and
its square, FinTech development, renewable energy, and non-renewable energy. Using the
foregoing steps as a guideline, we propose the following configuration for the QARDL
method by modifying the previously stated Equation (4):

QEFPt = α(τ) + ∑o
i=1 β1(τ)EFPt−ji + ∑

p
i=1 β2(τ)GDPt−ji + ∑

q
i=1 β3(τ)GDP2

t−ji + ∑r
i=1 β4(τ)FTECt−ji+

∑m
i=1 β5(τ)RENt−ji + ∑n

i=1 β6(τ)NREt−ji + εt(τ).
(4)
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Consider the above equation, εt(τ) = TEt −QTEt

(
τ

εt−1

)
; 0 < τ < 1 is quantile. The

study employs the following range of quantiles to analyze the data [0.05, 0.10, 0.20, 0.30,
0.40, 0.50, 0.60, 0.70, 0.80, 0.90, and 0.95]. In addition, Equation (4), which was discussed
before, can be altered in such a way as to offer the error correction model remeasurement
of the QARDL framework as follows [49]:

Q∆EFPt = α(τ) + ρ(τ)(EFPt−ji −ω1(τ)GDPt−ji −ω2(τ)GDP2
t−ji−

ω3(τ)FTECt−ji −ω4(τ)RECt−ji.−ω5(τ)NECt−ji
)
+ ∑o−1

i=1 β1(τ)∆EFPt−ji+

∑
p−1
i=1 β2(τ)∆GDPt−ji + ∑

q−1
i=1 β3(τ)∆GDP2

t−ji + ∑r−1
i=1 β4(τ)∆FTECt−ji+

∑m−1
i=1 β5(τ)∆RENt−ji + ∑n−1

i=1 β6(τ)∆NREt−ji + εt(τ).

(5)

In addition, short-term influence of the current level of ecological footprint can be
determined by using (∆); furthermore, short-term influence of ecological footprint is
calculated by β∗i = ∑0−1

i=1 βi1, although the collective short-term impact of simultaneous
and foregoing non-renewable energy on the current stage of ecological footprints has been
quantified as β∗i = ∑r−1

i=1 βi6. Using the same technique, one may calculate the remaining
cumulative short-term use at the current level of ecological footprint. It is expected that
in Equation (5), the coefficient of conditional volatility ρ will be significantly negative and
statistically significant.

3.2.3. Long-Run Asymmetries

The Wald test is carried out in order to evaluate the particular H0 and HA in order
to obtain the short-term and long-term parameters needed to measure the asymmetrical
influence of GDP, FTEC, REN, and NRE on EFP. As a result, various previously unseen
factors in the underlying equations became apparent. It is clear from this phenomenon
that the short- and long-term coefficients in the QARDL framework can be different on
each quantile, indicating that they can have a different effect on each interval. Additionally,
the quantile bounds for both the short- and long-term coefficients could be examined
using the Wald test [49]. These H0 and HA for the short- and long-term parameters
ϕ∗, w∗, β∗, and ρ∗ can be tested with the Wald test [52], which asymptotically follows a
Chi-squared distribution.

Hϕ
0 : Fϕ∗(τ) = F versus Hϕ

1 : Fϕ∗(τ) 6= F

Hϕ
0 : Sω∗(τ) = S versus Hϕ

1 : Sω∗(τ) 6= S

Hϕ
0 : Sβi∗(τ) = S versus Hϕ

1 : Sβi∗(τ) 6= S

Hϕ
0 : Sρ∗(τ) = S versus Hϕ

1 : Sρ∗(τ) 6= S

Finally, the long-run asymmetric effect will be supported if the Wald test [52] rejects
the H0 based on the Equation below (6):

ϕ1

−ϕ0
=

ϕ2

−ϕ0
. (6)

3.2.4. Quantile Granger Causality Test

A given variable Yi cannot Granger cause a different variable Xi, as stated by [53] if
earlier Yi does is not able to estimate Xi, giving the prior Xi, so let us pretend that there is

a vector for identifying labels
(

Mi = MX
i , My

i

)′
∈ Re, e = o + q, where My

i is the former
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evidence set of Yi M
y
i :=

(
Yi−1, . . . , Yi−q

)′ ∈ Rq. In Equation (7), we see why it is reasonable
to reject the HA, i.e., that Granger non-causality runs from Yi to Xi.

HY9X
o : FX

(
x | MX

i , My
i

)
= FX

(
x | MX

i

)
, for all x ∈ R, (7)

where FX

(
x | MX

i , My
i

)
is the given function of Xi, provided (MX

i , My
i ). Utilizing H0 from

Equation (7), and following [54], the current study can replicate the DT test by recognizing
the QAR framework m(·) for the entire π ∈ Γ ⊂ [0, 1] on the causal relationship of non-
Granger H0 as follows in Equation (8):

QAR(1) : m1
(

MX
i , ∂(π)

)
= λ1(π) + λ2(π)Xi−1 + µtΩ−1

Y (π), (8)

where the values ∂(π) = λ1(π), λ2(π) and µt are measured by supremum of the probability
in an identical space of grid of quantiles, while Ω−1

Y (.) is the opposite of an old-style
distributing method. Calculating the quantile autoregressive using a model described
in Equation (9) that includes a factor that is laggard to the other factors enables one to
remedy an incorrect suggestion of causality between FT and RE. In light of Equation (8),
the previously presented equation of the QAR model can be described as follows in
Equation (9):

QX
π

(
Xi | MX

i , MY
i

)
= λ1(π) + λ2(π)Xi−1 + η(π)Yi−1 + µtΩ−1

Y (π). (9)

4. Estimation and Results
4.1. Preliminary Test Results

The average value, the least significant value, and the most significant value are all
examples of measures of central tendency. Positive numbers may be seen in the minimum
value, mean value, and maximum value of the variables that were selected to be analyzed
in Table 2, which displays a summary of all the variables that were used in the research.

Table 2. Preliminary test.

Variables Mean Max. Min. Std. Dev Skewness Kurtosis Jarque-Bera Prob. Correlation

EFP 4.7912 7.5813 3.3312 2.0518 0.1812 1.4311 16.1217 0.0001 -

GDP 3.9480 4.5819 2.7312 0.5131 −0.0996 1.8236 9.7331 0.0104 0.9661 *

GDP2 7.8960 8.4638 5.4624 1.0262 −0.0996 1.8236 9.7331 0.0104 0.09973 *

FTEC 8.3240 11.6315 5.1716 1.5732 0.7152 3.0182 9.1221 0.0111 0.9673 *

RNE 4.1340 5.4210 2.1336 0.9238 0.0721 1.6617 18.9812 0.0002 0.9469 *

NRE 5.8213 8.6613 3.6131 3.6610 0.1092 2.0001 5.1810 0.0015 0.9991 *

Note: * demonstrates a substantial degree of non-linear dependence at the 5% level. Source: Authors’ Estimation.

EFP (Mean = 4.7912, Max= 7.5813, Min = 3.3312), GDP (Mean = 4.0819, Max= 3.9480,
Min = 2.7312), GDP2 (Mean = 8.1638, Max= 7.8960, Min = 5.4624), FTEC (Mean = 8.3240,
Max= 11.6315, Min = 5.1716), RNE (Mean = 4.1340, Max= 5.4210, Min = 2.1336), and NRE
(Mean = 5.8213, Max= 8.6613, Min = 3.6131). The Jarque–Bera test was utilized in this
research work in order to verify that the data followed a normal distribution. In other
words, the Jarque–Bera test contradicts the assumption that each variable follows a normal
distribution at a 1% level of significance. Thus, quantile methods are appropriate and
warranted in this investigation [54,55].

A box plot analysis of the variables that were looked at can be seen in Figure 4. These
factors include ecological footprints (EFP), economic growth (GDP) and its square, financial
technology (FTEC), renewable energy (REN), and non-renewable energy (NRE).
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4.2. Quantile Unit Root Test Results

The examination and discussion of the empirical data that were collected was the
major purpose of this particular investigation. The evaluation of the stationarity qualities
of the variables is a necessary step that must come before applying the QARDL model.
As a result of the fact that the data do not follow a normal distribution, it is essential to
make use of non-standard unit root tests. These tests include quantile-based alternatives to
the conventional augmented Dickey Fuller and Phillips and Perron tests. Inferences that
are more accurate and effective in mitigating potential biases can be drawn by applying
quantile unit root methodologies [50]. Table 3 displays the quantile unit root test outcomes
for the study variables across multiple quantiles. It is interesting to note that all of the
coefficient values are higher than the threshold. In light of this, the null hypothesis (H0) of
α(τ) = 1 cannot be statistically rejected at a 5% significance level, regardless of the chosen
quantile. According to the results of the quantile unit root tests, this suggests that there is
not adequate evidence that the variables demonstrate stationarity.
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Table 3. Unit-root test results.

Quantiles
EFP GDP GDP2 FTEC RNE NRE

α(τ) t-Stats C.V α(τ) t-Stats C.V α(τ) t-Stats C.V α(τ) t-Stats C.V α(τ) t-Stats C.V α(τ) t-Stats C.V

0.05 0.854 −2.342 −3.015 0.966 −0.771 −2.455 0.987 −0.733 −2.428 0.846 −2.111 −2.343 0.868 −2.123 −2.355 0.825 −1.850 −2.683

0.10 0.867 −1.836 −2.827 0.932 −0.982 −2.767 0.921 −0.971 −2.737 0.722 −1.121 −2.362 0.725 −1.133 −2.374 0.813 −2.504 −2.742

0.20 0.877 −2.013 −2.937 0.923 −1.277 −2.963 0.913 −1.263 −2.922 0.854 −0.454 −2.367 0.867 −0.453 −2.366 0.837 −2.613 −2.929

0.30 0.882 −2.482 −3.015 0.910 −1.244 −3.047 0.916 −1.215 −3.015 0.897 −0.022 −2.359 0.902 −0.022 −2.374 0.862 −2.336 −3.029

0.40 0.891 −2.129 −2.827 0.856 −1.713 −3.079 0.847 −1.689 −3.048 0.977 1.392 −2.353 0.994 1.385 −2.360 0.889 −1.657 −3.126

0.50 0.898 −2.032 −2.937 0.816 −2.014 −3.123 0.808 −1.986 −3.083 0.983 1.287 −2.615 1.099 1.395 −2.507 1.060 −1.219 −3.028

0.60 0.930 −1.642 −3.015 0.826 −1.771 −2.950 0.827 −1.747 −2.914 1.036 2.746 −2.635 1.178 2.873 −2.508 0.985 −0.178 −3.102

0.70 0.941 −1.600 −2.827 0.804 −1.887 −2.853 0.805 −1.866 −2.822 0.991 1.905 −2.514 1.008 1.908 −2.511 0.877 −1.349 −2.965

0.80 0.901 −1.891 −2.937 0.774 −2.644 −2.818 0.784 −2.627 −2.787 1.078 1.990 −2.450 1.111 2.001 −2.439 0.953 0.645 −2.732

0.90 0.943 −1.449 −3.015 0.741 −2.087 −2.514 0.748 −2.069 −2.486 1.074 2.924 −2.358 1.095 2.926 −2.356 1.089 0.455 −2.435

0.95 0.955 −1.211 −2.827 0.770 −2.256 −2.363 0.771 −2.221 −2.337 1.114 5.539 −2.363 1.134 5.545 −2.346 0.959 1.016 −2.610

Note: Estimates at a 5% level of significance. Source: Authors Estimation.
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4.3. Quantile Autoregressive Distributed Lag Model (QARDL) Test Results

Application of the Quantile Autoregressive Distributed Lag (QARDL) model yielded
the estimation results shown in Table 4. Moreover, the results show that across all quantiles,
the anticipated coefficient for the rate of adaption (ρ*) is significantly negative. This points
to a significant slowing down of the adjusting process. Thus, more proof is offered that
economic indicators such as the United States’ ecological footprint, financial technology,
renewable energy, non-renewable energy, gross domestic product, and GDP2 converge
to a long-term equilibrium over time. To elaborate, the final quantile features the highest
adjustment rate (−3.633). There is a positive long-term link between EFP and GDP across
all quantiles, as indicated by the positive GDP cointegration coefficient. In contrast, GDP2’s
cointegration value is consistently negative across all quantiles. This result lends credence to
the EKC hypothesis in the USA, demonstrating a long-term correlation with an inverted U-
shaped pattern between GDP, GDP2, and EFP. Ecological sustainability, however, becomes
problematic at advanced stages of economic development, and the importance of GDP2
declines with increasing quantiles. Additionally, between the 0.05 and 0.80 quantiles, the
turning points of the EKCs start to grow, suggesting that the energy and environmental
policies in the United States are insufficient to prevent environmental degradation.

Table 4. Results of Quantile Autoregressive Distributed Lag Model (QARDL).

Quantiles
(τ)

Constant ECM Long-Run Short-Run

α (τ) ρ * βGDP
(τ)

βGDP
2

(τ)
βFTEC (τ) βRNE (τ) βNRE

(τ) ϕ1 (EFP) ω0 (GDP) λ0 (GDP
2

) δ0 (FTEC) ψ0 (RNE) θ0 (NRE)

0.05
0.324 * −0.262 * 0.438 * −0.225 * −0.008 *** −0.007 *** 0.505 * 0.377 * 0.304 * −0.011 −0.281 −0.026 0.026
(3.395) (−4.281) (6.483) (−3.742) (−1.319) (−1.340) (7.363) (3.373) (3.597) (−0.364) (−0.423) (−0.475) (0.608)

0.10
0.323 * −0.273 * 0.427 * −0.219 * −0.073 *** −0.057 *** 0.448 * 0.312 * 0.226 * −0.067 −0.300 −0.011 0.036
(3.390) (−4.472) (6.182) (−3.522) (−1.382) (−1.392) (6.791) (3.469) (3.241) (−0.340) (−0.631) (−0.500) (0.546)

0.20
0.329 * −0.275 * 0.426 * −0.197 * −0.121 *** −0.239 ** 0.433 * 0.304 * 0.026 −0.023 −0.262 −0.020 0.024
(3.367) (−4.577) (6.113) (−2.968) (−1.632) (−2.432) (6.860) (3.488) (0.492) (−0.287) (−0.690) (−0.575) (0.503)

0.30
0.341 * −0.273 * 0.517 * −0.330 * −0.052 *** −0.172 ** 0.495 * 0.356 * 0.071 −0.011 −0.152 −0.105 0.074
(3.409) (−4.667) (5.902) (−2.868) (−1.778) (−2.198) (6.499) (3.467) (0.408) (−0.299) (−2.187) (−0.638) (0.473)

0.40
0.355 * −0.265 * 0.420 * −0.168 * −0.206 ** −0.226 ** 0.447 * 0.304 * 0.023 −0.001 −0.007 −0.015 0.022
(3.522) (−4.408) (5.873) (−2.763) (−2.222) (−2.259) (6.681) (3.690) (0.588) (−0.363) (−1.479) (−0.734) (0.371)

0.50
0.360 * −0.276 * 0.399 * −0.228 * −0.243 * −0.251 * 0.462 * 0.320 * 0.036 −0.010 −0.011 −0.003 0.036
(3.418) (−4.143) (5.712) (−2.627) (−2.733) (−2.743) (6.668) (3.623) (0.479) (−0.344) (−1.152) (−0.753) (0.406)

0.60
0.388 * −0.254 * 0.413 * −0.125 ** −0.243 * −0.287 * 0.448 * 0.311 * 0.001 −0.008 −0.005 −0.013 0.022
(3.219) (−4.037) (5.165) (−2.133) (−2.833) (−2.891) (6.891) (3.780) (−0.893) (−0.470) (−1.080) (−0.829) (0.476)

0.70
0.409 * −0.242 * 0.429 * −0.084 ** −0.231 * −0.298 * 0.460 * 0.316 * −0.001 −0.007 −0.006 −0.014 0.015
(3.173) (−3.893) (4.972) (−2.038) (−3.293) (−3.303) (7.024) (3.731) (−0.805) (−0.427) (−0.827) (−0.786) (0.569)

0.80
0.431 * −0.227 * 0.442 * −0.083 *** −0.283 * −0.308 * 0.525 * 0.385 * 0.073 0.042 0.052 −0.009 0.024
(3.104) (−3.844) (4.631) (−1.782) (−3.783) (−3.878) (7.113) (3.878) (0.479) (−0.543) (−0.831) (−0.867) (0.555)

0.90
0.452 * −0.310 * 0.353 * −0.175 *** −0.383 * −0.382 * 0.474 * 0.331 * 0.044 −0.002 −0.010 −0.007 0.026
(3.079) (−3.735) (3.998) (−1.803) (−4.163) (−4.180) (7.190) (3.471) (0.338) (−0.592) (−0.809) (−0.891) (0.600)

0.95
0.478 * −0.206 * 0.470 * −0.073 *** −0.271 * −0.337 * 0.527 * 0.385 * 0.104 −0.007 −0.005 −0.001 0.017
(3.055) (−3.633) (3.848) (−1.782) (−4.062) (−4.040) (6.996) (3.369) (0.518) (−0.589) (−0.740) (−0.892) (0.675)

Note: Significance levels are denoted by *, **, and ***, representing 1%, 5%, and 10% significance, respectively,
with t-statistics presented in parentheses. Source: Authors Estimation.

This study uncovers previously unacknowledged aspects of the environmental Kuznets
curve (EKC) theory in the United States by conducting an analysis of the disaggregation of
EKC patterns across multiple quantiles. As a result, the current understanding is expanded
beyond the scope of the existing body of literature [56–59]. Although their long-term link
with EFP does not become significant until after the second quantile is passed, empirical
studies show that FTEC and REN have a detrimental effect on EFP after that point. This
discovery indicates that the widespread use of FinTech and renewable energy is lowering
environmental impact over time. Because of this, the case for integrating FinTech and
renewable energy as a powerful strategy to reduce the negative effects of climate change
and environmental degradation in the United States is strengthened. The empirical results,
on the other hand, show that the usage of non-renewable energy sources increases the
ecological footprint at all quantiles. Furthermore, the study shows that compared to using
non-renewable energy sources, utilizing FinTech and renewable energy leads to a smaller
ecological footprint. This confirms the findings of prior research [60–62].
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In addition, significant insights are provided by the levels of relevance and the size of
the impact resulting from the use of FinTech and renewable energy. In particular, between
the 0.05 and 0.20 quantiles, FinTech’s influence is not significant, and between the 0.05
and 0.10 quantiles, renewable energy consumption’s impact is not significant. However,
between the quantiles of 0.20 and 0.40, the impact’s importance is minimal. Both FTEC
and REN show an increase in significance beyond the 0.40 quantile, with commensurate
increases in impact size. This finding suggests that the environmental impact of using
less FinTech and renewable energy sources may be small or non-existent. However, the
effect becomes more noticeable at deeper penetration levels. Given that no other research
has focused on this specific feature, this conclusion, which highlights the diminished
influence of FTEC and REN on the ecological footprint in the United States, can be seen as
an important addition to the current literature.

The results of short-term dynamics indicate that the ecological footprint at each
quantile is considerably influenced by the ecological footprint at earlier phases. Notably,
only in the lowest GDP quantiles do recent developments have a positive impact on the
present ecological footprint. However, neither historical nor contemporaneous changes in
GDP2 have an effect on the present ecological footprint. In addition, the findings indicate
that the use of FTEC, REN, and NRE in the lower quantiles has a substantial and unfavorable
effect on the current changes in EFP. In contrast, the historical fluctuations in FTEC, REN,
and NRE have little effect on the current increases in EFP. There is a considerable negative
correlation between EFP and GDP across all quantiles, as evidenced by the Table 4 primary
conclusions. FTEC and REN have a detrimental influence on EFP after the second quantile
is surpassed. NRE has a positive influence on EFP across all quantiles. The impact of FTEC
and REN on EFP increases as their penetration grows, but NRE has a positive effect on EFP
across all quantiles.

4.4. Wald Test Results

Table 5 displays the Wald test’s findings regarding the stability of selected parameters
across quantiles. In order to determine whether or not the parameters vary over quantiles,
this statistic is employed. The results show that there is a lot of long-term parameter varia-
tion between quantiles; thus, we can rule out the null hypothesis of constant parameters.
This shows that the impacts of the investigated factors on the EFP vary across quantiles.
Similarly, quantiles exhibit similar variation in the effects of the regressors over the short
term. These findings highlight the importance of analyzing the long-term effects of the
selected determinants on EFP using the Quantile Autoregressive Distributed Lag (QARDL)
approach, which takes into account non-linearity and structural breakdowns. Changes
in the United States’ macroeconomic variables during the research period could provide
insight into these findings. The short-term cumulative effect of earlier levels of EFP does
not appear to be uniform across all quantiles, as shown by the Wald test’s null hypoth-
esis. The test also rejects the hypothesis of persistent variable linearity across quantiles,
suggesting that factors other than GDP, FTEC, REN, and NRE do not have a linear effect
on ecological footprints. However, generally, the US ecological footprint was significantly
proportional to each of GDP, FTEC, REN, and NRE. As the ecological footprint grew, so did
this linear effect.
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Table 5. Wald test results.

Variables F-Statistics Prob.

ρ 8.052 * 0.000

βGDP 6.667 * 0.000

βGDP
2 3.926 ** 0.000

βFTEC 5.754 * 0.000

βREN 4.553 * 0.000

βNRE 3.945 * 0.000

ϕ1 (EFP) 3.210 ** 0.016

ω0 (GDP) 3.001 * 0.008

λ0 (GDP
2

) 2.221 0.059

δ0 (FTEC) 5.952 * 0.000

ψ0 (RNE) 4.884 * 0.000

θ0 (NRE) 3.863 * 0.000
*, and ** indicate significance at 1%, and 5% levels, respectively. Source: Authors Estimations.

Furthermore, at the 1% significance level across all quantiles, the results show that the
aggregate short-run influence of GDP, FTEC, REN, and NRE on EFP is non-linear. The study
of the data, which investigates the connection between these factors and the ecological
footprint, leads to this result. A thorough examination of the data revealed that there is a
non-linear link between these factors and the ecological footprint. The major takeaways
from the Wald test results are that the QARDL model’s long-term parameters are not stable
across quantiles, and that the QARDL model’s short-run parameters are likewise not stable
across quantiles. Compared to a standard linear regression model, the QARDL model is
superior for studying the correlation between EFP and the explanatory factors.

4.5. Granger Causality in Quantile Test Results

Table 6 displays the p-values obtained from the Quantile Granger causality tests.
When we expanded the quantile range to include [0.05–0.95], we found that there was a
bidirectional causal relationship between the variables that were being explored in the
context of the United States. This suggests that GDP growth rates are stronger forecasters
of ecological footprints than any other element that may be taken into consideration. In
addition, empirical evidence from the quantile causality test across all quantile tails reveals
a bidirectional causality between the use of non-renewable energy and ecological footprints,
which is consistent with the findings of earlier research carried out by and [63,64].

On the other hand, we discovered evidence of a unidirectional causal relationship
between FinTech, renewable energy consumption, and ecological footprints across all
quantiles. This was the most significant finding. In addition, a one-way causal connection
was found between ecological footprints and the utilization of renewable energy sources
at the highest quantiles. The conclusions of this study are corroborated by the findings of
another study called QARDL, the results of which indicate that the impact of FinTech and
the usage of renewable energy is still undervalued in the lower quantiles. It is essential
to keep in mind that the ecological footprint left by the United States is not proportional
to the amount of energy derived from renewable sources that is used. This shows that
governmental initiatives to increase demand for FinTech and promote the use of renewable
energy sources in areas with low penetration have not been successful. In addition, this
suggests that policy efforts to increase demand for green energy sources in areas with
low penetration. After the 0.50 quantile, there is a discernible increase in the amount
of speculative demand for these products, which is directly responsible for the growing
ecological impact.
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Table 6. Granger causality in quantile test results.

Quantiles
(τ)

∆GDP
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(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

0.10 
29.880 * 19.878 * 23.789 * 20.399 * 23.789 * 20.399 * 19.653 * 21.834 * 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

0.20 
12.223 * 13.778 * 19.434 * 21.863 * 19.434 * 21.863 * 23.307 * 23.541 * 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

0.30 
23.853 * 21.689 * 18.786 * 25.047 * 18.786 * 25.997 * 22.951 * 23.014 * 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

0.40 15.369 * 20.416 * 23.134 * 23.134 * 22.959 * 24.080 * 29.911 * 31.688 * 

∆REN
∆NRE
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∆NRE

[0.05–0.95] 33.634 * 32.950 * 33.595 * 28.369 * 35.249 * 30.023 * 30.621 * 31.030 *
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.05
21.770 * 33.009 * 18.541 * 19.553 * 18.541 * 19.553 * 21.225 * 16.697 *
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.10
29.880 * 19.878 * 23.789 * 20.399 * 23.789 * 20.399 * 19.653 * 21.834 *
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.20
12.223 * 13.778 * 19.434 * 21.863 * 19.434 * 21.863 * 23.307 * 23.541 *
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.30
23.853 * 21.689 * 18.786 * 25.047 * 18.786 * 25.997 * 22.951 * 23.014 *
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.40
15.369 * 20.416 * 23.134 * 23.134 * 22.959 * 24.080 * 29.911 * 31.688 *
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.50
11.261 * 13.265 * 23.596 * 24.829 * 23.596 * 24.829 * 23.370 * 25.345 *
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.60
22.674 * 25.085 * 24.461 * 21.192 * 24.461 * 21.192 * 21.904 * 22.006 *
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.70
31.460 * 27.910 * 27.126 * 28.446 * 27.126 * 29.231 * 24.825 * 26.383 *
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.80
18.304 * 16.555 * 19.487 * 15.761 * 19.487 * 15.761 * 18.862 * 17.565 *
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.90
23.712 * 23.098 * 23.514 * 25.184 * 23.514 * 25.184 * 19.758 * 17.291 *
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

0.95
29.825 * 32.749 * 28.858 * 23.036 * 27.448 * 22.836 * 31.209 * 31.927 *
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Note: As the null hypothesis, no granger causality is assumed to exist. Most values suggest rejecting the null
hypothesis at the 1% level of significance. * represents level of significance at 1%. Source: Authors’ Estimation.

Figure 5 shows the relationships among GDP, non-renewable energy consumption,
and the United States’ ecological footprint. The findings point to a positive relationship
between GDP and ecological footprints from the use of non-renewable energy sources.
Ecological footprints, in other words, rise in tandem with both GDP and usage of non-
renewable energy. In contrast, green technology, financial innovation, renewable power,
and ecological footprint all have a negative relationship with GDP squared. This suggests
that a smaller ecological footprint follows a rise in the squares of GDP, financial technology,
and renewable energy. These findings point to the existence of competing linkages between
these factors and their impact on the United States’ ecological footprint. The results of the
Granger causality test suggest a positive and negative causal relationship between U.S.
gross domestic product and ecological footprint. The use of non-renewable energy sources
increases the ecological footprint in both directions. FinTech and renewable energy have a
unidirectional causal link with the highest quantiles of the ecological footprint.
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4.6. Robustness Check

We also employ a complementary regression estimator to check the robustness of
the QARDL test results. In this context, we use the standard ARDL method, and the
results are shown in Table 7. The effects of GDP, GDP2, FTEC, RNE, and NRE on EFP are
reflected similarly in the QARDL and ARDL estimations in this context. GDP has a positive
coefficient of 0.5894 in the short run; therefore, we may estimate that a rise of 1% in GDP
will lead to a rise of 0.5894% in EFP. A similar positive correlation of 0.4067 is found for
GDP in the long run; this means that an increase of 1% in GDP is expected to result in
a 0.4067% rise in EFP. GDP2 has negative short-run and long-run coefficients of −0.4219
and −0.3204, respectively. Based on these numbers, it appears that for every 1% growth
in GDP2, the EFP is destined to drop by −0.4219 and −0.3204 percentage points. Both the
short- and long-term coefficients for FTEC and RNE are negative, suggesting that rising levels
of these variables would diminish EFP, whereas rising levels of NRE would enhance it.

Table 7. ARDL test results (Robustness analysis).

Variables Short Run Long Run

GDP 0.5894 * 0.4067 *

GDP2 −0.4219 ** −0.3204 **

FTEC −0.3920 * −0.3197 *

RNE −0.3041 * −0.2178 *

NRE 0.2954 * 0.2102 *

ECT (−1) 0.1691 *

Constant 2.9611 *

Adj. R2 0.8621
*, and ** indicate significance at 1%, and 5% levels, respectively. Source: Authors Estimations.

5. Conclusions and Policy Recommendations
5.1. Conclusions

This study evaluates the effects of FinTech, renewable energy, and non-renewable
energy use on US Environmental Kuznets Curve (EKC) testing from 2005 Q1 to 2020 Q4.
The World Bank’s Global Findex, which shows quarterly financial technology growth in the
US, is used to create a proxy indicator of FinTech innovation. This study examines quantiles
and lagged outcomes using the Quantile Auto Regressive Distributed Lag (QARDL) ap-
proach [49]. This method provides a more complete understanding of FinTech, renewable
energy, non-renewable energy, and the ecological footprint than typical methods such as
OLS or quantile regression. Based on [54], the analysis examines causation within quantiles
to determine the causes and effects of GDP, FinTech, renewable energy, non-renewable
energy, and ecological footprint. The QARDL model confirms the expected negative link be-
tween the error correction parameter and the quantiles, suggesting a long-term relationship
between these variables and the US ecological footprint. FinTech and renewable energy
have a smaller long-term ecological footprint across quantiles. Economic growth and
non-renewable energy usage improve the ecological footprint from the lower to the upper
quantiles. Economic growth rates affect the environment differently over time. The data
show that greater energy usage over time improves the ecological footprint. Short-term
dynamics show that FinTech, renewables, and economic expansion have different impacts
on the ecological footprint. The QARDL approach experimentally tests the environmental
Kuznets curve hypothesis. The QARDL study supports the EKC hypothesis by showing
that economic growth increases the ecological footprint, while economic growth squared
decreases it. This conclusion supports the emerging evidence of an inverted U-shaped link
between economic growth and environmental degradation. The Wald test also revealed
that the long-term parameters show significant fluctuation between quantiles, suggesting
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that the null hypothesis of constant parameters across quantiles is rejected. The Granger
causality study in quantiles shows bidirectional causal linkages between economic growth,
FinTech, renewable energy, non-renewable energy, and the US ecological footprint.

More in-depth studies of the elements affecting environmental contamination proxies
are possible in the future. Among the technological and socioeconomic factors that could be
investigated are the effects of FinTech, demographic dynamics, green growth, and others.
These linkages can be better understood in their entirety if taken into account alongside
environmental proxies. Expanding the EKC argument, thoroughly analyzing influencing
factors, conducting nation and sector-wise evaluations, and examining the indirect impact
of FinTech and renewable energy on ecological footprints in the US are all examples of
how future research can add to the existing body of knowledge and tackle the gaps in
our current understanding. Insights gained from these lines of inquiry can improve our
knowledge of the interconnections among economic growth, technological advances in
management of resources, and ecological sustainability, and so guide better policy and
decision making.

5.2. Policy Recommendations

Several policy implications for long-term sustainability emerge from a detailed analy-
sis of the empirical results. Since environmental quality tends to deteriorate with increasing
income, it can be safely inferred that the United States’ current economic trajectory is unsus-
tainable. The use of fossil fuels for energy is a key contributor, as shown by observational
data. However, the ineffectiveness of policy levels in disseminating green FinTech and
renewable energy solutions demonstrates that the low penetration of green FinTech and
renewable energy solutions is having little to no effect on the ecological footprint. Simple
solutions include switching to green technology and renewable energy sources instead of
those that rely on fossil fuels, but this may not be feasible because it could slow economic
growth. Therefore, the solution can be created in a phase-by-phase approach at the policy
level, taking into account the various quantiles.

Starting from the lower-income quantiles, it is observed that the turning points of
the environmental Kuznets curve (EKC) are comparatively lower compared to the higher
quantiles. Since the presence of EKC with lower turning points may help mitigate the
negative externalities caused by the rising emphasis on economic growth, conducting
policy-oriented assessments at this level may prove beneficial. This can be accomplished
by assisting the use of green FinTech and renewable energy to attain its full potential
by increasing its adoption among consumers and industry. This can be accomplished
through public–private partnerships that aim to raise the residents’ level of environmental
awareness in order to achieve the desired results [65,66]. While doing so, the government
is in a position to offer assistance in the form of FinTech and solutions for renewable energy
to the people that are being subsidized by these facilities for a fixed period of time. It is
possible that the acceptance of FinTech and renewable energy solutions among households
may progressively increase as a result of this decision [67]. After these policy-level changes
are made, the United States will become less reliant on fossil fuels and air pollution will go
down. This will help the country catch up with SDG 9, SDG 13, SDG 14, and SDG 15.

The effects of exceeding the ecological footprint threshold and ways to lower it can be
explained. This discussion may illuminate the effects of extensive deployment on industry
dynamics using new economic geography. Sustainable practices, resource efficiency, policy
interventions and regulatory frameworks that reward environmentally friendly actions,
and raising individual and corporate awareness of environmental repercussions of decision
are needed to reduce the ecological footprint [68,69]. New economic geography can also
help firms adapt to greener practices [70]. Thinking about the consequences of crossing the
ecological footprint threshold and applying new economic geography can help us create a
more sustainable and environmentally conscious future.

Promoting environmentally conscious behaviors and facilitating the transition to
cleaner energy sources, respectively, are two ways in which FinTech and renewable energy



Sustainability 2023, 15, 10663 19 of 21

can make a substantial contribution to environmental improvement. FinTech platforms can
use carbon neutrality mechanisms in digital payment systems, sophisticated analytics of
data for sustainability, creative fundraising models to support renewable energy develop-
ment, streamlined energy trading, specialized loans, and financing possibilities to promote
enhancements to energy efficiency, and bridged access to financial services. Fostering a
more environmentally conscious society and accelerating the transition to clean energy
sources can be accomplished through the integration of the cutting-edge capabilities of
FinTech with the sustainable and environmentally friendly nature of renewable energy.
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