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Abstract: The carbon market and the green bond market are important institutions for reducing green-
house gas emissions and achieving economic low-carbon transformation. Accurately understanding
the characteristics and correlations of the two markets is of great significance for promoting the
achievement of the “dual carbon” goal. From the perspective of different time scales and market con-
ditions, this study selected the maximal overlap discrete wavelet transform (MODWT) to decompose
the price time series data of China’s carbon market and green bond market. The quantile Granger
causality test was used to calculate the causal relationship between the two markets at different
quantiles, and the association between the two markets was estimated based on quantile-to-quantile
regression (QQR). The results show that, regardless of the time scale and market conditions, the
Chinese carbon market is always the Granger cause of the green bond market. When the green bond
market is in a slump state (i.e., in a “bear” market), it will have a certain negative impact on the
carbon market in the short term, but in the medium and long term, the impact of the green bond
market on the carbon market is positive. In addition, as the time scale increases, the synergistic
effect between the green bond market and the carbon market becomes more and more significant. At
medium- to long-term time scales, extreme market conditions can easily cause extreme shocks from
the green bond market to the carbon market.

Keywords: carbon market; green bond market; quantile regression; wavelet analysis

1. Introduction

In China’s 14th Five-Year Plan, it is pointed out that “a green development system
should be constructed, and green finance should be vigorously developed; a modern en-
vironmental governance system should be improved, and carbon emission trading in the
market should be promoted.” The green bond market and the carbon market both belong
to the green financial system, which consists of effective financial instruments proposed
by China for actively addressing climate change and achieving green and low-carbon
development. Palao pointed out that the carbon market seeks to promote carbon reduction
and energy structure transformation at the minimum cost through the optimal allocation
of carbon reduction resources guided and incentivized by price signals [1]. In the green
bond market, by virtue of its long-term liquidity, the objective is to promote the internal-
ization of environmental externalities while modifying risk perception, thereby increasing
environmentally friendly investments and achieving carbon reduction goals, while reduc-
ing financing costs for investors [2]. Both markets aim to reduce carbon emissions and
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achieve sustainable development through different approaches and are often mentioned
together in arrangements related to low-carbon development policies [3,4]. Therefore, an
in-depth study of the linkage between the carbon market and the green bond market can
not only maximize the carbon reduction effectiveness of both markets but also contribute
to achieving economic sustainability.

Although the development of China’s green bond market started later than that of
countries such as those in the European Union, it has grown rapidly since its establishment.
According to the “China Green Bond Market Report (2021),” the Chinese green bond
market rebounded strongly in 2021, and the total issuance amount of labeled green bonds
in China’s domestic and overseas markets increased by 140% compared with 2016, reaching
USD 109.5 billion; this has led to it becoming the second-largest green bond market globally.
A review of past research on the green bond market reveals that the majority of studies
focus on analyzing the relationships and connections between the green bond market
and traditional financial markets, as well as assessing risk propagation. Reboredo’s study
explored the connections between the green bond market and the energy market, stock
market, and fixed-income market. According to the findings, the green bond market
exhibits robust integration with the fixed-income market while displaying relatively weaker
connections with the energy and stock markets [5]. Pham utilized quantile regression
analysis to examine the relationship between the green bond market and the stock market.
The findings indicated that during extreme market conditions, the two markets exhibited
a closer association, with spillover effects being most pronounced in the short run and
gradually diminishing over extended periods of time [6]. Due to the belated onset of China’s
green bond market, there has been insufficient exploration into how it interrelates with
other financial markets associated with environmentally friendly companies. Moreover,
little consideration has been given to the nexus between the green bond market and the
carbon market.

The “carbon market,” also referred to as the “carbon trading market,” was created as a
means of curtailing carbon dioxide emissions and has emerged as a significant impetus
for fostering sustainable development [7]. It has also become a significant area for global
investment, risk mitigation, and financial planning [8]. Research on the carbon market
mainly focuses on its spillover effects with regard to energy markets and its correlation
with financial markets. Firstly, Mansanet-Bataller and Soriano found evidence of bidirec-
tional wave propagation between the carbon market and the oil market [9]. Chen’s study
identified a positive correlation and the presence of wave spillover effects between the
carbon market and energy markets, specifically oil, natural gas, and coal [10]. However,
some scholars have presented contradictory conclusions. For example, Reboredo utilized a
multivariate conditional autoregressive model to assess the correlation between the carbon
market and the oil market in their study. The findings revealed that there were no notewor-
thy spillover effects between the two markets [11]. Secondly, research on the correlation
between the carbon market and financial markets has highlighted the significant role of
financial institutions and investors in driving the progress and expansion of the carbon
market [12].

This paper has the following marginal contributions to existing research: Firstly, we
explored the relationship between China’s carbon market and the green bond market for the
first time with the help of MODWT wavelet decomposition, providing empirical evidence
and new research perspectives for future scholars to explore the relationship between
the two markets. Secondly, we decompose the data into multiple time periods from a
short-term, medium-term, and long-term perspective to reduce the impact of special event
shocks. By combining the MODWT method with the quantile Glenmorangie distillery
causality test and QQR regression, the causality and correlation characteristics between
different time scales are obtained, which can provide a good reference for future investment
optimization decisions and government policy making.

The research idea of this paper is as follows: Section 2 presents the data and research
methods, Section 3 presents the results analysis, Section 4 reports the analysis of maximum
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overlapping discrete wavelet transform, and Section 5 reports the quantile Granger causality
inference. Section 6 reports the quantile-to-quantile regression results. Section 7 reports the
robustness test. Section 8 is the conclusion and suggestions. Lastly, Section 9 is limitations
and future research.

2. Data and Research Methods
2.1. Variable Selection and Data Source
2.1.1. Green Bond Market (GBM)

Based on the previous findings, this paper employs the logarithmic returns of the
China Green Bond Index as a proxy variable to represent the green bond market. The China
Green Bond Index, denominated in Chinese renminbi, encompasses green bonds listed on
the interbank bond market, as well as the Shanghai and Shenzhen stock exchanges, with 31
December 2009 serving as the base period. The selection standards for the China Green
Bond Index are strict, the index construction is rigorous, and the time span is long. As a
result, it can systematically and continuously reflect the comprehensive development and
changes in the green bond market.

2.1.2. Carbon Market (CM)

On 16 July 2021, China established a nationwide carbon trading market. However,
due to the short statistical period and limited data, we focus mainly on the operation of
the carbon market in the eight pilot cities (Chongqing, Shenzhen, Hubei, Beijing, Shanghai,
Tianjin, Guangdong, and Fujian). The Shenzhen carbon market was the first carbon emis-
sion trading pilot city established in China, with the longest trading period, the highest
trading volume, and the most active trading among the eight pilots. Liu found that the
Shenzhen carbon market is a leading example in terms of market maturity, market size,
market structure, and market efficiency [13,14], and has the highest Jaccard similarity
coefficient [15]. Therefore, considering factors such as activity, representativeness, and
maturity, this paper selects the Shenzhen carbon market as the focus of research. As the
Shenzhen carbon market launches different carbon trading varieties, such as SZA-2013
and SZA-2014, this paper uses the proportion of daily turnover in the Shenzhen carbon
emission trading market to weight the closing price, then takes the average value of the
weighted carbon price on that day, and finally takes the logarithmic returns, which are
used as a proxy variable for the carbon market.

2.1.3. Data Source

Although China developed a green finance system in 2016, the initial green bond
was issued on 12 August 2010, by the Agricultural Development Bank of China, based on
data provided by Wind Information. The issuance of green bonds experienced a “vacuum
period” from 2011 to 2012 but has since shown a steady growth trend starting from 2013.
In addition, the Shenzhen Carbon Trading Market was established in June 2013. Therefore,
given the availability of relevant data, the two variables provided were based on daily
frequency time series data from 9 August 2013 to 29 June 2022 in China. To minimize
estimation bias and the effects of heteroscedasticity, both the Green Bond Index and Carbon
Price Index were standardized using the logarithmic return formula.

ri =
100× lnpi

lnpi−1

where i represents the ith day.
The China Green Bond Index data were obtained from the Wind database, while data

pertaining to the carbon emission trading market were sourced from the CSMAR database.



Sustainability 2023, 15, 10634 4 of 17

2.2. Research Methods
2.2.1. Maximum Overlapping Discrete Wavelet Transform

Following Das’s research, the sample data were decomposed, and the basic sequence
for analysis was generated using wavelet decomposition [16]. This retains pertinent in-
formation correlated to specific time ranges and positions within the time series data.
Simultaneously, wavelet analysis is capable of extracting stabilized trends at various fre-
quencies, mitigating interference from short-term sudden events and noise, and adapting
the research frequency to accommodate specific research requirements. The wavelet decom-
position method essentially creates two specialized functions: father wavelets and mother
wavelets. During the designated research timeframe, the parent wavelet primarily captures
the low-frequency and stable segment of the sequence, integrating to 1. On the other hand,
the mother wavelet primarily captures the high-frequency and distinct components of the
sequence, integrating to 0. Their expressions are as follows:

φjk = −2−
j
2 φ

(
t− 2jk

2j

)
,
∫

φ(t)dt = 1 (1)

ψjk = −2−
j
2 ψ

(
t− 2jk

2j

)
,
∫

ψ(t)dt = 0 (2)

where j = 1, . . . . . . , j, k = 1, . . . . . . , k, respectively, represent scaling parameters and wavelet
displacement parameters.

The expressions of the smoothing coefficient of the parent wavelet and the detail
coefficient of the parent wavelet are as follows:

SJ,K =
∫

f (t)φj,k (3)

dJ,K =
∫

f (t)ψj,k (4)

The maximal scale expression of the former is 2j. The latter refers to the detail co-
efficients obtained from the mother function for 1...j. The mathematical expression and
simplified form of f (t) are as follows:

f (t) = ∑ k SJ,kφJ,k(t) + ∑ k dJ,kψJ,k(t) . . . + ∑ k dj,kψj,k(t) . . . + ∑ k d1,kψ1,k(t) (5)

f (t) = SJ + DJ + DJ−1 + . . . + Dj + . . . + D1 (6)

The definition of orthogonal components SJ and DJ in Equation (6) is as follows:

Sj = ∑ k Sj,kφj,k(t) (7)

Dj = ∑ k dj,kψj,k(t), j = 1, 2, . . . , J (8)

The decomposition representation of the multilevel and multiscale analysis of f (t)
is calculated by

{
SJ , DJ−1,...,D1

}
. Dj computes the wavelet details for the j level, which is

related to changes in the sequence at the λj level. Sj is defined as the accumulated total of
changes at each level, and as j increases continuously, Sj becomes smoother and smoother.

Using the maximal overlap discrete wavelet transform (MODWT) to estimate scale
coefficients and wavelet coefficients has the following advantages: First, MODWT is not
limited by the sample size (2j). Second, the efficiency of filters utilizing discrete wavelet
transform is inferior compared to that of MODWT. Third, while the discrete wavelet
transform averages weighted differences across a greater number of observed sets, MODWT
utilizes a moving difference and average operator, ensuring accurate observations at each
wavelet decomposition scale.
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According to Mishra’s research [17], the choice of the length 8 Daubechies Least
Asymmetric (LA) filter is mainly due to the LA8 filter being smoother than the HAAR
wavelet filter and providing better cross-scale non-correlation.

2.2.2. Quantile Autoregression (QAR) Unit Root Test

To test the stationarity of the sequence, we employed the quantile autoregression
(QAR) unit root test proposed by Koenker and Xiao [18] and included covariates as well as
a linear time trend in the model [19].

Assuming that Yt has strict stationarity with respect to the information set
IY
t = (Yt−1, . . . .., Yt−S)

’ ∈ RS, which includes all past information, where A’ is the trans-
pose matrix of A, let FY(·

∣∣IY
t ) be the conditional distribution function of Yt under the given

IY
t . We performed the QAR unit root test:

QY
τ

(
Yt

∣∣∣IY
t

)
= µ1(τ) + µ2(τ)t + α(τ)Yt−1 + ∑p

j=1 αj(τ)∆Yt−j + F−1
u (τ) (9)

in which QY
τ

(
Yt
∣∣IY

t
)

is the τ-quantile of FY(·
∣∣IY

t ) , µ1(τ) is the drift term, t is the linear trend,
α(τ) is the persistence parameter, F−1

u is the inverse conditional distribution of errors, and
the distribution for each quantile τεΓ is [0, 1]. By utilizing the above model, we detect
the persistence parameter at each quantile and test the null hypothesis α(τ) = 1; for each
quantile τεΓ, we utilized the t statistic proposed by Koenker and Galvao.

2.2.3. Quantile Granger Causality Test

We adopt the quantile Granger causality test method to examine the causal relationship
between the green bond market and the carbon market at different quantiles. Assuming
the existence of two sequences Xt and Yt, according to the Granger causality test, if the past
Xt cannot predict Yt, it will not lead to Yt, and time t can be set according to the research

purpose. Suppose there is an explanatory vector It ≡ (IY
t , IX

t )
′
∈ Rd, d = s + q, where IX

t is
the past information set of Xt, IX

t := (Xt−1, . . . ., Xt−q)
′
∈ Rq. The null hypothesis of the

Granger non-causality test from Xt to Yt is

HX9Y
0 : FY

(
y
∣∣∣IY

t , IX
t

)
= FY

(
y
∣∣∣IY

t

)
.∀y ∈ R. (10)

where FY(y|.) is the conditional distribution given
(

IY
t , IX

t
)
. If Xt is not Granger-causal to

Yt on mean, then it satisfies

E
(

Yt

∣∣∣IY
t , IX

t

)
= E

(
Y
∣∣∣IY

t

)
, a.s. (11)

where E
(
Yt
∣∣IY

t , IX
t
)

and E
(
Y
∣∣IY

t
)

are the mean of
(

IY
t , IX

t
)

and
(
Y
∣∣IY

t
)
, respectively. How-

ever, Granger causality tests based on means cannot reflect the relationship at different
quantiles and are susceptible to various sources of uncertainty. Therefore, Jeong proposed
quantile Granger causality tests [20]. Assuming that QY,X

T
(
.
∣∣IY

t , IX
t
)

is the τ-quantile of
FY
(
.
∣∣IY

t , IX
t
)
, the value of QY

τ

(
.
∣∣IY

t
)

can be obtained. The null hypothesis of the Granger
non-causality test from Xt to Yt is rewritten as (where Γ is a compact set and satisfies
Γ ∈ [0, 1]):

HQC:X9Y
0 : QY,X

τ

(
Yt

∣∣∣IY
t , IX

t

)
= QY

τ

(
Yt

∣∣∣IY
t

)
, a.s.∀τ ∈ Γ (12)

The conditional τ-quantile of Yt satisfies the following conditions:

Pr
{

Yt ≤ QY
τ

(
Yt

∣∣∣IY
t

)∣∣∣IY
t

}
:= τ, a.s.∀τ ∈ Γ (13)

Pr
{

Yt ≤ QY
τ

(
Yt

∣∣∣IY
t , IX

t

)∣∣∣IY
t , IX

t

}
:= τ, a.s.∀τ ∈ Γ (14)
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For a given independent variable It, Pr
{

Yt ≤ QY
τ

(
Yt
∣∣IY

t
)∣∣IY

t
}
= E

{
1
[
Yt ≤ QY

τ

(
Yt
∣∣IY

t
)]∣∣It

}
,

1[Yt ≤ y] is the indicator function of Yt ≤ y. The null hypothesis in the Granger non-
causality test of Formula (12) can be expressed as:

E
{

1
[
Yt ≤ QY,X

τ

(
Yt

∣∣∣IY
t , IX

t

)]∣∣∣IY
t , IX

t

}
= E

{
1
[
Yt ≤ QY

τ

(
Yt

∣∣∣IY
t

)]∣∣∣It

}
, a.s.∀τ ∈ Γ. (15)

By definition, the left-hand side of Formula (15) is equal to FY
(
.
∣∣IY

t , IX
t
)
. Accord-

ing to Troster’s research [21], the τ-quantile of FY(.|It) is modeled using a parametric
model. Assuming that Qτ(.|It) can be determined by a parameter model which is based on
M = {m(.|θ(τ))|θ(.) : τ → θ(.) ∈ Θ ⊂ Rp}, then under the null hypothesis of Formula (15),
the conditional quantile Qτ

(
.
∣∣IY

t
)

of τ can be determined by a parameter quantile model
m
(

IY
t , θ0(τ)

)
that uses only a limited information set. Therefore, the non-Granger causality

of Formula (15) can be rewritten in the following form:

HX9Y
0 = E

{
1
[
Yt ≤ m

(
IY
t , θ0(τ)

)]∣∣∣IY
t , IX

t

}
= τ, a.s.∀τ ∈ Γ. (16)

Here, m
(

IY
t , θ0(τ)

)
is the true conditional quantile of QY

τ

(
.
∣∣IY

t
)

for any τ ∈ Γ. Based
on the unconditional moment restriction sequence, the original hypothesis (Formula (16))
is reconstructed as follows:

E
{[

1
(

Yt −m
(

IY
t , θ0(τ)

)
≤ 0

)
− τ

]
exp

(
iω’ It

)}
= 0, ∀τ ∈ Γ, (17)

Here, exp(iω′ It) := exp
[
i
(

ω1(Yt−1, Zt−1)
′ + . . . + ωr(Yt−r, Zt−r)

′
)]

is a weighted
function for all ω ∈ Rr, and r ≤ d.i is an imaginary root. The test statistic is simulated by
the sample of E

{[
1
(
Yt −m

(
IY
t , θ0(τ)

)
≤ 0

)
− τ

]
exp(iω′ It)

}
:

vT(ω, τ) :=
1√
T

∑T
t=1

{
1
[
Yt −m

(
IY
t , θT(τ)

)
≤ 0

]
− τ

}
exp

(
iω’ It

)
(18)

Here, θT(τ) is a consistent estimator of θ0(τ), and then we apply the T-test statistic
proposed by Troster to conduct the test [21]:

ST :=
∫
T

∫
W |vT(ω, τ)|2dFω(ω)dFτ(τ) (19)

In the above equation, Fω(·) is the conditional distribution function of a variable
standard normal random vector, Fτ(·) follows a uniform discrete distribution on a Γ-
grid of n equidistant points, Γn =

{
τj
}n

j=1, and the weight vector ω ∈ Rd satisfies a
standard normal distribution. The test statistic of Formula (19) can be estimated us-
ing its sample simulation. Assuming that ψ is a matrix of T × n with elements of
ψi,j = Ψτj

(
Yi −m

(
IY
i , θT

(
τj
)))

, Ψτj(·) is a function of Ψτj(ε) := 1(ε ≤ 0)− τj, then the test
statistic is calculated using the following formula:

ST =
1

Tn ∑n
j=1

∣∣∣ψ’
·jWψ·j

∣∣∣ (20)

In Formula (20), W is a T × T matrix with elements of wt,s = exp
[
−0.5(It − Is)

2
]
;

ψ · j′ is the j-th column of ψ. When ST exceeds the critical value, we can reject the null
hypothesis of non-Granger causality and consider that the sequence Xt can cause Yt or Yt
can cause Xt. The calculation of the critical values for the test statistic ST mainly draws
on Troster’s research [20]. Although applying the quantile Granger causality test cannot
provide strong causal relationships between two sequences, it can clearly show the Granger
causality relationship at different quantiles. This can help verify that there is a certain
causal relationship between the two and whether this relationship is a one-way or two-way
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causal relationship, providing more scientific empirical evidence for subsequent quantile
regression results.

2.2.4. Quantile-to-Quantile Regression

To further distinguish the interaction between the two markets, we conducted addi-
tional investigation using the quantile regression on quantiles (QQR), as proposed by Sim
and Zhou [22]. The utilization of the QQR method provides several advantages: Firstly,
it is a relatively robust method when dealing with outliers and non-normal distributions
within the data. Secondly, being a non-parametric local linear regression approach, QQR
has the ability to reflect conditional distribution and unveil potential structural changes.
Thirdly, compared with OLS regression and traditional quantile regression, QQR can
more comprehensively analyze specific marginal effects between variables at different
quantiles [23,24].

The first step of conducting QQR is to set up the regression equation. We define the
non-parametric regression equation of the carbon market (CMt) as a function of the green
bond market (GBMt).

CMt = βθ(GBMt) + εθ
t (21)

In this equation, CMt and GBMt represent the development levels of the carbon
market and green bond market, respectively, at time t. θ represents the θ-th quantile of the
development level of the green bond market. βθ(·) represents the impact of GBMt on CMt,
which is the focus of future QQR tests.

To examine the impact of GBMt’s τ-quantile on CMt’s θ-quantile, expanding around
βθ(·) using the first-order Taylor series, we obtain

βθ(GBMt) ≈ βθ(GBMτ) +
.
β

θ
(GBMτ)(GBMt − GBMτ) ≡ β0(θ, τ) + β1(θ, τ)(GBMt − GBMτ) (22)

By combining Equations (21) and (22), we obtain

CMt = β0(θ, τ) + β1(θ, τ)(GBMt − GBMτ) + εθ
t (23)

As β0 and β1 are related to θ and τ, the relationship between GBM and CM at specific
quantiles can be well captured. Then, by considering Formula (23) below, we can solve for:

(
β̂0(θ, τ)
β̂1(θ, τ)

)
= arg min

b0,b1,α◦
∑T

t=1 ρθ [CMt − β0 − β1(GBMt − GBMτ)]K
(

F(GBMt)− τ

h

)
(24)

where ρθ(y) = y
(

θ − I{y<0}

)
, IA are functions of set A, K(·) is the Gaussian kernel, h is

the bandwidth parameter of the kernel method, which is set to 0.05 in this paper, and
F(GBMt−1) =

1
T ∑T

k=1 I(GBMk < GBMt−1) is the empirical distribution function.

3. Results Analysis
3.1. Descriptive Statistics

Table 1 presents descriptive statistical results. Specifically, the 25th and 75th percentiles
of CM are −0.066 and 0.068, respectively. The 25th and 75th percentiles of GBM are −0.008,
−0.0001, and 0.0006, respectively. Judging from the percentile characteristics of CM and
GBM, both exhibit an upward trend as the percentiles rise, indicating a correlation between
the two. The descriptive statistical results in Table 1 indicate that the minimum and
maximum values of CM are −1.891 and 1.964, respectively, with a standard deviation of
0.204. On the other hand, the minimum and maximum values of GBM are −0.008 and
0.193, respectively, with a standard deviation of 0.001. Notably, the difference between
the maximum and minimum values of CM is greater than that of GBM. Additionally,
the standard deviation of CM is larger than that of GBM. The results indicate that the
fluctuations in CM are more distinct than those observed in GBM. This could be due to the
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difference in market characteristics: GBM belongs to the fixed-income market, while the
carbon market is characterized by frequent trading.

Table 1. Descriptive statistics and JB test.

CM GBM

Obs 1808 1808
Mean 0.0004 0.0003

Minimum −1.891 −0.008
25% quantile −0.066 −0.0001
75% quantile 0.068 0.0006

Maximum 1.964 0.193
Std.Dev 0.204 0.001

Skewness 0.339 2.411
Kurtosis 27.954 52.174

Jarque–Bera test 46,943.147 *** 183,916.170 ***
Note: Bold font in the text indicates data with special characteristics, which are retained to four decimal places for
distinction. The significance levels are denoted by ***, which correspond to 10%, 5%, and 1%, respectively.

According to the time series graphs of the logarithmic returns of CM and GBM in
Figure 1, the temporal changes in the yield rates of CM and GBM both exhibit varying
degrees of volatility clustering characteristics, with their fluctuations changing over time,
and there exist large and small volatility clustering areas for both. In the first half of 2020,
both CM and GBM showed significant fluctuations, indicating that they were impacted by
the COVID-19 pandemic and showing the rationality of the data selection. The results in
Table 1 indicate that the Jarque–Bera test for both CM and GBM rejects the null hypothesis
H0: the sample data follow a normal distribution at the 1% significance level. This suggests
that the yield rate sequences of CM and GBM do not follow a normal distribution, high-
lighting the need to use the QQR method subsequently. The kurtosis values of the yield
rate sequences of CM and GBM are 27.954 and 52.174, respectively, both exceeding 3. This
suggests that the distribution shape of the total sample data is steeper than that of a normal
distribution, indicating the presence of peaked features. Notably, GBM demonstrates a
more pronounced peaked shape than that of CM. The skewness values of CM and GBM
are 0.339 and 2.411, respectively, both greater than 0, indicating that the distribution shape
of the total sample data is right-skewed compared to a normal distribution, and the right-
skewness of GBM is more pronounced than that of CM. From the comparison of the kernel
density estimate graphs and normal distribution graphs in Figure 2, it is evident that both
CM and GBM demonstrate heavy-tailed features. In summary, the total sample data of
the two markets demonstrate non-normal distribution features of volatility clustering and
“peaked and heavy-tailed” characteristics.
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Figure 2. Nuclear density estimates for carbon markets and green bond markets.

3.2. Quantile Autoregression (QAR) Unit Root Test

The QAR unit root test was employed to establish the stationary characteristics of
both carbon and green bond market sequences. Table 2 demonstrates the persistence
coefficients, T-values, and critical values derived from the QAR unit root test. In addition,
we employed the quantile unit root test to investigate the persistence parameters and
T-values of 19 quantiles ranging from 0.05 to 0.95. Specifically, the null hypothesis H0 of
the QAR unit root test is that the sample sequence possesses a unit root, with α(τ) = 1 in
Formula (9). To address the issue of serial correlation, we employed 10 lagged endogenous
variables. The QAR test results show that the T-values of the conditional distribution
quantiles are all smaller than the boundary value (CV), thereby rejecting the null hypothesis
that the sequence has no unit roots. This confirms that the sample sequence is stationary,
which can avoid the occurrence of spurious regression.

Table 2. Quantile unit root test.

GBM CM
Quantile α(τ) T-Value CV α(τ) T-Value CV

0.05 0.297 −7.093 −3.279 −0.367 −14.301 −2.310
0.1 0.371 −15.273 −3.317 −0.351 −31.837 −2.553

0.15 0.368 −22.250 −3.355 −0.307 −49.3862 −2.468
0.20 0.380 −30.440 −3.401 −0.275 −60.670 −2.638
0.25 0.375 −34.513 −3.337 −0.265 −66.040 −2.732
0.30 0.370 −39.352 −3.327 −0.258 −72.014 −2.832
0.35 0.374 −42.826 −3.269 −0.250 −75.923 −2.847
0.40 0.382 −43.830 −3.272 −0.262 −80.462 −2.927
0.45 0.382 −46.104 −3.237 −0.267 −85.669 −2.896
0.50 0.386 −46.3145 −3.287 −0.252 −86.437 −2.852
0.55 0.402 −45.566 −3.238 −0.255 −88.133 −2.801
0.60 0.408 −42.313 −3.193 −0.271 −93.759 −2.760
0.65 0.420 −38.819 −3.116 −0.265 −84.966 −2.757
0.70 0.435 −32.769 −3.074 −0.262 −80.750 −2.582
0.75 0.434 −29.072 −3.046 −0.250 −71.484 −2.510
0.80 0.409 −26.190 −2.971 −0.279 −60.926 −2.310
0.85 0.406 −21.589 −2.922 −0.309 −44.966 −2.310
0.90 0.431 −15.227 −2.755 −0.333 −29.725 −2.310
0.95 0.382 −7.128 −2.486 −0.424 −16.049 −2.510

Note: CV represents a critical value of 5% significance.

4. Analysis of Maximum Overlapping Discrete Wavelet Transform

In order to gain a better understanding of the relationship between the CM and GBM
over different time periods, we employed the MODWT technique to decompose the yield
rate sequences of CM and GBM into six frequencies. The six wavelet signals, denoted as D1,
D2, . . . , D6, correspond to time periods of 2–4 days, 4–8 days, . . . , 64–128 days, respectively.



Sustainability 2023, 15, 10634 10 of 17

Additionally, it should be noted that D1 corresponds to the short-term scale; D4 pertains
to the medium-term scale, spanning 16–32 trading days (approximately 3–6 weeks); and
D6 relates to the long-term scale, covering 64–128 trading days (equivalent to 3–6 months).
Through this method, we can better understand the interrelationships between the two
markets across different time scales.

Figure 3 portrays the signal that emerged from processing the CM and GBM sequence
data using the MODWT technique. According to the CM-D1 to CM-D6 and GBM-D1 to
GBM-D6 shown in Figure 3, there is no obvious synergy or regularity between CM and
GBM. Nevertheless, with increasing time scale, the noise level of both methods decreases
gradually, resulting in smoother signal curves from short-term to long-term periods. Thus,
MODWT was utilized to effectively capture the unique data features during various time
periods, minimizing estimation errors caused by anomalies and ultimately uncovering the
dynamic correlation between the CM and GBM.
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5. Quantile Granger Causality Inference

In order to provide additional clarity regarding the Granger causal relationship be-
tween the CM and GBM, we performed a quantile Granger causality test on the MODWT-
decomposed sequence. Figure 4 presents the non-parametric Granger average causal
relationships at 19 quantiles (ranging from 0.05 to 0.95) within short-term (D1), medium-
term (D4), and long-term (D6) time scales—with the gray line indicating the Granger causal
relationship at a 5% significance level. As posited by Mensi and Selmi, the position of the
quantiles for CM and GBM represents their market performance [25,26], broadly classified
into bear markets (q = 0.05 to 0.45), normal markets (q = 0.50), and bull markets (q = 0.55
to 0.95).

Firstly, the Granger causality test of the GBM on the CM (GBMCM)—as depicted in
Figure 4a–c—highlights a statistically significant Granger causal relationship between the
two markets in the short-term when the quantile range falls between 0.25 and 0.35. For
medium- to long-term time scales, a non-smooth inverted U-shaped relationship is detected
between the GBM and the CM, indicating that the Granger causal relationship between the
two markets is most prominent at the middle quantile position (q = 0.50). Essentially, this
implies that under typical market conditions, the GBM has the most substantial impact on
the CM.

Furthermore, comparing Figure 4a–c, it is apparent that an increase in time scale
expands the quantile range of the GBM with a significant Granger causal relationship on
the CM. This suggests that the influence of the GBM on the CM becomes increasingly
evident as time goes on. Specifically, in the short term, a Granger causal relationship
between the GBM and the CM is observed roughly within the 0.25–0.35 quantile range. In
the medium term, this range extends to 0.30–0.70 quantile points, and in the long term, it
stretches even further to the 0.15–0.75 quantile range. The findings indicate that although
the Granger causal relationship between the GBM and the CM is narrower in range during
the short term, it expands gradually over time. Additionally, even under adverse market
conditions such as bear and bull markets, the green bond market still exerts a considerable
influence on the carbon market.

The results depicted in (d), (e), and (f) of Figure 4 demonstrate that, in the Granger
causality test of the CM on the GBM, the threshold of the gray line at the 5% significance
level was not surpassed. In simpler terms, the carbon market is unable to effectively
forecast the developmental trend of the GBM, irrespective of whether it pertains to the
short term, medium term, or long term. These findings demonstrating that green bonds not
only deepen the financial market but also contribute to the healthy growth of the carbon
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market, which is consistent with the study of Yves Rannou (2021) [27]. Consequently, due
to the lack of a significant Granger causality relationship between the CM and the GBM,
we have plans to undertake a comprehensive investigation on the impact of the GBM on
the CM in the future.
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6. Quantile-to-Quantile Regression Results

To comprehensively and systematically comprehend the true impact of the GBM on
the CM, this research utilizes the QQR method to investigate the dynamic relationship
between the two at three distinct time frames, namely, short term, medium term, and long
term. The outcomes are illustrated in (a), (b), and (c) of Figure 5. The main analysis in
this study is β1(θ, τ), which represents the effect of the θth quantile of the GBM on the τth
quantile of the CM.
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Looking first at the results from the short-term time scale in Figure 5a, β1(θ, τ) varies
with changes in θ, while the effect of the CM quantile τ is relatively small. This implies that
the GBM plays a dominant role in the relationship between the CM and the GBM. When
the GBM is at a lower quantile (θ = 0.05 to θ = 0.4), when it is in a “bear market,” it exhibits
a strong negative effect on the carbon market. As θ increases, the effect of the GBM on the
CM experiences fluctuation in the range of θ = 0.4 to θ = 0.8, with alternating positive and
negative effects. Although the favorable impact of the GBM on the CM emerges gradually,
it is not consistent. The strongest positive effect of the GBM on the CM is observed when
its quantile range falls within 0.85–0.95. Notably, when the GBM is in a “bull market,”
this effect is further amplified. Nonetheless, the impacts are somewhat limited. Moreover,
when these outcomes are integrated with the Granger causality test outcomes at varying
quantiles, it is evident that a statistically significant Granger causality relationship between
the CM and the GBM exists at the 0.25–0.30 quantile point within the short-term time frame.
Hence, during periods of low activity within the GBM in the short term, it significantly
impedes the growth of the CM.

Next, looking at the results of the medium-term time scale in Figure 5b, throughout
the quantiles (0.05–0.95), the GBM has a relatively stable and positive dominant effect on
the CM (β1(θ, τ) fluctuates between 1.156 and 8.384), and this effect exhibits a U-shaped
relationship as θ increases. In the medium term, when the GBM increases by one unit, the
corresponding increase in the CM fluctuates between 1.156 and 8.384. It is worth noting
that when the GBM is at a lower quantile (θ = 0.05), it will have the strongest positive
effect on the CM, with β1(θ, τ) = 8.384; under this highly optimistic market condition, the
result is completely opposite to that under the short-term market condition. As θ gradually
increases, when the GBM stabilizes slowly from a sluggish state, after a small peak appears
at θ = 0.25, the positive effect of the GBM on the carbon market gradually decreases,
reaching a low point when θ = 0.55; at this point β1(θ, τ) = 1.666. With further increase
in θ, after a trough appears at θ = 0.90, β1(θ, τ) reaches another high point at θ = 0.95; at
this point β1(θ, τ) = 7.257. According to the Granger causality test results of the quantiles,
the causal relationship between the GBM and the CM is evident at the 0.30–0.70 quantile
points. Therefore, in the medium term, the green bond market has a moderate and positive
effect on the CM.

Finally, the long-term-scale results in Figure 5c indicate that the GBM still plays a
dominant role. A typical U-shaped relationship is observed between the impact of the GBM
on the CM across all quantiles, with effect coefficients ranging from 0.370 to 22.227; for every
one-unit increase in the GBM, the CM increases by 0.370 to 22.227 units. When θ = 0.1, the
effect of the GBM on the CM is β1(θ, τ) = 15.969. When θ = 0.55, with β1(θ, τ) = 0.370, the
effect reaches its minimum value. With the further increase of θ, the effect of the GBM on
the CM strengthens and reaches its peak at θ = 0.95 with β1(θ, τ) = 21.227. In the long run,
the positive effect of the GBM on the CM stabilizes gradually.

The outcomes indicate that the GBM has a dominant role, irrespective of the considered
time horizon. Furthermore, the influence of the GBM on the CM changes from being
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“restrictive” to “stimulative,” whereby in the short term, when the GBM is lackluster (in the
“bear market”), it curbs the growth of the CM [26]. Nevertheless, in the medium and long
term, the influence of the GBM on the CM is reasonably favorable for different quantiles.
Lastly, in the medium and long term, extreme market conditions in the GBM can cause
severe shockwaves. As the quantile θ increases, the impact of the GBM on the CM follows
a U-shaped pattern. This U-shaped relationship becomes more prominent with an increase
in the time horizon, and this result has also been confirmed by scholars [27–29].

7. Robustness Test
7.1. OLS Regression

The OLS regression results are illustrated in Table 3, indicating that during the short-
term time frame, the coefficient of GBM on CM is −3.193, which is nonsignificant and
suggests that the GBM has a slightly negative impact on the CM in the short term. However,
in the medium- and long-term time horizons, the coefficients of GBM are 3.112 and 6.665,
respectively, and both pass the 1% significance level test, thereby demonstrating that
the GBM has a considerable positive impact on the CM in the medium and long term.
These findings not only affirm the robustness of the earlier conclusions but also highlight
the inability of the OLS model to capture the asymmetric effects under diverse market
conditions and time horizons. As an example, the OLS model fails to reflect the favorable
influence of GBM on CM in the short term, suggesting that the QQR method is more suited
for analyzing complex and diverse issues by exposing the connection between the GBM
and the CM at various combined quantiles.

Table 3. OLS regression results.

Short-Term Medium-Term Long-Term
CM CM CM

GBM −3.193 3.112 ** 6.665 ***
(−0.50) (2.16) (7.75)

_cons −0.000 0.000 0.000
(−0.00) (0.00) (0.00)

N 1808 1808 1808
Note: ** means p < 0.05, *** means p < 0.01, and the T value is in parentheses.

7.2. Comparison of Regression Coefficient between QQR and QR

To further verify the robustness of the research results mentioned above, this pa-
per compares the QR coefficient with the τ-average coefficient of QQR. The formula for
calculating the τ-average coefficient is as follows:

γ0(θ) ≡ ˆ̂β0(θ) =
1
D ∑ τ β̂0(θ, τ) (25)

γ1(θ) ≡ ˆ̂β1(θ) =
1
D ∑ τ β̂1(θ, τ) (26)

In the above equation, D is the number of grid points for τ, that is, D = 19. Figure 6a, 6b, and 6c,
respectively, show the coefficient curves of QQR and QR on short-term, medium-term, and
long-term time horizons. From the perspective of the short-term time horizon, there is a
deviation between the coefficients of QQR and QR at the 0.45, 0.65, and 0.85 quantiles. The
reason for the deviation in the results of QQR and QR in the short term may be due to the
interference of noise caused by some short-term unexpected events. However, the sequence
becomes more stable in the medium- and long-term time horizons, and the results of QQR
are consistent with those of QR. Therefore, the above results indicate the robustness of the
research conclusions mentioned above.
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8. Conclusions and Suggestions

To explore the correlation effect between the GBM and CM, daily frequency time series
data from 9 August 2013, to 29 June 2022, are selected as the original sequence. Then,
the MODWT is used to generate the basic research sequence. Subsequently, the quantile
Granger causality test and QQR method are utilized to analyze the causal relationship
and the effects of the two markets at short-, medium-, and long-term time horizons. The
following research findings are obtained:

First, utilizing the quantile Granger causality test, it is established that a statistically
significant Granger causality relationship exists between the CM and the GBM, regardless of
the market conditions and time horizon. Meanwhile, the GBM demonstrates a discernible
causal association with the CM, which becomes more noticeable as the time horizon
expands. This implies that the one-way connection between the GBM and the CM becomes
more apparent as time progresses.

Second, the GBM plays a prevailing role in both markets. During a bear market phase,
the green bond market can negatively affect the CM in the short term. However, it exerts a
positive impact on the CM in the medium- to long-term time horizons. Moreover, as the
time horizon extends, the synergies between the GBM and the CM become more apparent.
In the medium to long term, severe market conditions can lead to a remarkable impact of
the GBM on the CM.

Based on the research findings above, we propose the following policy recommendations:
Firstly, policymakers should consider the interrelated effects between the two mar-

kets when formulating policies and timely implement corresponding measures. In the
short term, attention should be paid to preventing risk contagion between the markets
under extreme market conditions; in the long term, risk contagion under normal market
conditions should be prevented to maximize the synergistic promotion effect of the CM
and the GBM. In addition, the carbon market trading system should be further improved
by introducing carbon emission quota auctions to increase carbon prices. The price con-
straint mechanism of the CM should be fully utilized to guide energy transformation and
promote the development of the green industry. Secondly, for CM investors, investment
portfolios and risk mitigation strategies should be adjusted according to market changes
to maximize investment returns. Thirdly, for companies engaged in emission control,
given the similarity between the GBM and the CM, issuing more green bonds to fund their
low-carbon transformation projects can help them achieve their emission reduction targets
and minimize their reliance on the carbon market.

9. Limitations and Future Research

First, due to the reality of China’s unique national conditions, there are still many
influencing factors in the relationship between the carbon market and the green bond
market, so future research should further analyze the influencing factors of their correlation
characteristics. Second, the indicators of the carbon market and the green bond market
adopted in this study are still immature, and a more reasonable indicator system should
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be analyzed in the future. Third, there is still significant room for improvement in the
economic reasons behind the results and more appropriate policy measures, which will be
a major focus of our future research.
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