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Abstract: Imbalanced nutrient fertilization adversely affects root growth and alters the nutrient use
efficiency of a crop. This study aimed to understand the influence of integrated nutrient management
on root characteristics and nitrogen use efficiency in the vegetable-based agroecosystem. The field
trial was conducted at the Department of Soil Science and Water Management of Dr. Y S Parmar
University of Horticulture and Forestry Nauni, Solan (HP) India in 2019 and 2020. There were nine
treatments viz. T1- control, T2-100% farmyard manure (FYM; N equivalent basis), T3-100% N, T4-100%
NP, T5-100% NK, T6-100% PK, T7-100% NPK, T8-100% NPK + FYM (recommended practice), and
T9-150% NPK + FYM on root densities (mass, volume, and length) and N use efficiency of cauliflower
and capsicum. The results observed that different treatments exert significant effects on measured as
well as derivative parameters. In detail, the application of 150% NPK + FYM recorded significantly
higher root-mass density (0.72 and 1.71 g m−3 × 10−3), root-volume density (4.49 and 2.52 m3

m−3 × 10−3), and root-length density (1.21 and 0.81 cm m−3 × 10−4) in cauliflower and capsicum,
respectively, which was statistically at par with treatment T9 (100% NPK + FYM). Similarly, this
treatment (150% NPK + FYM) resulted in a maximum positive N (774.6 kg ha−1), P (650.4 kg ha−1),
and K (334.9 kg ha−1) balance of soil after the complete harvest of two cropping-sequence cycles.
However, maximum agronomic N use efficiency (59.9 and 67.9 kg kg−1) and apparent recovery of
N (39.3 and 59.7%) were recorded under 100% FYM (N equivalence) in cauliflower and capsicum,
respectively, but this treatment produced the negative N balance (−91.7 kg ha−1) and K (−340.3 kg
ha−1) in soil, whereas significant improvement in agronomic use efficiency, apparent recovery of
applied N, as well as in soil, and the NPK balance was recorded under 100% NPK + FYM over the
other treatment. This study recommended an integrated nutrient module that is the application of
100% NPK + FYM to ensure better root growth and positive nutrient balance in the soil.
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1. Introduction

Soil is an important natural resource for plant nutrition and the quality of soil for
production depends on its sustainable supply of plant nutrients. Land use systems ef-
fectively influence the fertility and stability of an ecosystem [1]. The rapid increase in
global food demand certainly increased the requirement for crop nutrient management and
optimisation but the over usage of soil nutrients alters the nutrient use efficiency (NUE)
of a crop. The indiscriminate use of inorganic nitrogenous fertilizers either excessively or
imbalanced by farmers became a concern in the research community due to the potential
threat to global water, soil acidification, and water eutrophication [2,3]. However, insuf-
ficient or unnecessary application of fertilizers does not guarantee consistently growing
yield, which can result in low efficiency of nutrient usage [4]. Under an intensive cropping
system, continuous application of imbalanced inorganic fertilization cannot maintain the
desired level of crop production, whereas coapplication of chemical fertilizer and organic
manures provides for the upholding and sustaining of crop production and also improves
root growth which enhances the water and nutrient-use efficiency [5,6]. Nitrogen (N) is
the main limiting nutrient for the growth and development of plants and is added to the
agricultural field to boost crop yields [7,8]. Optimal N fertilization is vital to meeting the
need for N for plants and increasing crop yields. Application of N beyond plant need is
the major factor contributing to reduced NUE, higher crop production, and large N losses
to the environment via leaching and emitting greenhouse gas (GHG; NO and N2O) [9].
Optimizing N fertilization is a vital task to increase crop yields and is helpful in mitigating
environmental issues [10]. Unreasonable fertilization management not only decreases the
NUE but also enhances the production cost and environmental risk [11]. The literature
reveals that numerous studies have been made in the global scientistic fraternity on breed-
ing N-efficient cultivars to optimize the N application strategies and perform precision
agriculture techniques [12–14]. Organic manure added to the soil provides carbon (C) and
other essential nutrients such as nitrogen (N), phosphorus (P), and potassium (K) to the soil,
which are indispensable for crop growth and further complete their life cycle [14–16]. Thus,
a nutrient (NPK) management scheme through efficient fertilization can play an important
role in crop production and provides the gateway for increasing crop productivity [4–17].

Root morphological characteristics and physiological activities are greatly affected by
the excessive use of nitrogen [18]. Root nutrient-absorption capacity depends upon the root
characteristic viz. total length, volume, and effective root-absorption area, which are highly
influenced and improved with N application [19]. Carbohydrate and starch synthesis in
the leaves and stems are greatly influenced by phosphorus, thereby improving the grain
weight and quality by increasing nutrient transportation to the grains [20]. Adequate P
and K supply promote dry matter accumulation and root development [21,22]. Adequate
application of nutrients, particularly N and P, improves the root-mass density by increasing
the number as well as the length of the root hair [6]. The addition of organic manure
improves the profuse growth of secondary roots as well as root hair. Root-length density
(RLD) is a central parameter to study water and nutrient movement in the vadose zone
and soil–plant–atmosphere continuum [23]. The lack of understanding of the effect of
different fertilizers’ applications ultimately results in either yield gaps, economic losses, or
negative NPK soil balance that could be recovered through optimized conditions. The role
of balanced and imbalanced fertilization with farmyard manure (FYM) on root parameters
and NPK balance has been well established in cereal crops but such studies are very
meagerly available in vegetable crops.

Phosphorus (P) or potassium(K) status is influenced by the application of P and K
fertilizers to the soil which are further responsive to the crop nutrient uptake and N utiliza-
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tion [24]. The nutrient and water uptake capability of plants from the soil merely depends
upon an essential absorption system [25,26] functioned by the root morphology viz. root
depth, root branching, number of root hairs and root tips [27]. The anchoring plants in
the soil, and the absorption and translocation of nutrients and water for the synthesis of
phytochromes and other organic compounds functions, make root studies prominently
significant [28]. Above-ground growth and biomass yield of a crop are greatly influenced by
root systems [29]. The knowledge of factors that influence root development is important
for improving nutrient cycling in soil–plant systems [30]. Leaf quantity and the nutrient
release pattern determine the nutrient budget and their impact on the ecosystem [31].
Dry-matter accumulation and yield provide the physiological basis for nutrient absorption
and translocation and influence crop growth and development [26–32]. Continuous cul-
tivation accelerates the loss of organic matter and microbial activities significantly in the
soil. Therefore, nutrient uptake must be maintained by nutrient replacement [33]. Former
studies have suggested that NUE and grain yield largely depends on the total root length,
root biomass and root number owing to the NPK interaction [34–36]. The literature reveals
that previous studies were mainly focused on reducing chemical fertilizers and use, partic-
ularly of N fertilizers on crop productivity, and predicting qualitative properties [26,29,32].
However, most of the studies failed to consider the comparative assessment of NPK and
FYM on root characteristics, particularly root densities and nutrient–soil balance, especially
in the vegetable-based cropping sequence. Agricultural trends in the last five decades
have intensified production with the increased exercise of commercial seeds, pesticides,
fertilizers, etc. [37,38]. The unscientific practices have adversely affected soil health [39].
In the highly dissected landscapes of the Himalayan belt, bioclimatic conditions change
rapidly and may vary within short distances resulting in a pronounced heterogeneity
of soil types and their chemical and physical properties [31,40], hence influencing crop
production sharply [37]. Therefore, this study aimed to explore the effects of chemical
fertilizers with FYM on the root characteristics, NUE and NPK status of soil under the
cauliflower and capsicum cropping sequence. This study is novel in this field since there
is no scientific report available yet on the Indian Northwestern Himalayas comparing the
response to integrated nutrient management (INM) on root characteristics and nitrogen use
efficiency. Thus, to clarify the hypothesis, the objectives of the study were to access the root
characteristics of cauliflower and capsicum under balanced and imbalanced fertilization
and to analyze the NPK balance of soil under the cauliflower–capsicum cropping sequence.

2. Materials and Methods
2.1. Experimental Site

The field campaign was conducted over two successive years at an experimental farm
at the Department of Soil Science and Water Management of Dr. Y S Parmar University
of Horticulture and Forestry, Solan at the vegetable-based agroecosystem (cauliflower–
capsicum cropping sequence) from October 2019 to August 2021. The experimental farm
was located at 30◦51′ N latitude and 76◦11′ E longitude with an elevation of 1200 m above
mean sea level (m asl) and a slope of 7–8%, which falls into the subtropical, subhumid
temperate agro-climatic zone of Himachal Pradesh [41]. Annual rainfall of the area is
1100 mm, 75% of which is received from mid-June to mid-September (monsoon) (Figure 1).

According to the soil taxonomy of the United States Department of Agriculture, the
soils in the study area belong to typic-eutrochrept and sandy loam in texture. At the
initiation of the trial, the values of soil physical properties (at 0–15 cm depth) such as bulk
density, saturated hydraulic conductivity (Ks), and moisture retention were 1.32 Mg m−3,
7.92 cm h−1, 25.0 (at 0.33 bar s), and 7.32 (0.15 bar s) percent, respectively. Similarly, the soil
chemical properties of the experimental site were given in Table 1 (Table S1).
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Table 1. Physicochemical properties of the experimental site.

Soil Parameter Unit Estimated Value

pH Unitless 6.60
EC dS m−1 0.25
OC g kg−1 13.10
Available N kg ha−1 350.8
Available P kg ha−1 98.4
Available K kg ha−1 489.4
Available Ca cmol (p+) kg−1 12.8
Available Mg cmol (p+) kg−1 3.53
Available SO4

2−S kg ha−1 38.80
Available Fe Ppm 15.84
Available Zn Ppm 3.05
Available Cu Ppm 2.24
Available Mn Ppm 14.33

2.2. Experimental Design and Treatments

The study was conducted with 9 treatments viz., T1-control (no fertilization), T2-100%
FYM (quantity of FYM was calculated on N equivalent basis, i.e., the total recommended
dose of N was supplied through FYM), T3-100% N (only 100% recommended dose of N
was supplied through chemical fertilizers, i.e., Urea), T4-NP (100% N and P requirements
of crops were supplied through chemical fertilizers i.e., urea and single super phosphate,
respectively), T5-NK (100% N and K requirements of crops were provided through chemical
fertilizers, i.e., urea and muraite of potash, respectively), T6-PK (100% P and K requirements
of crops were supplied through inorganic fertilizers, i.e., single supper phosphate and
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muraite of potash, respectively), T7-NPK (100% recommended dose of NPK was met
through inorganic fertilizers), T8-100% NPK + FYM (recommended practice), and T9-150%
NPK + FYM replicated thrice in a complete randomized block design in a plot size of
3 m × 2.7 m. A recommended fertilizer dose of 150:100:54 and 100:76:54 kg of N, P2O5, and
K2O ha−1 represented NPK in cauliflower and capsicum, respectively. Application rates
for chemical fertilizers and FYM for each treatment have been described in Table 2. The
cauliflower (variety: PSBK-1)-capsicum (variety: Kaveri 254- F1) cropping sequence was
followed for two years (2019–2021).

Table 2. The amount of farmyard manure, urea, single super phosphate, and muriate of potash
fertilizers used in different treatments.

Treatments

Cauliflower (Per Plot) Capsicum (Per Plot)

Farm Yard
Manure

(kg)

Urea
(g)

Single Super
Phosphate

(g)

Muraite of
Potash

(g)

Farm Yard
Manure

(kg)

Urea
(g)

Single Super
Phosphate

(g)

Muraite of
Potash

(g)

T1 (Control) 0 0 0 0 0 0 0 0
T2 (100% FYM) 24.3 0 0 0 24.3 0 0 0
T3(100% N) 0 264 0 0 0 176 0 0
T4 (100% NP) 0 264 506.3 0 0 176 384.8 0
T5 (100% NK) 0 264 0 73 0 176 0 73
T6 (100% PK) 0 0 506.3 73 0 0 384.8 73
T7 (100% NPK) 0 264 506.3 73 0 176 384.8 73
T8 (100% NPK + FYM) 20.3 264 506.3 73 20.3 176 384.8 73
T9 (150% NPK + FYM) 30.4 396 759.4 109.5 30.4 264 577.1 109.5

2.3. Crop Management

The field was prepared during 2019 by ploughing and then manual tillage oper-
ations were done for subsequent trials (cauliflower–capsicum cropping sequence for
2 years), to avoid the soil mixing of different plots. The nine treatments were laid in a ran-
domized block design (RBD) with three replications. Well-decomposed FYM (250 q ha−1

recommended dose) was used and had a carbon: nitrogen (C: N) ratio of 58. Chemical
fertilizers containing high amounts of NPK were applied as urea, single super phosphate
(SSP), and muriate of potash (MOP), respectively. The fertilizers were through broad-
casting and mixed in the soil before transplanting. Urea was applied in split doses to
avoid N losses.

2.4. Sampling and Measurements

Sampling for root growth parameters, viz. root volume density (RVD), root mass
density (RMD), and root length density (RLD), was done at the harvesting stage of the
crops. To collect root samples, a sharp-edged iron rod was inserted into the soil profile [42].
Each core was 5.5 cm wide, 15 cm long, and 15 cm deep, which yielded soil cores of those
dimensions. The sampling depth was determined by the actual growth of crop roots; the
minimum was 30 cm and the maximum was 60 cm. To collect the roots, all the cores were
soaked in water overnight, then stirred vigorously and the soil was removed from the roots
by washing them with a fine jet of water. The soil suspension was passed through a fine
0.2 mm mesh having a 25 cm diameter and 8 cm depth. RVD was measured by using the
displacement method [43], which was calculated using the formula:

Root-volume density (RVD; m3 m−3 × 10−3) =
Volume of roots by displacement method

Volume of the core
After the measurement of root-volume density through the displacement method as

described above, the same root samples were then placed, folded, and pressed gently to
remove imbibed water. After that roots were cut into pieces and placed in an oven for
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drying at 60 ± 5 ◦C until a constant weight. Finally, the dried weight of the roots was taken
for the estimation of root-mass density [43].

Root-mass density (RMD; g m−3 × 10−3) =
Dry weight of roots
Volume of the core

Root length (RL) was determined by using a glass-bottom shallow dish of 40 cm × 20 cm
dimensions with the help of graph paper ruled in mm placed just below the dish. The wet
roots were separated at the root–shoot joint and spread randomly on a disk containing
water provide there was no overlapping between the cut pieces. The long-branched roots
were cut into smaller pieces. The vertical and horizontal lines of a 1 cm grid were used
to count the intersections of roots (Ri) on the graph paper. Care was taken to avoid more
than 400 counts in one instance. Root length was computed using the modified version
of Newman [44] formula as proposed by Marsh [45] and Tenant [46], as Root length =
11
14 × number of intersections (Ri)× grid unit

Root-length density (RLD; cm m−3 × 10−4) =
Root length

Volume of the core

The agronomic use efficiency of nitrogen (AEN) was calculated by using the Dober-
mann formula [47]:

AEN (kg kg−1) =
Yield in fertilized plot− Yield in control plot

Amount of Napplied

The apparent nitrogen recovery (ARN) was calculated by using the following formula:

ARN (%) =
Nf −Nuf

Na
× 100

where, Nf and Nuf were nitrogen accumulation in fertilized and unfertilized plots (kg ha−1)
and Na is the amount of N fertilizer applied (kg ha−1).

2.5. NPK Balance

The nutrient balance (NPK) in each plot under each treatment was determined by
separating the inputs (inorganic fertilizer and FYM) and outputs (nutrient uptakes (NPK) by
crops) of the plot. Nutrient balance for NPK was calculated by subtracting nutrient uptakes
and nutrient status at the time of harvest from the total nutrients added (initial status of
soil nutrients plus added nutrients) to the plots [48]. Nutrient uptake was determined by
using the following formula:

Nutrient uptake (kg ha−1) = {Nutrient content (%) × Dry matter yield (kg ha−1)}/100

Nutrient balance = [Initial Status of soil nutrients (a) + Nutrient added (b)] − [Nutrient uptake by crop(c)
+ Nutrient status at the time of harvest (d)]

2.6. Statistical Analysis

Data were analyzed as a randomized block design and one-way analysis of variance
(ANOVA), as described by Panse and Sukhatme [49] and graphs were prepared by using
Microsoft Office (version 2010). For comparing treatment means, the critical difference (CD)
was calculated at a 5% level of significance.

3. Results
3.1. Root-Mass Density (RMD) of Cauliflower and Capsicum

The root mass density of cauliflower and capsicum under different treatments has
been shown in Figure 2a. Two-year experimental data showed that the root-mass den-
sity was significantly influenced only for the second year under cauliflower, whereas
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under capsicum, it was effectively influenced under both years of study. Root-mass den-
sity was gradually improved under the integrated application of inorganic fertilizers
(NPK) along with FYM under both crops. During the first year of the study, root-mass
density was higher than the control but was statistically found nonsignificant. After
one year of study on the complete cropping sequence (cauliflower–capsicum), root-mass
density under the second year of cauliflower crop was found to be statistically signifi-
cant under different treatments and the highest RMD (0.72 g m−3 × 10−3) in T8 (100%
NPK + FYM) and T9 (150% NPK + FYM), which was statistically at par with T2 i.e., 100
FYM on N equivalence basis (0.68 g m−3 × 10−3), T5 i.e., 100% NK (0.69 g m−3 × 10−3),
and T7 i.e., 100% NPK (0.67 g m−3 × 10−3), whereas the lowest RMD was under T4
i.e., 100% NP (0.58 g m−3 × 10−3), which was significantly at par with T1, i.e., control
(0.63 g m−3 × 10−3), T3, i.e., 100% N (0.60 g m−3 × 10−3), and T6, i.e., 100% PK
(0.62 g m−3 × 10−3). Based on pooled data, treatment T9 was recorded with the highest
RMD (1.71 g m−3 × 10−3), which was significantly at par with T6 (1.62 g m−3 × 10−3),
T7 (1.63 g m−3 × 10−3), and T8 (1.70 g m−3 × 10−3), while lowest under the control
(1.16 g m−3 × 10−3). Year and interaction between treatment and year were insignificant
concerning RMD. In general, balanced fertilization could effectively improve the number
of roots and further efficient utilization of nutrients to enhance the proliferation of roots.
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3.2. Root-Volume Density of Cauliflower and Capsicum

Different treatments influenced the root-volume density of cauliflower and capsicum
(Figure 2b). The root-volume density of cauliflower was statistically influenced only
after one year of fertilization. On pooling of data, it was found that the highest RVD
(4.49 m3 m−3 × 10−3 and 2.52 m3 m−3 × 10−3) was noted under treatment T9 (150%
NPK + FYM), while the lowest was under T1, i.e., the control (2.79 m3 m−3 × 10−3 and
1.04 m3 m−3 × 10−3) for cauliflower and capsicum, respectively. Treatment T9 was statisti-
cally at par with all the treatments except control and 100% N (T3).

3.3. Root-Length Density (RLD) of Capsicum and Cauliflower

Different treatments significantly influenced the root-length density of cauliflower and
capsicum during both the years of study (Figure 2c). The root-length density of both the
crops under balanced and imbalanced fertilization was markedly improved over T1 (abso-
lute control). Pooled data analysis showed that the highest RLD was recorded in treatment
T9, i.e., 150% NPK + FYM (1.21 cm m−3 × 10−4 in cauliflower and 0.81 cm m−3 × 10−3

in capsicum), while the lowest was under the control (0.85 and 0.60 cm m−3 × 10−4) for
cauliflower and capsicum respectively. All the treatments significantly increased the root
length density over the control. After two years of fertilization, balanced fertilization
increased the RLD by 42.0% and 35% in cauliflower and capsicum respectively, over the
control (absolute). In general, the replacement of inorganic fertilization along with the
integration of inorganic and organic fertilization could effectively improve the growth of
absorbing roots which proliferate more under porous soils with the addition of organic
manure. As the addition of organic manure improves, the physical properties of soil,
i.e., water holding capacity, soil aggregation, porosity, etc., which are responsible for the
growth of absorbing roots; otherwise poor physical status of soil promoted the growth of
conducting roots, which became more under deep soil (nonporous).

3.4. Agronomic Nitrogen-Use Efficiency (AEN) and Apparent Recovery of Nitrogen (ARN) in
Cauliflower and Capsicum

Agronomic nitrogen use efficiency (AEN) was significantly affected under different
treatments during both years of study in cauliflower and capsicum (Figure 3a). Treatment
T2, i.e., 100 FYM N equivalent basis, was recorded with the highest AEN (59.9 kg kg−1) and
the lowest AEN (16.6 kg kg−1) in cauliflower was recorded under T9, i.e., 150% NPK + FYM.
Under the capsicum crop, the same treatment (T2) showed significantly higher AEN
(67.9 kg kg−1) and the lowest was under T5 i.e., 100% NK (24.2 kg kg−1) which was found
to be at par with all treatments except 100% FYM N equivalent basis (67.9 kg kg−1), 100%
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NPK (53.7 kg kg−1), and 150% NPK + FYM (54.2 kg kg−1). The year and the interaction
effect were found to be nonsignificant for both crops.

Different treatments had significant effects on the apparent recovery of nitrogen in
cauliflower and capsicum during both the years of study (Figure 3b). Application of
sole 100% FYM on N equivalent basis was recorded with the highest apparent recovery
of nitrogen in cauliflower (39.3%) and capsicum (59.7%) which was statistically at par
with 100% NPK, whereas the lowest apparent recovery of nitrogen (13.0 and 27.6%) was
observed under 150% NPK + FYM in cauliflower and capsicum, respectively. The year and
the interaction effect between treatment and year were significant for both crops.
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3.5. NPK Balance

Higher NPK was removed from the soil with the application of inorganic fertilizer
or no fertilizer application and both resulted in a negative soil–NPK balance (Tables 3–5).
A positive NPK balance was found under the coapplication of NPK and FYM. Treatment
T9, i.e., 150% NPK + FYM recorded with the highest positive N balance (774.6 kg ha−1).
There was a negative N balance in all the treatments except 100% N, 100% NPK + FYM, and
−150% NPK + FYM. Soil–P balance ranged from−102.2 to 650.4 kg ha−1. Treatment T9 was
recorded with a maximum positive P balance (650.4 kg ha−1). Except for the control, 100%
N, and 100% NK, all other treatments were recorded with a positive P balance. Positive P
balance might be due to the inactivation of iron, aluminium, and hydroxyl Al ions, thereby
reducing the P fixation in soil and building up the P balance. In the case of K balance, all
the treatments registered with a negative K balance except T8 100% NPK + FYM and T9
150% NPK + FYM, which was ascribed to the imbalanced fertilization.

Table 3. Effect of different treatments on N balance (kg ha−1) under cauliflower and capsicum
(2 cycles).

Treatments
Initial N

Status
(a)

N Added Total N
Added

(b)

N Uptake Total N
Uptake

(c)

Soil N Status after
Harvest

(d)

Actual Gain/
Loss over the Initial

(a–d)

N Balance
(a + b)–(c + d)Cauliflower Capsicum Cauliflower Capsicum

T1 (control) 350.9 0.0 0.0 0.0 230.3 116.2 346.5 298.5 52.34 −294.1

T2 (100% FYM N equivalent
basis) 350.9 300.0 200.0 500.0 344.2 218.4 562.6 379.9 −29.02 −91.7

T3 (100% N) 350.9 300.0 200.0 500.0 311.3 156.5 467.8 359.7 −8.79 23.4

T4 (100% NP) 350.9 300.0 200.0 500.0 326.3 196.0 522.2 367.3 −16.42 −38.7

T5 (100% NK) 350.9 300.0 200.0 500.0 325.3 180.3 505.6 369.9 −18.99 −24.6

T6 (100% PK) 350.9 0.0 0.0 0.0 269.2 151.0 420.3 333.6 17.31 −403.0

T7 (100% NPK) 350.9 300.0 200.0 500.0 334.5 218.5 553.0 374.0 −23.09 −76.1

T8 (100% NPK + FYM) 350.9 550.0 450.0 1000.0 408.2 249.6 657.9 381.0 −30.08 312.1

T9 150% NPK + FYM) 350.9 825.0 675.0 1500.0 414.4 278.2 692.6 383.7 −32.79 774.6

Table 4. Effect of different treatments on P balance (kg ha−1) under cauliflower and capsicum
(2 cycles).

Treatments
Initial P
Status

(a)

P Added Total P
Added

(b)

P Uptake Total P
Uptake

(c)

Soil P Status after
Harvest

(d)

Actual Gain/Loss
over the Initial

(a–d)

P Balance
(a + b)–(c + d)Cauliflower Capsicum Cauliflower Capsicum

T1 (control) 98.4 0.0 0.0 0.0 39.3 20.8 60.1 77.6 20.80 −39.3

T2 (100% FYM N equivalent
basis) 98.4 120.0 80.0 200.0 63.4 42.4 105.9 135 −36.60 57.6

T3 (100% N) 98.4 0.0 0.0 0.0 49.6 30.6 80.3 107.4 −9.00 −89.3

T4 (100% NP) 98.4 200.0 152.0 352.0 51.0 38.8 89.8 117.3 −18.90 243.3

T5 (100% NK) 98.4 0.0 0.0 0.0 50.4 36.8 87.1 113.5 −15.10 −102.2

T6 (100% PK) 98.4 200.0 152.0 352.0 55.4 40.3 95.7 123.9 −25.50 230.8

T7 (100% NPK) 98.4 200.0 152.0 352.0 60.0 45.4 105.3 134.4 −36.00 210.7

T8 (100% NPK + FYM) 98.4 300.0 252.0 552.0 73.3 52.5 125.8 140.2 −41.80 384.4

T9 150% NPK + FYM) 98.4 450.0 378.0 828.0 75.1 57.6 132.7 143.3 −44.90 650.4

Table 5. Effect of nutrient management on K balance (kg ha−1) under cauliflower and capsicum
(2 cycles).

Treatments
Initial K
Status

(a)

K Added Total K
Added

(b)

K Uptake Total K
Uptake

(c)

Soil K Status after
Harvest

(d)

Actual Gain/Loss
over the Initial

(a–d)

K Balance
(a + b)–(c + d)Cauliflower Capsicum Cauliflower Capsicum

T1 (control) 489.4 0.0 0.0 0.0 161.5 157.9 319.4 442.8 46.60 −272.8

T2 (100% FYM N equivalent
basis) 489.4 150.0 100.0 250.0 263.0 252.3 515.3 564.4 −75.00 −340.3

T3 (100% N) 489.4 0.0 0.0 0.0 202.7 195.0 397.7 453.8 35.60 −362.1

T4 (100% NP) 489.4 0.0 0.0 0.0 229.0 232.8 461.8 466.1 23.30 −438.5

T5 (100% NK) 489.4 108.0 108.0 216.0 210.0 218.1 428.1 542.3 −52.90 −265.0

T6 (100% PK) 489.4 108.0 108.0 216.0 229.8 244.3 474.2 550 −60.60 −318.8

T7 (100% NPK) 489.4 108.0 108.0 216.0 238.8 268.6 507.4 554.8 −65.40 −356.8

T8 (100% NPK + FYM) 489.4 358.0 358.0 716.0 316.0 311.1 627.0 560.6 −71.20 17.8

T9 150% NPK + FYM) 489.4 537.0 537.0 1074.0 327.2 334.6 661.7 565.8 −76.40 335.9
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3.6. Correlation between RMD, RVD, RLD, Soil Chemical Properties, and NPK Uptake

The relationship among root-mass density (RMD), root-volume density (RVD), and
root-length density (RLD) available N, available P, available K, available Ca, available Mg,
available sulphate-S, total N uptake, total P uptake, and total K uptake in cauliflower and
capsicum were analyzed using regression correlation coefficient (Figures 4 and 5). The
correlation matrix showed that the studied parameters were highly correlated to each other
at various levels of significance, where the level of significance for different parameters are
shown with * at 5%, ** at 0.1%, and *** at 0.01% level of significance. However, root-mass
density (RMD) of cauliflower and capsicum was found to be nonsignificantly correlated
with available N and available Mg. This might be due to nitrogen and Mg contents en-
hancing photosynthesis and increasing the accumulation of carbohydrates in the fruits [44].
Higher P availability significantly improves the root-mass density (Figures 4 and 5) which
could be ascribed to the increased number, as well as the length of, root hairs [5].

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 17 
 

 

The relationship among root-mass density (RMD), root-volume density (RVD), and 
root-length density (RLD) available N, available P, available K, available Ca, available 
Mg, available sulphate-S, total N uptake, total P uptake, and total K uptake in cauliflower 
and capsicum were analyzed using regression correlation coefficient (Figures 4 and 5). 
The correlation matrix showed that the studied parameters were highly correlated to 
each other at various levels of significance, where the level of significance for different 
parameters are shown with * at 5%, ** at 0.1%, and *** at 0.01% level of significance. 
However, root-mass density (RMD) of cauliflower and capsicum was found to be 
nonsignificantly correlated with available N and available Mg. This might be due to 
nitrogen and Mg contents enhancing photosynthesis and increasing the accumulation of 
carbohydrates in the fruits [44]. Higher P availability significantly improves the 
root-mass density (Figures 4 and 5) which could be ascribed to the increased number, as 
well as the length of, root hairs [5]. 

 
Figure 4. Correlation of root-mass density (RMD), root-volume density (RVD), root-length density 
(RLD), available N, available P, available K, available Ca, available Mg, available sulphate-S, total N 
uptake, total P uptake, and total K uptake in cauliflower; *, **, and *** represent significant levels of 
correlation coefficients of p < 0.05, p < 0.01, and p < 0.001, respectively. 

Figure 4. Correlation of root-mass density (RMD), root-volume density (RVD), root-length density
(RLD), available N, available P, available K, available Ca, available Mg, available sulphate-S, total N
uptake, total P uptake, and total K uptake in cauliflower; *, **, and *** represent significant levels of
correlation coefficients of p < 0.05, p < 0.01, and p < 0.001, respectively.
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4. Discussion
4.1. Effect of Nutrient Management on Root Characteristics of Cauliflower and Capsicum

The application of NPK fertilizers with FYM improves root growth and develop-
ment [23]. An increase in root surface area improves the absorption of nutrients which
resulted in an increase in root-mass weight [50]. Root-mass density increased with 150%
NPK + FYM, which could be due to enhanced nutrition and nutrient availability. Improved
RMD with higher P availability (Figures 4 and 5) might be due to the enhanced number, as
well as the length of, root hairs. Integrated use of inorganic and organic fertilizers promotes
root proliferation and improves the nutrient-use efficiency of crops [6,51]. Du et al., [24]
reported that the coapplication of NPK increased the size of the root which was caused
mainly by greater root proliferation, branching, and dry-matter accumulation. It is evident
that the addition of FYM improves the soil’s physical condition, which exhibited low soil
resistance to root penetration and enhances the extension, as well as the proliferation, of
roots. In addition, improved soil physical properties, viz., temperature, moisture, and
aeration under organic-matter addition are essential for root distribution possibly due to
the high buffering capacity of organic matter that results in enhanced root-mass, as well
as root-volume, densities [51]. Profuse growth of minor roots and root hairs could be
another important reason for the upgrading of root volume upon the addition of organic
amendments (FYM) [6].

Root-length density (RLD) is a significant parameter for water and nutrient movement
in the vadose zone and to study SPAC [23]. Lower RLD under control and 100 percent N
might be due to lower available P content, lower organic matter, and high soil strength [6].
Similar results were also reported by Bandopadhyay et al. [51] and Shenggang et al. [52].
Our study showed that positive correlation among root characteristics, soil-nutrient avail-
ability, and their uptake (Figures 4 and 5). The lower availability of nitrogen and phospho-
rus negatively affects the aboveground parts, i.e., leaf area and photosynthetic capacity per
unit leaf area, ultimately reducing carbohydrate accumulation for root growth [53].
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4.2. Effect of Nutrient Management on Agronomic Nitrogen-Use Efficiency and Apparent Recovery
of Nitrogen in Cauliflower and Capsicum

Organic manures such as FYM have been traditionally important inputs for main-
taining soil fertility and ensuring yield stability. Organic sources of nutrients are a slow
release of fertilizers as these synchronize the plant nutrient demand with respect to time
and space with the nutrients supplied from the labile pool and could serve as alternate
nutrient sources [54]. Coapplication of NPK had higher NAE chiefly due to enhanced N
uptake rather than higher use of the absorbed nitrogen [24]. N uptake potentially influ-
ences crop yield and NUE and is a key component of apparent recovery. The results are in
agreement with the findings of researchers who worked on various cropping systems [55]
in radish, [56] in sweet pepper, and [57] in tomatoes and reported that NUE decreases with
increasing rates of N fertilizer. Higher N recovery under NPK along with manure indicates
that the manure amendment may promote N absorption from the chemical fertilizer [58].
Our study further demonstrates that the conjoint is a satisfactory choice to improve NUE
in the Western Himalayas.

4.3. Effect of Nutrient Management on NPK Balance under Cauliflower–Capsicum Cropping
Sequence (2 Cycles)

The combined application of NPK and FYM resulted in a positive NPK balance. The
negative balance is due to larger uptake by the crops than in addition [59]. With the
judicious application of organic matter, the losses of nutrients through leaching could
be reduced, and the united application of organic and inorganic sources can sustain soil
fertility and yield [60]. Similar results were also reported by other researchers [48,61–63].
Application of both organic and inorganic sources of nutrients in balance to the crop of
sequence, which accumulated higher NPK in soil than consumption [64]; jointly they
perform better for higher fertility balance.

5. Conclusions

In an extensive cropping system, the integration of inorganic fertilizers with organic
manure will not only sustain crop production but also would be effective in promoting root
growth and facilitate enhanced water and nutrient-use efficiency. This could significantly
improve root growth and efficiency of N, which potentially decreases the fertilizer inputs.
Comparing all the treatments, the combined application of NPK and FYM resulted in a
positive balance of NPK. Luxury consumption is associated with potassium and results
indicated that imbalanced fertilization negatively impacted the K balance. Maximum
agronomic N-use efficiency and apparent recovery of N were recorded under 100% FYM
(N equivalence) but this resulted in a negative balance of NPK in soil, whereas application
of 100% NPK + FYM improved the agronomic use efficiency and apparent recovery of
application N, as well as soil NPK balance over the other treatment. Therefore, this
integrated nutrient module, i.e., application of 100% NPK + FYM, is recommended to
ensure better root growth and positive nutrient balance. It is crucial to optimise the
efficiency of nitrogen utilisation by decreasing nitrogen fertiliser input and boosting crop N
absorption. This study will assist policymakers in taking into account organic manure in
addition to NPK under integrated nutrient management for vegetable production that can
be scaled up and widely used by smallholder farmers. This work could further provide a
scientific basis for the usage of imbalanced chemical fertilization and recognize the optimum
nutrient module, i.e., the combined application of inorganic fertilizers and organic manure
for sustainable crop production and soil-health improvement.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su151310593/s1, Table S1: Methods followed by the analysis of
soil physicochemical properties [65–71].
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