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Abstract: Many bridges suffer from aging and deterioration problems and need to be strengthened.
PSWR-PUC is an emerging structural strengthening technology that enhances the load-bearing
capacity of concrete bridges by embedding prestressed steel wire ropes into polyurethane cement.
This paper focuses on investigating the shear reinforcement effectiveness of PSWR-PUC. Firstly,
the composition of PSWR-PUC is introduced. Subsequently, two T-beam bridges in similar service
condition are selected, and shear strengthening schemes involving PSWR-PUC and externally bonded
steel plates are devised. Lastly, static loading tests are conducted, and the deflection and strain data
of the two bridges before and after reinforcement intervention are analyzed. The results indicate
that both strengthening methods improve the bridge load-carrying capacity. However, compared to
the bridge strengthened with the externally bonded steel plate method, the deflections in the bridge
strengthened with PSWR-PUC decreased by 36.8% and 42.1%, the strains decreased by 18% and 23%,
and the shear stiffness was improved to a greater extent. These results verified that the PSWR-PUC
strengthening method is effective for improving structural capacity and performance. This study will
contribute to an in-depth understanding of the performance characteristics and application scope
of PSWR-PUC shear strengthening technology, and it provides a scientific basis and guidance for
practical engineering applications.

Keywords: bridge; deflection; load capacity; polyurethane cement; prestressed steel wire rope; shear
strengthening; static load test; temperature effect

1. Introduction

As key nodes in roads, bridges play an important role [1]. Bridge safety is the key
to ensuring smooth traffic on roads [2,3]. However, bridge capacity is affected by a great
many factors. For example, the external environment can lead to degradation of material
properties, and increasing traffic load can accelerate bridge damage [4,5]. Bridge capacity
will decrease with increasing traffic time [6], eventually developing into a dangerous
situation (which can be called an unsafe bridge) after continuous attenuation of the bearing
capacity [7,8].

If all unsafe bridges are demolished and rebuilt, this would interrupt road traffic and
lead to expensive construction costs. Additionally, rebuilding all unsafe bridges has an
adverse impact on economic development. The key points of unsafe bridge management
are: scientific and reasonable evaluation of bridge safety grade, determination of bridge
capacity after damage, and development of reliable and economical strengthening mea-
sures. The bearing capacity, durability, and service lives of bridges can be improved by
strengthening [9,10].
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Due to low design load in the early stage and serious overloading during operation,
some bridges in China with concrete structures are suffering from various diseases at
present [11]. Shear damage is mainly characterized by the development of inclined cracks
in the shear span areas of bridges [12], which mostly appear near bridge bearings with thin
webs, such as T-beams and long-span continuous box girders [13], as shown in Figure 1.
Bending stiffness and shear stiffness both influence structural deformation, as shown in
Figure 2. Shear stiffness can decrease after inclined cracks appear in thin webs, leading
to an increase in shear deformation [14]. Therefore, the total deflection in a bridge can
increase greatly [15,16].
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In recent years, scholars worldwide have carried out a series of studies on bridge rein-
forcement, which can be divided into inorganic and organic material reinforcement methods
according to the nature of the reinforcement materials. Inorganic reinforcement methods
include steel jackets [17], wire mesh cement [18], externally bonded steel plates [19], and
bolted anchored steel plates. By using inorganic materials to strengthen the main beam, the
stiffness and strength of the beam are changed to effectively stop the structure from crack-
ing. Organic reinforcement methods mainly include composite reinforcement (FRP) [20],
polymer filling, and polymer-modified materials [21]. The use of organic materials for
reinforcement and strengthening treatment of concrete structures not only improves the
load-bearing capacity of bridges but also has the advantages of corrosion resistance and
high toughness. Suitable reinforcement methods can be selected for different bridge forms
and damage states.

The cross-sectional forms are different in actual bridge strengthening projects, but
these bridges usually adopt T- or box-shaped cross-sections with thin webs [22,23]. Girders
with thin webs are prone to developing inclined cracks and insufficient shear capacity.
Generally, the thin web is rectangular and it mainly bears the shear force [24]. At present,
the bonding steel plate and bonding FRP (fiber-reinforced polymer) methods are widely
used in the shear strengthening of actual bridges [25].

In the last three decades, the externally bonded steel plate method has be widely
used in strengthening projects of reinforced concrete structures [26]. This method has
the advantages of lost cost and excellent strengthening effect [27]. It does not change the
structural system and mechanical behavior of the original structure and causes little increase
in dead load. Steel plates and concrete surfaces are bonded by epoxy resin adhesive [28].
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The epoxy resin adhesive has a higher bonding strength than the tensile and shear strengths
of the concrete. It can effectively connect the steel plate and original RC structure, and they
can bear the load together [29]. Due to the fast curing time of the epoxy resin adhesive,
this strengthening method can save construction time. The externally bonded steel plate
method can effectively improve the rigidity and strength of the original RC structure and
limit the development of existing cracks. Therefore, the capacity of the RC structure is
effectively improved after strengthening. However, there are some shortcomings with the
externally bonded steel plate method. Rust corrosion of the steel plate and aging failure
of the epoxy resin adhesive are the two most common defects, shown in Figure 3. Aging
failure of epoxy resin adhesive can lead to separation of the steel plate and concrete [30].
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In recent years, a large number of studies on FRP (fiber-reinforced polymer) strength-
ening in civil engineering have been carried out by many researchers [31,32], and FRP
has been widely used to strengthen reinforced concrete structures due to its high specific
strength and corrosion resistance [33,34]. There are many types of FRP used for strength-
ening engineered structures, which are mainly divided into FRP sheets and bars [35].
Externally bonded FRP sheets is the most widely used strengthening measure among FRP
strengthening measures. FRP sheets are bonded to the concrete surface by epoxy resin
adhesive to strengthen the RC members so that the tensile stress of the FRP sheets can
be transferred to the RC members, thereby improving capacity. The FRP strengthening
method is simple in construction and has little impact on the original structure, and it is
efficient and easy to control the strengthening quality. However, bonded FRP sheets have
no obvious effect on structural stiffness. In the externally bonded FRP sheets method, brittle
peeling failure at the interface between FRP sheets and concrete easily occurs, as shown in
Figure 4, because of the lack of a good anchoring measure [36,37]. Debonding failure at
the interface between FRP sheets and concrete can lower the FRP strength utilization ratio,
leading to brittle failure of the structure with a random failure process [38].

The prestressed steel wire rope (PSWR) strengthening method is an innovative active
strengthening method that anchors steel wire ropes on the beam and tension is applied [39,40].
It is easy to apply tension because of the small diameter of the steel wire rope [41,42], so
tensioning construction can be carried out with simple devices. However, steel wire ropes
easily rust in external environments [43,44]. To prevent the steel wire rope from corroding,
composite mortar is bonded to the outer layer of the concrete. However, composite mortar
easily cracks due to its low tensile strength. This problem can be solved by replacing the
composite mortar with polyurethane cement (PUC) because PUC has the advantages of high
strength and toughness.
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In order to study the shear strengthening effect on an actual bridge using the PSWR-
PUC method, compared with that achieved by the bonded steel plate method, the on-site
application effect of PSWR-PUC was verified in a strengthening project involving two
actual bridges. The original design loads of the two bridges were Vehicle-20 grade load.
The superstructures had the same form, which was reinforced concrete T-beams with
thin webs. The service times were similar, with completion and operation times of about
30 years. PSWR-PUC and bonded steel plates were used to strengthen the shear span areas
of reinforced concrete T-beams to meet Highway Grade II Load requirements. Static load
tests were carried out before and after strengthening of the two bridges, and deformation
and strain data were collected during the tests. The strengthening effects were compared
using deformation and strain analyses.

2. Prestressed Steel Wire Rope Embedded in Polyurethane Cement (PSWR-PUC)
Strengthening Method
2.1. Characteristics of PSWR-PUC

Prestressed steel wire rope strengthening technology is a special prestressed strength-
ening method using small-diameter wire rope, and polyurethane cement strengthening
technology is a special section-enlarging strengthening method. Prestressed steel wire rope
embedded in polyurethane cement strengthening technology is an effective combination
of indirect and direct strengthening, active and passive strengthening, and inorganic and
organic strengthening. It gives full play to the advantages of two kinds of strengthen-
ing technology and can solve difficult problems in strengthening. The characteristics of
PSWR-PUC are as follows:

(1) The polyurethane cement strengthening layer can be used as a fixing material for steel
wire rope. Firstly, the polyurethane cement layer can wrap the wire rope, providing a
layer of protection and preventing the corrosion factors in the external environment
(such as water, oxygen, chemical substances, etc.) from directly contacting the wire
rope’s surface [45]. This can extend the service life of the steel wire rope and improve
its corrosion resistance. Secondly, the polyurethane cement layer can evenly transfer
the force applied to the wire rope to the concrete structure [46]. It provides a strong
embedded layer, which enables the wire rope to effectively withstand forces such as
tension and shear, thus ensuring a more efficient and stable force transmission effect.
Finally, the polyurethane cement layer enhances the anchorage security of the wire
rope through its bonding ability with the concrete [47]. It can form a strong bonding
interface between the wire rope and concrete so that the wire rope can be effectively
anchored in the concrete structure and provide sufficient pull-out and shear strength.
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(2) Prestressed steel wire ropes can increase the internal reinforcement of the polyurethane
cement. On the one hand, by applying prestress, the steel wire rope enables the
polyurethane cement layer to withstand greater tensile stress, thus increasing the
overall structural strength [48]. On the other hand, the prestressing effect of the
prestressed steel wire rope can effectively inhibit cracking in the polyurethane cement
layer. When subjected to external loading, prestress of the steel wire rope can offset
some or all of the stresses and reduce the strain in the polyurethane cement layer [49],
thus reducing the risk of cracking. In addition, the prestressed wire rope can effectively
reduce the thickness of the polyurethane cement layer by increasing the number of
ropes while substantially increasing the structure’s load-bearing capacity. It can
reduce the increase in structural weight and dead load by reducing the usage of
polyurethane cement.

The PSWR-PUC method gives not only full play to the characteristics of active strength-
ening to reduce the structural internal force, but it also adopts a passive strengthening
material to protect the steel wire rope. The combination of two strengthening technologies
can greatly improve the structural capacity.

2.2. Components of PSWR-PUC
2.2.1. Polyurethane Cement

Polyurethane cement (PUC) is a kind of cement-based composite with high ductility
and durability. The main components of PUC are polyurethane and cement, which both
can be used as cementitious material alone. Polyurethane cement, a new type of organic
and inorganic composite, achieves high strength and toughness by mixing polyurethane
and cement, which has the advantages of the two materials, such as fast setting speed, high
early strength, and high toughness. The compressive strength of the polyurethane cement
used in this study’s actual bridge reinforcement project was 66.6 MPa, the compressive
elastic modulus was 3087 MPa, and the flexural strength was 43.4 MPa.

Polyurethane is a two-component adhesive used in PUC, which is mainly prepared
by polymethylene polyphenylene isocyanate and polyether combinations. Polymethylene
polyphenylene isocyanate is abbreviated as PAPI, or crude MDI, commonly known as black
material. It is a mixture of isocyanate and diphenylmethane diisocyanate containing a
certain amount of higher functionality, which is a brown liquid at room temperature. The
type of polymethylene polyphenylene isocyanate used in this experiment was WANNATE®

PM-200 (Figure 5a). The main components of polyether combinations are polyether polyols,
silicone oil, and epoxy catalyst EZ01, commonly known as white material, which is a
colorless, transparent liquid at room temperature. The type of polyether combination used
in this experiment was ES305 (Figure 5b). Dabco MixCO2 was used as a catalyst with a
tertiary amine-containing Dabco structure (Figure 5c). 42.5R ordinary silicate cement was
used in the PUC.

The raw materials for the polyurethane cement were polymerized by mixing at a mass
ratio of isocyanates:polyether combination:silicate cement:catalyst = 1:1:2:0.02, as shown
in Table 1. The manufacturing process of the polyurethane cement is as follows, and the
preparation process is shown in Figure 5.

Table 1. The mixing ratio of each raw material for this test(kg/m3).

Serial Number Raw Materials Mix Ratio

1 WANNATE® PM-200 390
2 ES305 polyether combination 390
3 Dabco MixCO2 catalyst 7.5
4 Silicate cement 800
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(1) Drying and dehydration of cement. Firstly, the cement is put into the frying oven,
then the frying oven is ignited and heated. The frying oven should be kept rotating at
a constant speed during the heating process, as shown in Figure 5d. The stir-frying
time is about 90~120 min at 200 ◦C at continuous high temperature. The purpose of
drying is to eliminate the free and bound water in the cement as much as possible
in order to prevent bubble generation during the reaction between the cement and
polyurethane. At the same time, high-temperature frying can disperse the large-
diameter particles in the cement, making it finer. The use of dehydrated cement can
improve the quality of the prepared polyurethane cement. After stir-frying the cement,
it should be immediately sealed and chilled to room temperature before being utilized
for preparation.

(2) Mixing polyurethane components well. Polymethylene polyphenylene isocyanate
(WANNATE® PM-200) and polyether combination (ES305) are mixed according to a
mass ratio of 1:1, as shown in Figure 5e. Stir thoroughly to ensure that the isocyanate
and polyether can undergo the complete polymerization reaction. The mixing time
can be reduced to 2~5 min using an electric mixer. The fully mixed polyurethane
adhesive is a gray-black, semi-transparent colloid. It can be determined whether the
two liquids are evenly mixed by observing whether the color of the adhesive solution
after mixing is consistent.
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(3) Preparing polyurethane cement colloid. Firstly, the dried and dehydrated cement
in step (1) and polyurethane adhesive solution in step (2) are mixed, as shown in
Figure 5f. Once the polyurethane and cement are well mixed, add the Dabco MixCO2
catalyst (2% mass ratio, based on the weight of the polyurethane), and continue
stirring. The addition of the catalyst will speed up the polymerization reaction and
give off heat to warm up the mixture. In order to avoid curing the polyurethane
cement, the mixing process should not exceed 3 min after addition of the catalyst.

(4) Pouring and curing. The polyurethane cement colloid is poured into the prepared
formwork, the mold is tapped to release small air bubbles formed during mixing
and pouring, and the residual colloid is smoothed on the surface of the formwork,
as shown in Figure 5h. The polyurethane cement colloid can be solidified for about
60 min, and the formwork can be removed after curing for 24 h at room temperature.
The polyurethane cement composite material has good moldability. Various kinds of
polyurethane cement specimens with different shapes can be prepared according to
specimen molds to meet tests with different mechanical indexes.

The polyurethane cement sample prepared by drying the silicate cement had a smooth,
flat surface with no bubbles or holes. It was a compact and uniform material, and its
macroscopic water content and porosity were 0%.

2.2.2. Steel Wire Rope

Small-diameter wire rope with high strength, low creep rate, and good ductility was
selected for this strengthening method. Galvanized steel wire rope (6 × 7 + IWS) with a
diameter of 4 mm was used in actual bridge one. The cross-sectional area was 12.56 mm2,
and the designed ultimate strength was 1250 MPa.

A tensile test was conducted on the steel wire rope, as shown in Figure 6. It could
be seen that the failure process of the steel wire rope involved each component strand
breaking in turn, which gave a scattered flower shape.
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3. Details and Damage of Actual Bridges
3.1. Project Overview of Actual Bridges

Actual bridge one was completed and opened to traffic in 1989, and the front and
side views and layout of the bridge are shown in Figure 7. The total length of bridge one
was 64.8 m with three spans, and the width of the bridge deck was 8 m with a 2 × 0.5 m
guardrail and 7 m carriageway. The superstructure adopted prefabricated, reinforced-
concrete, simply-supported T-shape beams, each with a span of 20 m. The substructure
adopted piers (abutments) with one bend cap and two columns. Two bored piles were used
for each pier (abutment) foundation. The bridge deck pavement adopted asphalt concrete
with a thickness of 13 cm. The design load of actual bride one was Vehicle-20 grade load
according to the General Specifications for Design of Highway Bridges and Culverts (JTJ
021-89) [50], as shown in Figure 8.
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Figure 8. Vehicle-20 grade load.

Actual bridge two was completed and opened to traffic in 1980s, and the front view
and layout of bridge two is shown in Figure 9. The total length of bridge two was 144.8 m
with seven spans, and the width of the bridge deck was 11.5 m with a 0.5 m guardrail, 9.5 m
carriageway, and 1.5 m sidewalk. The superstructure adopted prefabricated, reinforced-
concrete, simply-supported T-shape beams, each with a span of 20 m. The substructure
adopted piers (abutments) with one bend cap and two columns. Two bored piles were used
for each pier (abutment) foundation. The bridge deck pavement adopted asphalt concrete
with a thickness of 10 cm. The design load of actual bridge two was Vehicle-20 grade load,
as shown in Figure 8.
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Through field measurement data and the original data of the two bridges, it could be
seen that the cross-sectional size and reinforcement information of the T-beams of actual
bridges one and two were the same. There were five and seven T-beams in actual bridges
one and two in the transverse direction, respectively. The height of the T-beams was 1.3 m,
the width of the top plate was 1.6 m, and the thickness of the web was 0.18 m. The layout
of the T-beam structure (taking bridge one as an example) is shown in Figure 10a.

The strength of the concrete of the two actual bridges was about C35, which was
determined using the rebound method.

The reinforcement details of the T-beams is shown in Figure 10b. Each T-beam was
equipped with 8 steel bars with diameters of 32 mm and 2 steel bars of 16 mm in the
longitudinal direction at the bottom, which were grade II type with a standard strength
of 335 MPa. The numbers of the longitudinal steel bars were N1, N2, N3, N4, and N6.
Two N1 bars passed through the bearing center of the T-beam end located at the lowest
layer, and the remaining 8 bars (N2, N3, N4 and N6) were bent at corresponding positions
according to the bending moment envelope in the longitudinal direction. N5 was the
erection reinforcement located at the top, which was grade II type with a diameter of
32 mm. The stirrups of N14 and N15 were round bars with diameters of 8 mm, which
were grade I type with a standard strength of 235 MPa. The stirrups were equipped with
2 numbers near the bearing and 1 number near the mid-span. The diagonal reinforcements
of N7, N8, N9, N10, and N11 were equipped in the shear span areas according to the tensile
principal stress, which were grade II type with a diameter of 16 mm.

3.2. T-Beam Damage Condition of Actual Bridges
3.2.1. T-Beam Damage Condition of Actual Bridge One

There were inclined cracks in the shear span areas of the T-beams of actual bridge one,
as shown in Figure 11. There was other damage in the T-beams, such as exposed reinforced
bars and corrosion expansion of the reinforced bars. The angles of the inclined cracks were
between 20◦ and 55◦ with spacing of 15 to 25 cm, and the crack width varied in the range
of 0.15 to 0.4 mm. The inclined cracks were evenly distributed in the shear span areas, and
the average crack spacing was 54 cm.

3.2.2. T-Beam Damage Condition of Actual Bridge Two

There were inclined cracks in the shear span areas of the T-beams of actual bridge
two, as shown in Figure 12. There was other damage in the T-beams, such as exposed
reinforced bars and corrosion. The angles of the inclined cracks were between 15◦ and
50◦ with spacing of 25 to 35 cm, and the crack width varied in the range of 0.11 to 0.3 mm.
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The inclined cracks were evenly distributed in the shear span areas, and the average crack
spacing was 59 cm.
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Figure 10. Structure layout and reinforcement information of T-beam: (a) T-beam structure layout;
(b) reinforcement details (cm).

Comparing and analyzing the crack distributions of actual bridges one and two in
Figures 11 and 12 showed that the number of cracks in the T-beams of actual bridge one
was much greater than that of actual bridge two, so it could be seen that the degree of
damage to actual bridge one was greater than that to actual bridge two.
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4. T-Beam Shear Strengthening Scheme of Actual Bridges
4.1. Strengthening Scheme of Actual Bridge One

Actual bridge one was strengthened by a composite method of prestressed steel wire
rope embedded in polyurethane cement (PSWR-PUC). Prestressed steel wire ropes and
polyurethane cement were added to the shear span areas of the T-beams, as shown in
Figure 13. The main steps of the PSWR-PUC strengthening method in the shear span areas
of actual bridge one were as follows:

(1) Chiseling and installation of anchorage and conner plates. The concrete should be
chiseled in the shear span areas, then anchorage devices and corner steel plates
are installed at the tops and bottoms of the T-beam webs, respectively, as shown in
Figure 14. For the convenience of tensioning the steel wire ropes, a distance is reserved
between the anchorage device and the top plate of the T-beam.

(2) Tensioning and anchoring of steel wire rope. The prestress level of the steel wire
rope should be kept between 0.35 and 0.45. The steel wire rope is tensioned by hand-
pulling a chain hoist crane (as shown in Figure 15b) and anchored with an aluminum
sleeve anchor head (as shown in Figure 15a). The tensioning force is controlled by a
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tension sensor (as shown in Figure 15b). The model of tension display device is V4806,
produced by Mingzhu Sensor Co., Ltd. in Bengbu, China

(3) Pouring polyurethane cement. First, the polyurethane cement is prepared according to
the requirements. Then, the polyurethane cement should be casted into the prepared
formwork in the shear span area of the T-beam. The polyurethane cement can be
cured in a natural environment at normal temperature, and the formwork can be
removed after 24 h.

4.2. Strengthening Scheme of Actual Bridge Two

Actual bridge two was strengthened by the bonded steel plate method. Steel plate
strips were pasted on both sides of the T-beam web in shear span area, as shown in Figure 16.
The main steps of the bonded steel plate strengthening method in the shear span areas of
actual bridge two were as follows:
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(1) Concrete surface treatment and drilling in shear span areas. The concrete should be
ground and roughened in the areas where the steel plates are pasted. An air drill
is used for concrete drilling. In order to prevent the original beam’s reinforced bars
from being damaged during drilling, the drilling position should kept away from the
reinforced bars. A steel bar position locator (the model is HC-GY71S, produced by
Haichuang High Technology Co., Ltd. in Beijing, China) can be used to detect the
reinforced bars’ positions before drilling, as shown in Figure 17.

(2) Bonding steel plates. First, steel plate strips are bonded to the concrete surface by
epoxy resin adhesive, and then high-strength bolts should be tightened to anchor the
steel plates, as shown in Figure 18.

(3) Anticorrosion treatment of steel plates. After removing the oil and rust on the steel
plate’s surface, antirust paint can be brushed on.

This study used a static load test, and the vibration amplitude of heavy vehicles was
small and low frequency. At the same time, externally bonded steel plate reinforcement
usually has high stiffness and strength and can withstand a certain degree of vibration and
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load. Therefore, the vehicle vibrations in this test will not produce a significant dynamic
response to the strength of the externally bonded steel plate reinforcement and will not
affect the accuracy of the test results.
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5. Verification of Strengthening Effect

In order to comprehensively evaluate the mechanical performance of the two actual
bridges, static load tests were carried out before and after strengthening. To verify the
shear strengthening effect of the prestressed steel wire rope embedded in polyurethane
cement and the bonded steel plates, it was necessary to compare the deflections and strains
in the T-beams strengthened by the two different methods using static load tests. Deflection
at mid-span and principal strain near the support point were measured during the static
load tests.

To analyze the influence of temperature on the strengthening effect of prestressed steel
wire rope embedded in polyurethane cement, static load tests were carried out under low-
and high-temperature conditions on actual bridge one after strengthening.

5.1. Static Load Test Process
5.1.1. Test Item and Load

Reinforced concrete T-beams with spans of 20 m were used for the superstructures
of the two actual bridges. Five and seven T-beams were arranged in bridges one and two
in the transverse direction, respectively. According to the Load Test Method for Highway
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Bridge (JTG J21-01-2015) [51], static load tests were carried out. The first span was selected
for the static load tests of the two actual bridges. Deflections and strains in the T-beams
were measured during the static load tests. T-beam deflection at mid-span and principal
strain of the concrete (polyurethane cement or steel plate) in the shear span area were the
main test items. The test loading conditions and test contents are listed in Table 2.

Table 2. Loading conditions and test contents.

No. Loading Condition Loading Location Test Contents

1 Eccentric loading Mid-span Deflection
2 Symmetric loading Mid-span Deflection
3 Eccentric loading Area near bearing Principal strain
4 Symmetric loading Area near bearing Principal strain

In order to meet the requirements of the two bridges after strengthening, the two actual
bridges were tested by Highway Grade II Load according to the General Specifications
for Design of Highway Bridges and Culverts (JTG D60-2004) [52]. The Highway Grade
II Loads for the two actual bridges are shown in Figure 19. The load test efficiency, η,
should be between 0.95 and 1.05 during determination of the weight in the test load process.
Three-axle trucks were used as the test loads during the static load tests. The loading
tests were carried out with two three-axle trucks, as shown in Figure 20. MIDAS/Civil
software version 2021 v1.1 (which is developed by MIDAS Information Technology Co.,
Ltd., in Beijing, China) (Supplementary Materials) was used to establish the spatial grid
finite element models of the two actual bridges in order to determine the weights of the
two trucks. The spatial grid finite element models are shown in Figure 21. The axle load
and spacing of the test trucks are listed in Table 3.
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Table 3. Test truck parameters before and after strengthening of actual bridge one.

Truck No.
Load (kN) Wheelbase (m)

P1 P2 P3 P a b c

Before strengthening 1 80.0 160.0 160.0 400 3.95 1.35 1.8
2 81.0 162.0 162.0 405 3.95 1.35 1.8

After strengthening 1 81.6 163.2 163.2 408 3.95 1.35 1.8
2 79.6 159.2 159.2 398 3.95 1.35 1.8

This paper used a higher-order numerical analysis method in conjunction with MIDAS
finite element analysis software to provide a more comprehensive and accurate structural
analysis and solution. The Finite Difference Method was used to discretize the continuous
domain [53], the Bezier Multi-Step Method was used to solve the initial value problems
of ordinary differential equations [54], and the Differential Quadrature Method was used
to transform differential equations into discrete algebraic equations [55]. These methods
provided MIDAS with boundary conditions, constraints, initial conditions, and more
accurate numerical solutions for the simulation and analysis of structures.

5.1.2. Test Loading and Measuring Point Arrangement

(1) Test loading arrangement

The specific loading positions of the test trucks are shown in Figures 22–25. Figure 22
shows the longitudinal loading positions of the test trucks. Deflection in the T-beam at
mid-span position was measured when the central axes of the truck was in mid-span
position. The principal strain in the shear span area of the T-beam was measured when the
rear axes of the truck was 1 m away from the bearing of pier 1. Figures 23 and 24 show the
transverse loading positions of the test trucks on actual bridges one and two, respectively.
Loading photos of actual bridges one and two are shown in Figure 25.
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Figure 25. The loading test process of actual bridges: (a) the loading test process of actual bridge one;
(b) the loading test process of actual bridge two.

(2) Measuring point arrangement

In order to obtain the change in deflection and principal strain in the T-beam before
and after strengthening, displacement sensors were installed at the mid-span positions of
the T-beams and strain sensors were installed in the middle of the T-beam webs near the
bearings. Taking bridge one as an example, Figure 26 shows the relationship between the
loading conditions and the measuring point positions. Figures 27 and 28 show the layout
of the deflection measuring points at mid-span and the principal strain measuring points
near the bearings of actual bridges one and two, respectively.
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5.2. Test Results Analysis and Discussion
5.2.1. Deflection Test Results

The deflection measurement results from the static load tests are listed in Tables 4 and 5
for actual bridges one and two before and after strengthening. Comparisons of the deflection
curves are shown in Figures 29 and 30.

Actual bridge one was shear-strengthened by prestressed steel wire rope embedded in
polyurethane cement (PSWR-PUC). As can be seen from Figure 29 and Table 4, deflections
in the strengthened T-beams were reduced under the action of symmetric or eccentric
load, but reduction degrees of different T-beams were different. Under symmetric load,
deflections in the middle beam were the largest. Deflections in this middle beam were
9.2 and 7.2 mm before and after strengthening, respectively, showing a reduction of 28%.
Under eccentric load, deflections in the loading side beams were larger. Deflections in
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beams 1# and 2# were 10.8 and 10.2 mm before strengthening, respectively. However,
deflections decreased to 8.5 and 8.0 mm after strengthening, which were reductions of 27%
and 28%, respectively.
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Figure 27. Layout of deflection and principal strain measuring points of bridge one: (a) arrangement
of deflection measuring points; (b) arrangement of principal strain measuring points.
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Table 4. Test truck parameters before and after strengthening of actual bridge two.

Truck No.
Load (kN) Wheelbase (m)

P1 P2 P3 P a b c

Before strengthening 1 84.2 168.4 168.4 421 3.5 1.35 1.8
2 83.6 167.2 167.2 418 3.5 1.35 1.8

After strengthening 1 84.8 169.6 169.6 424 3.5 1.35 1.8
2 83.0 166.0 166.0 415 3.5 1.35 1.8
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Table 5. Deflections in actual bridge one before and after strengthening.

Measuring
Point No.

Symmetric Loading Condition (mm) Eccentric Loading Condition (mm)

Before
Strengthening

After
Strengthening

Reduction
Rate

Before
Strengthening

After
Strengthening

Reduction
Rate

D1 6.5 5.4 0.20 10.8 8.5 0.27
D2 8.4 6.7 0.26 10.2 8.0 0.28
D3 9.2 7.2 0.28 9.8 7.7 0.27
D4 8.3 6.3 0.31 7.8 6.1 0.27
D5 6.5 5.2 0.25 6.6 5.0 0.32

Average value 0.26 0.27
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Prestressed steel wire ropes can reduce the widths of inclined cracks in T-beam webs in
shear span areas and can play a role in shear resistance similar to stirrups. The polyurethane
cement layer can increase the shear stiffness by increasing the thicknesses of T-beam webs
and can protect the steel wire ropes. It can limit the adverse effect of shear deformation on
mid-span deflection, thus reducing deflections and improving T-beam capacity by using
the prestressed steel wire rope embedded in polyurethane cement strengthening method.

Actual bridge two was shear-strengthened by bonded steel plates. As can be seen
from Figure 30 and Table 5, deflections in the strengthened T-beams were reduced under
the action of symmetric or eccentric load, but reduction degrees of different T-beams
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were different. Under symmetric load, deflections in the middle beam were the largest.
Deflections in this middle beam were 10.2 and 8.8 mm before and after strengthening,
respectively, showing a reduction of 16%. Under eccentric load, deflections in the loading
side beams were larger. Deflections in beams 1# and 2# were 12.5 and 10.9 mm before
strengthening, respectively. However, deflections decreased to 10.2 and 9.1 mm after
strengthening, which were reductions of 23% and 20%, respectively.

Shear stiffness can be improved by bonded steel plates in shear span areas. This
strengthening method can reduce the adverse effect of shear deformation on mid-span
deflection. Therefore, it can reduce deflections and improve T-beam capacity.

The shear-strengthening effects of the two methods are compared by their deflection
reduction rates in Figure 31. It can be seen from Figure 31 and Tables 4 and 5 that the deflec-
tion reduction rates of actual bridge one strengthened with the PSWR-PUC system were
greater than those of actual bridge two strengthened with bonded steel plates. Figure 32
shows a comparison of the average deflection reduction rates of the different strengthen-
ing methods. The average deflection reduction rates of actual bridge one were 0.26 and
0.27 under symmetrical and eccentric loads, respectively, but those of actual bridge two
were both 0.19 under symmetrical and eccentric load. So the strengthening effects on actual
bridge one were 36.8% and 42.1% higher than those on actual bridge two. Therefore, the
PSWR-PUC method was better than the bonded steel plate method in terms of deflections.
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5.2.2. Principal Strain Test Results

The principal strain measurement results from the static load tests are listed in Tables 6 and 7
for actual bridges one and two before and after strengthening. Comparisons of the principal
strain curves are shown in Figures 33 and 34.

Table 6. Principal strains in actual bridge two before and after strengthening.

Measuring
Point No.

Symmetric Loading Condition (mm) Eccentric Loading Condition (mm)

Before
Strengthening

After
Strengthening

Reduction
Rate

Before
Strengthening

After
Strengthening

Reduction
Rate

D1 6.3 5.4 0.17 12.5 10.2 0.23
D2 7.8 6.3 0.24 10.9 9.1 0.20
D3 9.5 8.1 0.17 9.8 8.2 0.20
D4 10.2 8.8 0.16 8.2 6.8 0.21
D5 9.4 7.8 0.21 7.1 6.1 0.16
D6 7.8 6.5 0.20 5.8 4.8 0.21
D7 6.7 5.5 0.22 4.9 4.2 0.17

Average value 0.19 0.19

Table 7. Principal strains in actual bridge one before and after strengthening.

Measuring
Point No.

Symmetric Loading Condition (µε) Eccentric Loading Condition (µε)

Before
Strengthening

After
Strengthening

Reduction
Rate

Before
Strengthening

After
Strengthening

Reduction
Rate

S1 85 70 0.21 221 187 0.18
S2 128 105 0.22 178 145 0.23
S3 150 124 0.21 138 111 0.24
S4 135 108 0.25 98 78 0.26
S5 90 72 0.25 56 45 0.24

Average value 0.23 0.23
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Figure 34. Comparison of principal strains before and after strengthening of actual bridge two:
(a) principal strains near bearings under symmetric loading; (b) principal strains near bearings under
eccentric loading.

Actual bridge one was shear-strengthened by prestressed steel wire rope embedded
in polyurethane cement (PSWR-PUC). As can be seen from Figure 33 and Table 6, the
principal strains in the strengthened T-beams were reduced under the action of symmetric
or eccentric load, but the reduction degrees in the different T-beams were different. Under
symmetric load, the principal strains in the middle beam were the largest. The principal
strains in this middle beam were 150 and 124 µε before and after strengthening, respectively,
which showed a reduction of 21%. Under eccentric load, the principal strains in the loading
side beams were larger. The principal strains in beams 1# and 2# were 221 and 178 µε before
strengthening, respectively. However, the principal strains decreased to 187 and 145 µε
after strengthening, which showed reductions of 18% and 23%, respectively. The principal
strain reduction showed an increase in T-beam shear capacity using the prestressed steel
wire rope embedded in polyurethane cement strengthening method.

Actual bridge two was shear-strengthened by bonded steel plates. As can be seen
from Figure 34 and Table 7, the principal strains in the strengthened T-beams were reduced
under the action of symmetric or eccentric load, but the reduction degrees in the different
T-beams were different. Under symmetric load, the principal strains in the middle beam
were the largest. The principal strains in this middle beam were 167 and 145 µε before
and after strengthening, respectively, which showed a reduction of 15%. Under eccentric
load, the principal strains in the loading side beams were larger. The principal strains in
beams 1# and 2# were 245 and 202 µε before strengthening, respectively. However, the
principal strains decreased to 213 and 176 µε after strengthening, which showed reductions
of 15%. The principal strain reduction showed an increase in T-beam shear capacity with
the bonded steel plates.

The shear strengthening effects of the two methods are compared by their principal
strain reduction rates in Figure 35. It can be seen from Figure 35 and Tables 6 and 7 that
the principal strain reduction rates of actual bridge one strengthened with the PSWR-PUC
system were greater than those of actual bridge two strengthened with bonded steel plates.
Figure 36 shows a comparison of the average principal strain reduction rates of the different
strengthening methods. The average principal strain reduction rates of actual bridge one
were both 0.23 under symmetrical and eccentric loading, but those of actual bridge two
were 0.15 and 0.19, respectively. The strengthening effects on actual bridge one were 53.3%
and 43.3% higher than those on actual bridge two. Therefore, the PSWR-PUC method was
better than the bonded steel plates method in terms of principal strains.
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5.2.3. Temperature Effect on T-Beam Strengthened by PSWR-PUC

In comparing the different strengthening methods, the static load test data were
measured at noon. In order to analyze the temperature influence on the strengthening
effect of PSWR-PUC, static load tests were carried out twice for actual bridge one under
lower and higher temperature conditions after strengthening. The lower temperature
condition was in the morning between 4:00 to 5:30 with a temperature of 9 ◦C, and the
higher temperature condition was at noon between 12:00 to 13:30 with a temperature of
19 ◦C. Tables 8 and 9 list the deflections and principal strains in the strengthened T-beams
at different temperatures, respectively.

It can be seen from Table 8 that deflections in the strengthened T-beam increased with
increasing temperature. Under the action of symmetric or eccentric load, the average values
of the deflection increase rate were 2.3% and 2.9%, and the maximum values were 3.1%
and 3.7%, respectively. The temperature influence on deflection was less than 5%.

It can be seen from Table 9 that the principal strains in the strengthened T-beams
increased with increasing temperature. Under the action of symmetric or eccentric load,
the average values of principal strain increase rate were 2.9% and 3.8%, and the maximum
values were 4.3% and 4.7%, respectively. The temperature influence on principal strain was
also less than 5%.

The temperature influences on deflection and principal strain in T-beams strengthened
with PSWR-PUC were less than 5%. Therefore, the influence of temperature was slight.
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Table 8. Principal strains in actual bridge two before and after strengthening.

Measuring
Point No.

Symmetric Loading Condition (µε) Eccentric Loading Condition (µε)

Before
Strengthening

After
Strengthening

Reduction
Rate

Before
Strengthening

After
Strengthening

Reduction
Rate

S1 80 68 0.18 245 213 0.15
S2 112 94 0.19 202 176 0.15
S3 138 121 0.14 162 136 0.19
S4 167 145 0.15 123 110 0.12
S5 140 124 0.13 89 77 0.16
S6 112 96 0.17 57 48 0.19
S7 78 66 0.18 32 28 0.14

Average value 0.15 40 0.16

Table 9. Deflections in actual bridge one at different temperatures after strengthening.

Measuring
Point No.

Symmetric Loading Condition (mm) Eccentric Loading Condition (mm)

9 ◦C 19 ◦C Rate of Change 9 ◦C 19 ◦C Rate of Change

D1 5.3 5.4 1.9% 8.2 8.5 3.7%
D2 6.5 6.7 3.1% 7.8 8.0 2.6%
D3 7.0 7.2 2.9% 7.5 7.7 2.7%
D4 6.2 6.3 1.6% 5.9 6.1 3.4%
D5 5.1 5.2 2.0% 4.9 5.0 2.0%

Average value 2.3% 2.9%

5.2.4. Theoretical Value Analysis of T-Beam Strengthened by PSWR-PUC

Above, the measured values of actual bridges one and two were compared, and the
strengthening effects of the two different strengthening methods were verified. However,
the theoretical values of actual bridge one strengthened with PSWR-PUC were not analyzed.
Tables 10 and 11 list the theoretical and measured values of deflections and principal strains
in actual bridge one before and after strengthening.

Table 10. Principal strains in actual bridge one at different temperatures after strengthening.

Measuring
Point No.

Symmetric Loading Condition (µε) Eccentric Loading Condition (µε)

9 ◦C 19 ◦C Rate of Change 9 ◦C 19 ◦C Rate of Change

S1 68 70 2.9% 181 187 3.3%
S2 103 105 1.9% 139 145 4.3%
S3 121 124 2.5% 108 111 2.8%
S4 105 108 2.9% 75 78 4.0%
S5 69 72 4.3% 43 45 4.7%

Average value 2.9% 3.8%

The theoretical and measured deflection values of actual bridge one before and after
strengthening are compared and analyzed in Table 10 and Figure 37. Under the action of
symmetric or eccentric load, the theoretical values were less than the measured values of
the actual bridge before strengthening. Additionally, the ratios between the theoretical and
measured values were 0.90~0.97 under symmetric load and 0.92~0.94 under eccentric load,
respectively. The results showed that the bearing capacity of actual bridge one did not meet
Highway Grade II Load requirements before strengthening.
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Table 11. Measured and theoretical deflections in actual bridge one before and after strengthening.

Measuring
Point No.

Loading
Case

Before Strengthening (mm) After Strengthening (mm)

Measured
Value

Theoretical
Value

Theoretical
Value/Measured

Value

Measured
Value

Theoretical
Value

Theoretical
Value/Measured

Value

D1
Symmetric

loading
condition

6.5 6.2 0.95 5.4 5.9 1.09
D2 8.4 7.7 0.92 6.7 7.4 1.10
D3 9.2 8.4 0.91 7.2 8.1 1.13
D4 8.3 7.5 0.90 6.3 7.2 1.14
D5 6.5 6.3 0.97 5.2 5.9 1.13

D1
Eccentric
loading

condition

10.8 9.9 0.92 8.5 9.5 1.12
D2 10.2 9.4 0.92 8.0 8.9 1.11
D3 9.8 9.1 0.93 7.7 8.8 1.14
D4 7.8 7.2 0.92 6.1 6.8 1.11
D5 6.6 6.2 0.94 5.0 5.8 1.16
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However, the theoretical values were larger than the measured values of actual bridge
one after strengthening under the action of symmetric or eccentric load, and the ratios
between the theoretical and measured values were 1.09~1.14 under symmetric load and
1.11~1.16 under eccentric load, respectively. The results showed that the bearing capacity
of actual bridge one could meet Highway Grade II Load requirements after strengthening.

The theoretical and measured principal strain values of actual bridge one before and
after strengthening are compared and analyzed in Table 12 and Figure 38. Under the action
of symmetric or eccentric load, the theoretical values were less than the measured values of
actual bridge one before strengthening. Additionally, the ratios between the theoretical and
measured values were 0.89~0.94 under symmetric load and 0.90~0.92 under eccentric load,
respectively. The results showed that the bearing capacity of actual bridge one could not
meet Highway Grade II Load requirements before strengthening.

However, the theoretical values were larger than the measured values of actual bridge
one after strengthening under the action of symmetric or eccentric load, and the ratios
between the theoretical and measured values were 1.05~1.07 under symmetric load and
1.04~1.09 under eccentric load, respectively. The results showed that the bearing capacity
of actual bridge one could meet Highway Grade II Load requirements after strengthening.

Comparing the theoretical values of deflection and principal strain before and af-
ter strengthening, the theoretical values after strengthening were less than those before
strengthening, which showed that the bearing capacity of the reinforced concrete T-beams
was improved after strengthening.
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Table 12. Measured and theoretical principal strains in actual bridge one before and after strengthening.

Measuring
Point No.

Loading
Case

Before Strengthening (µε) After Strengthening (µε)

Measured
Value

Theoretical
Value

Theoretical
Value/Measured

Value

Measured
Value

Theoretical
Value

Theoretical
Value/Measured

Value

S1
Symmetric

loading
condition

85 80 0.94 70 75 1.07
S2 128 120 0.94 105 110 1.05
S3 150 140 0.93 124 132 1.06
S4 135 120 0.89 108 115 1.06
S5 90 80 0.89 72 76 1.06

S1
Eccentric
loading

condition

221 200 0.90 187 195 1.04
S2 178 164 0.92 145 155 1.07
S3 138 125 0.91 111 118 1.06
S4 98 90 0.92 78 85 1.09
S5 56 51 0.91 45 48 1.07
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6. Conclusions

Development and implementation of a novel PSWR-PUC system for bridge shear
strengthening were presented. Two actual bridges were shear-strengthened by the PSWR-
PUC system and externally bonded steel plates, respectively. Static load tests were carried
out before and after strengthening. Deflections and principal strains were compared for the
two strengthening methods.

(1) Deflections and principal strains in T-beams were significantly reduced after strength-
ening by the PSWR-PUC system and externally bonded steel plates. The two strength-
ening methods showed great improvements in shear capacity.

(2) Compared to T-beams strengthened by externally bonded steel plates, the deflection
and principal strain reduction rates were larger in T-beams strengthened by the PSWR-
PUC system. The shear strengthening effect of the PSWR-PUC system was better than
that of externally bonded steel plates. The strengthening efficiency of the PSWR-PUC
method was significantly improved compared with the traditional method of bonded
steel plates.

(3) T-beams reinforced by the PSWR-PUC system will see an increase in deflection and
strain when the temperature rises, but this increase is less than 5% and will not have
an impact on the reinforcement’s effectiveness. Environmental temperature has little
effect on the strengthening effect of the PSWR-PUC system.
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(4) The measured and theoretical bridge deflection and strain values were compared
before and after PSWR-PUC strengthening. Deflection and strain after reinforcement
had theoretical values that were higher than the measured ones. Bridges made of
reinforced concrete now have a much higher bearing capacity thanks to the PSWR-
PUC system.

In this study, the shear strengthening effect of PSWR-PUC was investigated by con-
ducting static load tests on T-girder bridges. The fact that bridge structures usually have
long service lives allows further research on the durability and long-term behavior of the
reinforced structures, considering the effects of material aging and environmental factors
on structural performance.

Supplementary Materials: The following supporting information can be downloaded at: https://
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code for Midas of bridge 2.

Author Contributions: Conceptualization, B.L., H.L. and H.G.; Methodology, B.L.; Software, B.L.;
Validation, H.G.; Formal analysis, B.L.; Investigation, J.J.; Data curation, J.J.; Writing—original draft,
B.L.; Writing—review and editing, B.L. and H.G.; Supervision, H.L.; Funding acquisition, H.L. and
H.G. All authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge the financial support provided by basic scientific research
expenses at Heilongjiang Provincial College and University (2022-KYYWF-1094, 2021-KYYWF-0033),
the National Natural Science Foundation of China (51678221), Key Laboratory of Functional Inorganic
Material Chemistry (Heilongjiang University), Ministry of Education and Heilongjiang Provincial
Universities Central Support Local Universities Reform and Development Funding, and the Key
Research and Development Plan Guidance Project in Heilongjiang Province (GZ20220083).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data derived from the current study can be provided to readers
upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fiorillo, G.; Ghosn, M. Risk-Based Importance Factors for Bridge Networks under Highway Traffic Loads. Struct. Infrastruct. Eng.

2019, 15, 113–126. [CrossRef]
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