
Citation: Kraiem, H.; Touti, E.;

Alanazi, A.; Agwa, A.M.; Alanazi,

T.I.; Jamli, M.; Sbita, L. Parameters

Identification of Photovoltaic Cell

and Module Models Using Modified

Social Group Optimization

Algorithm. Sustainability 2023, 15,

10510. https://doi.org/10.3390/

su151310510

Academic Editor: Mohamed

A. Mohamed

Received: 9 May 2023

Revised: 17 June 2023

Accepted: 21 June 2023

Published: 4 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Parameters Identification of Photovoltaic Cell and Module
Models Using Modified Social Group Optimization Algorithm
Habib Kraiem 1,2,*, Ezzeddine Touti 1,3,* , Abdulaziz Alanazi 1 , Ahmed M. Agwa 1,4, Tarek I. Alanazi 5 ,
Mohamed Jamli 3 and Lassaad Sbita 2

1 Department of Electrical Engineering, College of Engineering, Northern Border University,
Arar 73222, Saudi Arabia

2 Processes, Energy, Environment and Electrical Systems, National Engineering School of Gabes,
University of Gabes, Gabes 6029, Tunisia

3 Laboratory of Industrial Systems and Renewable Energies, National Higher Engineering School of Tunis,
Tunis 1008, Tunisia

4 Department of Electrical Engineering, Faculty of Engineering, Al-Azhar University, Cairo 11651, Egypt
5 Department of Physics, College of Science, Northern Border University, Arar 73222, Saudi Arabia
* Correspondence: alhabeeb.kareem@nbu.edu.sa (H.K.); esseddine.touti@nbu.edu.sa (E.T.)

Abstract: Photovoltaic systems have become more attractive alternatives to be integrated into elec-
trical power systems. Therefore, PV cells have gained immense interest in studies related to their
operation. A photovoltaic module’s performance can be optimized by identifying the parameters of a
photovoltaic cell to understand its behavior and simulate its characteristics from a given mathematical
model. This work aims to extract and identify the parameters of photovoltaic cells using a novel
metaheuristic algorithm named Modified Social Group Optimization (MSGO). First, a comparative
study was carried out based on various technologies and models of photovoltaic modules. Then,
the proposed MSGO algorithm was tested on a monocrystalline type of panel with its single-diode
and double-diode models. Then, it was tested on an amorphous type of photovoltaic cell (hydro-
genated amorphous silicon (a-Si: H)). Finally, an experimental validation was carried out to test the
proposed MSGO algorithm and identify the parameters of the polycrystalline type of panel. All
obtained results were compared to previous research findings. The present study showed that the
MSGO is highly competitive and demonstrates better efficiency in parameter identification compared
to other optimization algorithms. The Individual Absolute Error (IAE) obtained by the MSGO is
better than the other errors for most measurement values in the case of single- and double-diode
models. Relatedly, the average fitness function obtained by the MSGO algorithm has the fastest
convergence rate.

Keywords: photovoltaic cells; modeling; parameters estimation; MSGO algorithm; optimization

1. Introduction

In recent decades, due to their inexhaustibility, non-polluting nature, and highly adapt-
able properties to decentralized generation, renewable energies have been the ecological
alternative to fossil fuels and nuclear energy [1,2]. For these reasons, advanced technologies
are currently being developed to benefit from these types of energy sources. Photovoltaic
(PV) panels, which generate electricity using the sun’s energy as a renewable energy source,
are one of the most prevalent forms of renewable energy [3]. Solar energy is growing
exponentially. Its main characteristic is to be a form of decentralized production, making it
possible to meet strong demand from citizens and local authorities and to produce energy
where it is consumed. Consequently, significant losses can be avoided during energy trans-
portation. The PV industry has been overgrowing in recent years [4] because it is not only
inexhaustible but also silent and non-disturbing for residents, unlike wind turbines which
cause visual and acoustic disturbances. In addition, the market to produce electricity from
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solar energy is proliferating [5,6]. In this context, the importance of photovoltaic generators
connected to the electricity distribution network is growing rapidly [7]. Hence, assessing
and studying the performance of the photovoltaic module, which is the fundamental com-
ponent of these generators, appears to be highly significant [8]. The manufacturers typically
tend to provide only limited operational data for PV panels. These data are only available
under standard conditions of 1000 W/m2 irradiation, 25 ◦C cell temperature, and air mass
of 1.5 [9]. Therefore, it is essential to understand each cell element’s physical properties
and electrical characteristics before developing an equivalent circuit for a photovoltaic cell.
Performance evaluation of PV modules and the design of energy systems are derived from
the electrical characteristic current–voltage (I–V) of the modules under different radiation
levels and different temperatures of the PV cell [10,11]. There are three forms of solar cell
technologies available on the market: amorphous, monocrystalline, and polycrystalline [12].
Monocrystalline and polycrystalline cells are found in rigid panels. The difference between
the two types is mainly based on their efficiency. To achieve maximum performance,
crystalline panels should be installed perpendicular to the sun’s rays. Generally abbrevi-
ated a-Si, amorphous silicon is the non-crystallized allotropic variety of silicon; crystalline
structures of the a-Si are formed from disordered atoms that are not arranged regularly.
Thin layers of amorphous silicon can be deposited at low temperatures on a wide variety
of substrates. Hence, a wide range of microelectronic applications can be envisaged. The
advantage of amorphous silicon cells is that they are environmentally friendly because
they do not use toxic heavy metals, such as cadmium or lead. Compared to amorphous
cells, crystalline panels do not perform as well in partial shadowing, and they lose a tiny
percentage of their output as the temperature rises over 25 ◦C. Various equations can be
used to model PV cells and modules approximated to differing degrees of accuracy from
the actual device. This modeling offers essential advantages, such as ease of use, thanks
to the equivalent electrical circuit and the popularization of the system properties. There-
fore, the understanding of complex phenomena will be facilitated. Therefore, solar cells
are considered power generators and will be modeled by equivalent circuits and electric
models. The most commonly used are the single-diode model [13], the model with two
diodes [14], and the one with three diodes [15]. Each of these models has some unknown
parameters that characterize and describe the behavior of a PV generator. In addition,
the behavior of PV generators is influenced by various parameters related to electrical
modeling [16]. The power output of a photovoltaic (PV) cell is influenced by several factors
such as the orientation of the panels, quality factor, kind of material, absorbent layer, and
optical window. The optimal orientation of panels should be perpendicular to the sun’s
direction to maximize the power output. The quality factor of the cell is a measure of its
efficiency to convert sunlight into electricity, and it involves a trade-off between efficiency
and cost. The choices of material and the thickness and composition of the absorbent layer
also play a significant role in determining the power output. Additionally, optimizing
the optical window requires a balance between light transmission and absorption by the
window. The PV cell’s performance is interdependent on various parameters, such as
efficiency, open-circuit voltage, fill factor, short-circuit current, and maximum power point.
These parameters are interdependent, and there are constraints between them that must
be considered to optimize the cell’s performance. Hence, understanding the constraints
between the PV cell parameters is vital for designing efficient PV systems.

In order to optimize the various characteristics and simulate the behavior of a PV
generator, it is crucial to identify the physical mechanisms at play within it. The complexity
of the model is determined by the number of parameters that need to be identified. The
ideal model includes a current source for solar power input and a diode for the PN junction,
but additional components can be added to better represent the PV cell’s behavior in
specific operational situations. Various methods of parameter identification have been
studied in the literature, including numerical, analytical, deterministic, and metaheuristic
methods. Numerical methods utilize mathematical algorithms to iteratively optimize
parameter values using measured or simulated data. These methods employ numerical
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optimization techniques, including iterative algorithms and metaheuristic approaches,
to minimize the discrepancy between model predictions and observed data. Numerical
methods offer flexibility in handling complex and nonlinear problems [17,18]. Analytical
methods involve analyzing mathematical formulas to identify the parameters of PV models.
These methods are characterized by their short execution time and simplicity. However,
their solutions are not precise [19,20]. The deterministic methods have major drawbacks,
such as the high sensitivity to the initial hypotheses and the tendency of these algorithms
to converge to the local optimum [21]. Moreover, they depend on the convexity of the
model [22]. However, the models of photovoltaic cells are multimodal and characterized by
nonlinearities. Recently, metaheuristic methods seem to be good potential alternatives for
extracting parameters from PV models [23]. Indeed, they overcome the shortcomings of the
analytical and deterministic methods already cited. In the following, we mention some of
the most popular metaheuristic methods: Genetic Algorithm (GA) [24], artificial bee colony
algorithm (ABC) [25], differential evolution algorithm (DE) [26], bird mating optimization
(BMO) [27], Ant Lion Optimizer (ALO) [28], bacterial foraging optimization (BFO) [29],
gray wolf optimization (GWO) [30], whale optimization algorithm (WOA) [31], Slime
Mould Algorithm (SMA) [32], Sal Swarm Algorithm (SSA) [33], and Coyote Optimization
Algorithm (COA) [15].

The primary objective of this study is to investigate and analyze the efficiency of a
novel algorithm called Modified Social Group Optimization (MSGO) [34] for the extraction
and identification of the parameters of photovoltaic cells. To provide a comprehensive
assessment, a comparative study was conducted, incorporating various technologies and
models of photovoltaic panel cells.

In the initial phase of this investigation, the proposed algorithm was applied to the
monocrystalline photovoltaic panel of RTC France Company, considering both single-
and double-diode cell models. The outcomes obtained through the MSGO algorithm
were compared with results from previous studies utilizing alternative metaheuristic al-
gorithms, such as the Nelder–Mead method and modified particle swarm optimization
(NM–MPSO) [35], Levenberg–Marquardt algorithm combined with Simulated Annealing
(LMSA) [36], ABC [21], biogeography-based optimization algorithm with mutation strate-
gies (BBO-M) [37], improved adaptive differential evolution (Rcr-IJADE) [38], artificial bee
swarm optimization algorithm (ABSO) [39], and chaotic asexual reproduction optimization
(CARO) [40]. All these algorithms were tested on the same photovoltaic panel, under
identical lighting and temperature conditions (temperature of 33 ◦C and irradiation of
1000 W/m2).

Subsequently, the proposed algorithm was also evaluated on a flexible photovoltaic
panel composed of hydrogenated amorphous silicon (a-Si: H). The obtained results were
compared with the findings presented by authors from [41], who based their research
on the optimization algorithms Quasi-Newton Method (QNM) and the Self-Organizing
Migrating Algorithm (SOMA).

To validate the results obtained by the proposed MSGO algorithm, an experimental
study was performed on the TITAN-12-50 panel, utilizing polycrystalline cells [42]. Finally,
the paper concludes with a comparative analysis between different optimization algorithms
employed for photovoltaic parameter extraction. The results obtained through the proposed
MSGO algorithm are compared with those derived from other algorithms such as the WOA,
SSA, Sine Cosine Algorithm (SCA), Virus Colony Search Algorithm (VCS), Gravitational
Search Algorithm (GSA), and Ant Lion Optimizer (ALO). Throughout the remainder of
this paper, three sections are described: Section 2 introduces PV models and problem
formulation. Section 3 details the proposed MSGO algorithm. Section 4 treats the study of
the MSGO algorithm efficiency by testing various pieces of technology and PV cell models.
In the last section, the obtained results are compared with those given in previous studies.
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2. Mathematical PV Model Analysis

The evaluation of the PV module performance and the power system design is based
on the current–voltage electrical characteristic of the modules under different radiation
levels and various temperatures of the PV cells. It is possible to model PV cells and modules
by means of equations that approximate the physical cell to varying degrees. Several
electrical models are proposed in the literature for simulating PV cells under different
conditions. The model’s complexity varies depending on the number of parameters (Rs,
Rsh, etc.) to be considered. Every model is basically refinements of the ideal model, which
consists of a diode that represents the PN junction and a current source that represents
incident solar power.

It is possible to add several additional elements to provide a better representation
of the behavior of PV cells in some operating areas [43]. Single-diode models (SDMs),
double-diode models (DDMs), and three-diode models (TDMs) are the most used models.
Figure 1a represents the single-diode model, which is regarded as the most popular model.
It is widely used because of its simplicity. It also provides high precision and simplicity in
the power generation quadrant.
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The single-diode model has undergone various advancements that have led to the
development of more accurate models, such as the Bishop model, which explains the
behavior of the PV cell under reverse polarization. The double-diode model, shown in
Figure 1b, considers losses due to various resistances and devices in the different electric
components that constitute the circuit [44]. An enhanced model considers the effects of
grain boundaries and leakage currents. This model involves three diodes as it is shown in
Figure 1c. Although this model meets most of the physical requirements of solar cells, it
involves computing nine parameters that require exceptionally high numerical execution.
In addition, dynamic models are proposed by introducing the capacity to model the
dynamic behavior of the PV cell. This model type is shown in Figure 1d. All these models
differ in the number of parameters required for computing the I–V characteristic [45].

Iph is the photo-generated current source; ID1, ID2, ID3 are the currents of diodes D1,
D2, and D3; Rp is the shunt resistance; Rs is the series resistance; I is the output current; and
V is the output voltage.
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2.1. Mathematical Development
2.1.1. Crystalline Cells

From the equivalent circuit (Figure 1a), it is evident that the current produced by the
solar cell is equal to that produced by the current source (Iph), minus that which flows
through the diode (Id), minus that which flows through the shunt resistor (Ip).

I = Iph − Ki Id − Ip (1)

where Ki =


K1 =

[
1 0 0

]
, i = 1 in case of SDM

K2 =
[
1 1 0

]
, i = 2 in case of DDM

K3 =
[
1 1 1

]
, i = 3 in case of TDM

, where Id =

Id1
Id2
Id3

, and Ip = V+Rs I
Rp

.

The current in the jth diode is given by

Idj = Isdj

(
e
(

q(V+Rs I)
njKT )

− 1

)
, (j = 1, 2, 3) (2)

Then, the current given in Equation (1) is given by Equation (3), where ISDM, IDDM, and
ITDM are the total output current when considering the SDM, DDM, and TDM, respectively.



ISDM = Iph − Isd

(
e(

q(V+Rs I)
n1KT ) − 1

)
− V+Rs I

Rp

IDDM = Iph − Isd1

[
e

q(V+Rs I)
n1KT − 1

]
− Isd2

[
e

q(V+Rs I)
n2KT − 1

]
− V+Rs I

Rp

ITDM = Iph − Isd1

[
e

q(V+Rs I)
n1KT − 1

]
− Isd2

[
e

q(V+Rs I)
n2KT − 1

]
− Isd3

[
e

q(V+Rs I)
n3KT − 1

]
− V+Rs I

Rp

(3)
where n1, n2, and n3 are the ideality factors of the diodes D1, D2, and D3; K is the Boltzmann
constant (1.380649 × 10−23 Joule/Kelvin); T is the temperature of the PV panel (Kelvin);
and q is the charge of the electron (1.602176634 × 10−19 Coulomb).

The TDM does not seem suitable for fast computations and has complex nonlinear analytic
expressions; therefore, this model will be excluded from the parametric identification tests.

2.1.2. Amorphous Silicon Cell

Equation (4) defines the current–voltage characteristic for an amorphous silicon cell:

I = Iph

(
1−

d2
i

µe f f [Vb − (V + IRs)]

)
− Is

[
exp

(
V + IRs

aVT
− 1
)]
− V + IRs

Rsh
(4)

di denotes the width of the ith layer in the (a-Si) p_i_n diode, µeff represents the
mobility-lifetime product of the electron and hole, and Vbi is the built-in field voltage.

The diode reverse saturation current and the photo-generated current of an (a-Si) cell
under constant light and temperature are given, respectively, by

Iph = qAg(x)
(

Lp + Ln + W
)

(5)

I0 = Js × A =

(
qDp pn0

Lp
+

qDnnp0

Ln

)
× A (6)

where A is the pn junction area, Lp is the carrier diffusion length of the p-type area, Ln is the
carrier diffusion length of the n-type area, W is the depletion layer, Dp and Dn are the holes
and electrons diffusion coefficient, pn0 and np0 are the minority carrier concentration in the
P region and N region, and g(x) is the electron hole formation ratio.
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2.2. The Objective Functions

The term objective function is used in mathematical optimization and operations
research to refer to a function that acts as a criterion for identifying the best solution to an
optimization problem.

The objective function of the SDM may be written as

fSDM(V, I , X) = I − X(1) + X(2)
[

e(
q(V+X(3)I)

X(4)KT ) − 1
]
+

V + X(3)I
X(5)

(7)

X =
[
Iph Isd Rs n1 Rp

]
For the DDM, the error function is expressed by

fDDM(V, I, X) = I − X(1) + X(2)
[

e(
q(V+X(3)I)

X(4)KT ) − 1
]
+ X(5)

[
e(

q(V+X(3)I)
X(6)KT ) − 1

]
+

V + X(3)I
X(7)

(8)

where X =
[
Iph Isd1 Rs n1 Isd2 n2 Rp

]
.

Whereas, the error function for the TDM is defined by

fTDM(V, I, X) = I − X(1) + X(2)
[

e(
q(V+X(3)I)

X(4)KT ) − 1
]
+ X(5)

[
e(

q(V+X(3)I)
X(6)KT ) − 1

]
+X(7)

[
e(

q(V+X(3)I)
X(8)KT ) − 1

]
+ V+X(3)I

X(9)

(9)

where X =
[
Iph Isd1 Rs n1 Isd2 n2 Isd3 n3 Rp

]
.

It is necessary to use Ne samples (data points number) to widen the scope of the search
and reach the global optimum. Equation (10) gives us a description of the cost function:

RMSE(x) =

√√√√ 1
Ne

Ne

∑
C=1

( f C
M(VC, IC, x))2 (10)

3. Procedure of Social Group Optimization for PV Parameters Estimation

The past twenty years have seen a remarkable rise in interest in metaheuristic opti-
mization algorithms. The research work developed has enabled the appearance of new
algorithms which are generally based on the following:

- A new idea inspired by a natural, physical, chemical phenomena;
- A modification of an existing algorithm to improve its performances;
- The hybridization of two methods allows the strengths to merge and the weaknesses

to be eliminated of the two algorithms.

However, no algorithm can be adapted to all types of problems. In 2016, a new
metaheuristic optimization algorithm appeared, known as Social Group Optimization
(SGO) [46]. To solve complex problems, the new algorithm was inspired by the social
behavior of individuals in groups. Each individual’s knowledge is mapped by its fitness.
The algorithm contains two phases. The first phase is called the improving phase in which
each individual interacts with the best person (best solution) to improve his knowledge by
interacting. The second phase is named the acquiring phase, during which the individuals
acquire knowledge when they interact with the best person and randomly selected individ-
uals simultaneously. A comparative study is carried out to show the performance of the
new method. Detailed information on the SGO algorithm can be found in the following
articles [47,48]. The SGO algorithm is described with the following:

Pi, (i = 1, 2, 3, ..., N): Pi is the social group persons, and N is the total number of people
in the social group.
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Pij, (j = 1, 2, ..., D): D is the traits number related to a person which allows us to
determine the dimensions of a person.
fi, (i = 1, 2, ..., N) is their corresponding fitness value.

Improving phase

In each social group, the role of the best person (Pbest) is to propagate knowledge
between all persons. As a result, others in the group enhance their knowledge.

[minvalue, index] = min{ f (Pi), i = 1, 2, 3 . . . . . . . . . .N}

gbest = P(index, :)

The following algorithm (Algorithm 1) can be used to calculate how often each person’s
knowledge is updated:

Algorithm 1 Improving phase

for i = 1: N
for j = 1: D

Pnewij = c * Pij + r * ( Pbest(j) − Pij)
end for

end for

r: random number, and r ∈ [0, 1]. If Pnew provides higher fitness than Pold, it is
accepted [34]. c is the parameter of self-introspection c ∈ [0, 1].

Acquiring Phase

In the acquiring phase (Algorithm 2), a person acquires new knowledge by interacting
with other persons of the group. The interaction can be with the best person (Pbest) or
randomly with other persons who have more knowledge. To acquire knowledge, a person
always interacts with the Pbest and with any other person of the group who has more
knowledge than him. The ability to obtain a quantity of knowledge from another person is
defined by the self-awareness probability (SAP). The modified acquiring phase is computed as

[value, index_num] = min{ f (Pi), i = 1, 2, 3, 4 . . . . . . . . . .N}

Pbest = P(index_num, :)

where Pi is the updated value at the completion of the improving phase.

Algorithm 2 Acquiring phase

for i = 1: N
Randomly select one person Pr where i 6= r

If f (Pi) < f (Pr)
If rand > SAP

for j = 1: D
Pnewi,j = Pi,j + rand1 * (Pi,j − Pr,j) + rand2 * (bestp (j) − Pi,j)

end for
else

for j = 1: D
Pnewi,j = lb + rand2 * (ub − lb)
end for

end if
else

for j = 1: D
Pnewi,j = Pi,j + rand1 * (Pr,j – Pr,j) + rand2 * (bestp (j) − Pi,j)
end for

end if
end for
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Pnew is accepted if it provides a higher level of fitness than P.
The general steps to use the MSGO algorithm to extract parameters of a PV cell include:
Step 1: Define the objective function which describes the behavior of the PV cell under

different conditions. This function takes input parameters, such as the cell’s temperature,
irradiance, and voltage, and outputs a value that represents the cell’s performance. The
goal is to find the values of these input parameters that maximize the output value of the
objective function.

Step 2: Define the parameter space. The parameter space defines the objective function
constraints for each parameter, such as the temperature may range from −10 ◦C to 100 ◦C,
the irradiance may range from 0 W/m2 to 1000 W/m2, and the voltage may range from 0 V
to 1 V. All other range parameters are declared in Equations (15)–(17).

Step 3: Initialize the population. The population (Pi) is a set of solutions that are
randomly generated within the parameter space. Each solution corresponds to a set of
input parameters that are used to evaluate the objective function.

Step 4: Evaluate the fitness. The fitness is a measure of how well each solution
performs with respect to the objective function. The fitness function takes as input the
output value of the objective function and returns a scalar value that represents the quality
of the solution. The higher the fitness, the better the solution.

Step 5: Update the population. The MSGO algorithm updates the population in
two phases: the improving phase and the acquiring phase. In the improving phase, each
individual interacts with the best person in the social group to improve its knowledge.
In the acquiring phase, each individual acquires knowledge by interacting with the best
person and randomly selected individuals. The updating of each person’s knowledge can
be calculated using the formula described in the improving phase.

Step 6: Repeat steps 4 and 5 until convergence. The optimization process continues
until the fitness values converge to a satisfactory level or the maximum number of iterations
is reached. The best solution found during the optimization process corresponds to the set
of input parameters that maximizes the output value of the objective function. These pa-
rameters can be used to characterize the behavior of the PV cell under the given conditions.

4. Results

The technical details of the software and hardware used for the extraction of the
various simulation results are given in Table 1.

Table 1. Software and hardware details.

Hardware and Software Setting

CPU Intel (R) Core (TM) i7—7500U
Frequency 2.9 GHz
RAM 12 Gb
Simulation software Matlab R2018b
Operating System Windows 10

The adjustable parameters of the MSGO algorithm include: the population size is
40, and the maximum number of iterations is 3000. However, the parameters of other
comparative algorithms are given in references cited in the first section.

All simulation work was conducted under the following solar irradiance and tempera-
ture conditions: 1000 W/m2 and 33 ◦C. The obtained results of our parameter identification
algorithm were compared to other optimization algorithms to determine the accuracy
of the fitted curve between the MSGO algorithm values and experimental data. Table 2
summarizes the comparison work established in this paper.
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Table 2. Summary of comparative study.

Types of Tested Panels PV Cell Model Examined Algorithms
during the Comparison

RTC France Company monocrystalline Single diode NM–MPSO, LMSA, ABC, BBO-M, Rcr-IJADE
Double diode NM–MPSO, Rcr-IJADE, ABSO, CARO, ABC

Hydrogenated Amorphous Silicon a-Si: H Single diode SOMA, QNM
TITAN-12-50 Polycrystalline Double diode SCA, ALO, GSA, VCS, WOA, SSA

4.1. MSGO Implementation

To verify the accuracy of the fitted curve obtained by the MSGO algorithm using
experimental data, a comparison is made against other algorithms. Tables 3 and 4 present a
statistical analysis of the contrasted results for each model. The statistical errors used to
demonstrate the performance of the proposed algorithm are presented below.

Table 3. Extracted parameters in case of an SDM.

Algorithm Iph (A) I0 (µA) n Rs (Ω) Rp (Ω)

MSGO 0.7607877 0.31058918 1.47725615 0.0365470 52.88998
BBO-M 0.760781 0.318743 1.479842 0.036422 53.36226

Rcr-IJADE 0.760775 0.323022 1.481183 0.036376 53.718525
LMSA 0.760781 0.318492 1.479764 0.036433 53.326441
CARO 0.760792 0.317243 1.481681 0.036443 53.08930
ABC 0.76082 0.325155 1.481731 0.036443 53.64332

NM–MPSO 0.760781 0.323065 1.481202 0.036384 53.72221

Table 4. The estimated data and the resulted IAE obtained by the proposed algorithm MSGO
compared with other algorithms in the case of an SDM.

Vexp (V) Iexp (A) Iest (A) MSGO Rcr-IJADE BBO-M ABC LMSA NM–
MPSO

1 −0.2057 0.764 0.764149248 0.00014925 0.00009559 0.000006 0.0001 0.000115762 0.000087
2 −0.1291 0.762 0.762293808 0.00029381 0.00066611 0.000604 0.0006 0.000680672 0.000662
3 −0.0588 0.7605 0.761373566 0.00087357 0.00085473 0.000817 0.0008 0.000863281 0.000854
4 0.0057 0.7605 0.7601543024 0.00034570 0.00035034 0.000364 0.0003 0.000346856 0.000346
5 0.0646 0.76 0.759038854 0.00096115 0.00094298 0.000946 0.0009 0.000953669 0.000945
6 0.1185 0.759 0.758010563 0.00098944 0.00095528 0.000943 0.0009 0.000973813 0.000957
7 0.1678 0.757 0.757045517 0.00004552 0.00009510 0.000120 0.0001 0.0000690271 0.000091
8 0.2132 0.757 0.756084674 0.00091533 0.00084950 0.000817 0.0008 0.000886778 0.000858
9 0.2545 0.7555 0.755022264 0.00047774 0.00041823 0.000361 0.0004 0.000445307 0.000413

10 0.2924 0.754 0.753597432 0.00040257 0.00032967 0.000276 0.0003 0.000370139 0.000336
11 0.3269 0.7505 0.751327686 0.00082769 0.00089542 0.000953 0.0008 0.000858429 0.000888
12 0.3585 0.7465 0.747306479 0.00080648 0.00085737 0.000914 0.0008 0.000827345 0.000848
13 0.3873 0.7385 0.740087107 0.00158711 0.00160420 0.001668 0.0016 0.00160213 0.001596
14 0.4137 0.728 0.727430948 0.00056905 0.00059912 0.000583 0.0006 0.000616337 0.000604
15 0.4373 0.7065 0.707034237 0.00053424 0.00044631 0.000485 0.0004 0.000492923 0.000452
16 0.459 0.6755 0.675413782 0.00008622 0.00019600 0.000230 0.0002 0.000182486 0.000206
17 0.4784 0.632 0.631018287 0.00098171 0.00110900 0.001271 0.0012 0.001194906 0.001117
18 0.496 0.573 0.572202755 0.00079724 0.00091027 0.001112 0.0011 0.001026552 0.00092
19 0.5119 0.499 0.499575662 0.00057566 0.00049902 0.000563 0.0005 0.000638902 0.00049
20 0.5265 0.413 0.413530488 0.00053049 0.00049030 0.000612 0.0006 0.00065758 0.000492
21 0.5398 0.3165 0.31721586 0.00071586 0.00071532 0.000985 0.001 0.000992379 0.000718
22 0.5521 0.212 0.212079153 0.00007915 0.00010468 0.000142 0.0001 0.000112783 0.000102
23 0.5633 0.1035 0.102706638 0.00079336 0.00078397 0.001254 0.0012 0.001305993 0.000779
24 0.5736 −0.01 −0.009221842 0.00077816 0.00075437 0.001268 0.0013 0.001228583 0.000751
25 0.5833 −0.123 −0.12427906 0.00127906 0.00137750 0.002537 0.0024 0.002545248 0.001381
26 0.59 −0.21 −0.209015291 0.00098471 0.00080320 0.001469 0.0015 0.001522512 0.000807
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- The Individual Absolute Error (IAE) is defined by

IAE = |Imeasured − Iestimated| (11)

- The Median Absolute Error (MAE) is expressed as

MAE =
m

∑
i=1

|Imeasured − Iestimated|
m

(12)

- The Residual Sum of Squares (SSE) is defined by

SSE =
Ne

∑
i=1

(Imeasured − Iestimated)
2 (13)

- The Root Mean Square Error (RMSE) is given by

RMSE =

√√√√ 1
Ne

Ne

∑
i=1

(Imeasured − Iestimated)
2 (14)

The equations below present the objective function constraints for each model, both
for single and double diodes. The objective function constraints for the SDM is given by

0 ≤ Iph ≤ 1 A
0 ≤ I01 ≤ 1× 10−7 A
1 ≤ n1 ≤ 2
0 ≤ Rs ≤ 0.8 Ω
0 ≤ Rp ≤ 100 Ω

(15)

The objective function constraints for the DDM are

0 ≤ Iph ≤ 1 A
0 ≤ I01 ≤ 1× 10−7A
0 ≤ I02 ≤ 1× 10−7A
1 ≤ n1 ≤ 2
1 ≤ n2 ≤ 2
0 ≤ Rs ≤ 0.5 Ω
0 ≤ Rp ≤ 100 Ω

(16)

The objective function constraints for (a-Si: H) are

0 ≤ Iph ≤ 1 µA
0 ≤ d ≤ 10× 10−8 m
0 ≤ µe f f ≤ 10

(
cm2/V

)
0 ≤ Vbi ≤ 1.5 V
0 ≤ Rs ≤ 0.5 Ω
0 ≤ Is ≤ 5× 10−14

1 ≤ a ≤ 2.5
0 ≤ Rsh ≤ 50 Ω

(17)

4.1.1. A Comparative Study of Extraction Parameters for the SDM

The extracted parameters using the MSGO algorithm for the SDM are presented in
Table 3. These values are compared to those obtained by other algorithms such as BBO-M,
Rcr-IJADE, LMSA, CARO, ABC, and NM–MPSO.

The estimated current values obtained by the proposed algorithm and the resulted
IAE are given in Table 4. These results are compared to those obtained by the Rcr-IJADE,
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BBO-M, ABC, LMSA, and NM–MPSO algorithms. As it is shown, the IAE (IAT) obtained
by the MSGO algorithm is better than the other errors for most measurement values.

The various statistical errors already defined by Equations (11)–(14) are presented
in Table 5 and compared with those obtained by the other algorithms. One can remark
that the MSGO error IAT (IAE) has the lowest value, which proves the robustness of the
used algorithm.

Table 5. Statistical results for the SDM.

MSGO BBO-M Rcr-IJADE LMSA CARO ABC NM–MPSO
IAT 0.01738 0.0213 0.017704 0.0215 0.0182 0.0205 0.0177

RMSE 7.21 × 10−4 9.86 × 10−4 7.75 × 10−4 9.86 × 10−4 9.87 × 10−4 9.49 × 10−4 7.75 × 10−4

SSE 1.355 × 10−5 2.529 × 10−5 1.562 × 10−5 2.529 × 10−5 2.531 × 10−5 2.343 × 10−5 1.563 × 10−5

MAE 6.68 × 10−4 8.19 × 10−4 6.81 × 10−4 8.27 × 10−4 6.98 × 10−4 7.88 × 10−4 6.81 × 10−4

The different IAE results given in Table 4 are illustrated in Figure 2. One can notice that
the IAE obtained by the MSGO algorithm (red color) is the lowest error for most values.
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Figure 2. Calculated errors IAE obtained with the MSGO, Rcr-IJADE, BBO-M, ABC, LMSA, and
NM–MPSO algorithms: case of SDM.

In order to assess the precision of the extracted parameters, one compares the I–V and
P–V characteristics obtained from the estimated parameters using the MSGO method with
the experimental data. Figure 3 illustrates this comparison, specifically for a single-diode
case. These figures allow us to evaluate the quality of the parameter estimation process.
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Figure 3. Experimental and estimated results obtained by the proposed MSGO algorithm in the case
of an SDM: (a) Current_Voltage; (b) Power_Voltage.
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The results depicted in Figure 3 indicate that the reconstructed SDM aligns well with
the experimental data.

4.1.2. A Comparative Study of Extraction Parameters for the DDM

The extracted parameters using the MSGO algorithm for the DDM are presented in
Table 6. These values are compared to those obtained by other algorithms, such as BBO-M,
Rcr-IJADE, LMSA, CARO, ABC, and NM–MPSO.

Table 6. Extracted parameters in the case of double-diode model.

Algorithm Iph (A) I01 (µA) I02 (µA) n1 n2 Rs (Ω) Rp (Ω)
MSGO 0.7607 0.1465 0.6300 1.4190 1.8075 0.0371 54.7897

Rcr-IJADE 0.760821 0.225974 0.749347 1.451017 2.0000 0.036740 55.485443
CARO 0.760752 0.293151 0.090982 1.473383 1.77322 0.036414 54.39674
ABSO 0.760783 0.267135 0.381914 1.465125 1.98152 0.036572 54.62193
ABC 0.760825 0.040712 0.287433 1.449541 1.48852 0.036445 53.78046

NM–MPSO 0.760782 0.224761 0.755245 1.45054 1.99998 0.036752 55.52967

The estimated current values obtained by the proposed algorithm and the resulted IAE
are given in Table 7. These results are compared to those obtained by the Rcr-IJADE, BBO-M,
ABC, LMSA, and NM–MPSO algorithms. As it is shown, the IAE (IAT) obtained by the
MSGO algorithm is better than the other errors for the majority of measurement values.

Table 7. Estimated data and the resulted IAE obtained by the proposed algorithm MSGO compared
with other algorithms.

Vexp (V) Iexp (A) Iest (A) MSGO ABC CARO ABSO Rcr-IJADE NM–
MPSO

1 −0.2057 0.764 0.76402813 0.0000281297 0.000092908 0.00031 0.000031 0.00009268 0.000023
2 −0.1291 0.762 0.762630936 0.000630936 0.0006 0.000629 0.000629 0.00065394 0.000598
3 −0.0588 0.7605 0.761348408 0.000848408 0.0008 0.000843 0.000843 0.00085755 0.000832
4 0.0057 0.7605 0.760170729 0.000329271 0.0003 0.000338 0.000338 0.00033747 0.00033
5 0.0646 0.76 0.759091932 0.000908068 0.0009 0.00092 0.00092 0.00094 0.000895
6 0.1185 0.759 0.758093995 0.000906005 0.0009 0.000919 0.000919 0.00094935 0.00088
7 0.1678 0.757 0.757150045 0.000150045 0.0001 0.000139 0.000139 0.00009635 0.000187
8 0.2132 0.757 0.756196358 0.000803642 0.0008 0.000807 0.000807 0.00085535 0.000757
9 0.2545 0.7555 0.755121281 0.000378719 0.0004 0.000368 0.000368 0.00041885 0.000323

10 0.2924 0.754 0.753659367 0.000340633 0.0003 0.000306 0.000306 0.00033126 0.000277
11 0.3269 0.7505 0.751329108 0.000829108 0.0008 0.000892 0.000892 0.00089511 0.000896
12 0.3585 0.7465 0.74723368 0.00073368 0.0008 0.000822 0.000822 0.00084939 0.000798
13 0.3873 0.7385 0.739947501 0.001447501 0.0016 0.001544 0.001544 0.00160214 0.0001495
14 0.4137 0.728 0.727258182 0.000741818 0.0006 0.000669 0.000669 0.00061216 0.000729
15 0.4373 0.7065 0.706880574 0.000380574 0.0004 0.000396 0.000396 0.00045162 0.000344
16 0.459 0.6755 0.675327647 0.000172353 0.0002 0.000235 0.000235 0.00019888 0.000259
17 0.4784 0.632 0.631016281 0.000983719 0.0012 0.001111 0.001111 0.00111234 0.0001099
18 0.496 0.573 0.572261627 0.000738373 0.0011 0.000886 0.000886 0.00092523 0.000845
19 0.5119 0.499 0.499644454 0.000644454 0.0005 0.000533 0.000533 0.00049417 0.000586
20 0.5265 0.413 0.413556808 0.000556808 0.0006 0.000525 0.000525 0.00049125 0.000571
21 0.5398 0.3165 0.317169103 0.000669103 0.001 0.00073 0.00073 0.00071918 0.000753
22 0.5521 0.212 0.211959679 0.0000403211 0.0001 0.00009 0.00009 0.00010831 0.00088
23 0.5633 0.1035 0.102545511 0.000954489 0.0012 0.000806 0.000806 0.00077968 0.000827
24 0.5736 −0.01 −0.009374369 0.000625631 0.0012 0.00073 0.00073 0.00075539 0.000711
25 0.5833 −0.123 −0.124360342 0.001360342 0.0025 0.00139 0.00139 0.00137667 0.0001388
26 0.59 −0.21 −0.209001839 0.000998161 0.0014 0.00083 0.00083 0.00080501 0.000865



Sustainability 2023, 15, 10510 13 of 20

The various statistical errors already defined by Equations (11)–(14) are presented
in Table 3 and compared with those obtained by the other algorithms. One can remark
that the MSGO error IAT (IEA) has the lowest value, which proves the robustness of the
used algorithm.

The various IAE results given in Table 7 are illustrated in Figure 4. One can notice that
the IAE obtained by the MSGO algorithm (red color) is the lowest error for most values.
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Figure 4. Calculated errors IAE obtained using the MSGO, ABC, CARO, ABSO, Rcr-IJADE, and
NM–MPSO algorithms: case of DDM.

The I–V and P–V characteristics resulting from the parameters identified using the
MSGO algorithm are compared to both experimental and estimated data to evaluate their
quality. Figure 5 provides a comparison for a scenario involving two diodes, allowing
us to determine the accuracy of the parameter estimation achieved through the MSGO
algorithm. The results of the parameter identification using the MSGO algorithm and
experimental data are compared with the estimated data to investigate the quality of the
extracted parameters.
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Figure 5. Experimental and estimated results obtained by the proposed MSGO algorithm in the case
of a DDM: (a) Current_Voltage; (b) Power_Voltage.

Figure 6a,b illustrate the estimated I–V characteristic of the SDM and DDM compared
with the experimental one. It is noted that there is a slight advantage of the DDM com-
pared to the SDM, which is not clear enough in the figure. Upon closer inspection of the
corresponding statistical results given in Tables 5 and 8, it becomes evident that the DDM
outperforms the SDM by a small margin.
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Table 8. Statistical results for the DDM (RTC France Company).

MSGO Rcr-IJADE CARO ABSO ABC NM–MPSO
Total IAE 0.0172 0.0177 0.0693 0.0178 0.0204 0.0174

RMSE 7.514 × 10−4 7.754 × 10−4 8.1 × 10−4 7.682 × 10−4 9.922 × 10−4 7.581 × 10−4

SSE 1.468 × 10−5 1.56 × 10−5 1.7 × 10−5 1.53 × 10−5 2.56 × 10−5 1.49 × 10−5

MAE 6.62 × 10−4 6.81 × 10−4 2.67 × 10−4 6.83 × 10−4 7.84 × 10−4 6.68 × 10−4

4.1.3. A Comparative Study of Extraction Parameters for the Amorphous PV Cell

The extracted parameters using the MSGO algorithm for the amorphous model are
presented in Table 9. These values are compared to those obtained by other algorithms
such as QNM and SOMA.

Table 9. Extracted parameters in case of amorphous cell.

Algorithm Iph
(A)

d
(10−8 m)

µeff

(cm2/V)
Vbi
(V)

Rs
(Ω)

Is
(A) a Rsh

(Ω)

MSGO 0.3123 4.72 3.03 0.97 0.295 1.5 1.918 11.07
QNM 0.3043 5.8065 4.8812 0.9759 0.4242 3.0691 1.999 11.9138

SOMA 0.3181 4.9743 3.3277 0.9963 0.4706 3.0783 1.9931 13.9288

The various IAE results given by Table 10 are illustrated in Figure 7. One can notice
that the IAE obtained by the MSGO algorithm (red color) is the lowest error for most values,
as is confirmed in Table 11.

Table 10. Estimated data and resulted IAE obtained by the proposed algorithm MSGO.

Vexp (V) Iexp (A)
IAE

Iest (A) MSGO QNM SOMA
1 1.525 0 −0.00328 0.00328 0.0041 0.00086
2 1.515 0.0158 0.0137831 0.002017 0.0058 0.0027
3 1.5 0.0302 0.0378181 0.007618 0.0003 0.0032
4 1.4775 0.0619 0.0701493 0.008249 0.0028 0.0004
5 1.47 0.0868 0.0798933 0.006907 0.0188 0.0153
6 1.445 0.1142 0.1085644 0.005636 0.0187 0.0138
7 1.37 0.1604 0.1623759 0.001976 0.0055 0.0075
8 0 0.3044 0.3042089 0.000191 0.0209 0.0026
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Table 11. Statistical results for amorphous model.

MSGO SOMA QNM
Total IAE 0.03587 0.04636 0.07690

RMSE 5.295 × 10−3 7.952 × 10−3 1.239 × 10−2

SSE 2.243 × 10−4 5.059 × 10−4 1.228 × 10−3

MAE 4.484 × 10−3 5.796 × 10−3 9.612 × 10−3

4.2. Experimental Validation

The I–V and P–V characteristics of the TITAN-12-50 photovoltaic panel are imple-
mented using the experimental test bench shown in Figure 8. The Parameter Specification
of the TITAN-12-50 PV module is given in Table 12. To determine the various parameters
of the photovoltaic generator, voltage and current measurements are required. These mea-
surements are carried out using the LV25-P voltage sensor (Octapart, New York, NY, USA)
and LA25-NP current sensor (Infineon, Munich, Germany). The solar sensor based on
TLO82 is used to measure solar irradiation; meanwhile, the temperature is measured with
an LM335 temperature sensor (ES Systems, Neo Psychico, Greece). The voltage and current
are varied utilizing a variable resistor. The electronic oscilloscope scopiX, II (OX 7104)
(TiePie, Sneek, The Netherlands) is used to display and record this variation.
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Table 12. Parameter Specification of the TITAN-12-50 PV module.

Characteristics Value

Isc (A) 3.2
V0c (V) 21

Pmpp (W) 50
Impp (A) 2.9
Vmpp (V) 17.2

Cells number 32

Several experiments are conducted in this study to evaluate the I–V and P–V character-
istics of the developed models under various lighting and temperature conditions. Various
environmental factors affect the performance of a PV generator under real-life conditions.
Consequently, four different tests are performed, and their data are recorded and presented
in Figures 9 and 10.
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Figure 10. Comparison of I–V curves for TITAN-12-50 PV module using MSGO algorithm:
(a) G = 810 W/m2 and T = 22.60 ◦C; and (b) G = 900 W/m2 and T = 23.80 ◦C.

According to the presented results in Figures 9 and 10, it can be noticed that the estimated
current coincides with the measured current for the different cases of environmental factors.

This shows the effectiveness of the MSGO algorithm against changes in temperature
and irradiation.
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The convergence curves of various algorithms are illustrated in Figure 11. The average
fitness functions ALO, WOA, VCS, GSA, SSA, and SCA are given in Ref. [40]. The MSGO
results are presented in Figure 11 in black. In general, all algorithms exhibit an acceptable
variation in the fitness function. The fastest convergence rate is seen in the MSGO results.

Sustainability 2023, 15, x FOR PEER REVIEW 18 of 21 
 

The convergence curves of various algorithms are illustrated in Figure 11. The aver-
age fitness functions ALO, WOA, VCS, GSA, SSA, and SCA are given in Ref. [40]. The 
MSGO results are presented in Figure 11 in black. In general, all algorithms exhibit an 
acceptable variation in the fitness function. The fastest convergence rate is seen in the 
MSGO results. 

 
Figure 11. Average fitness functions. 

All different parameters of the TITAN-12-50 solar panel extracted under G = 810 
W/m2 and T = 22.70 °C are illustrated in Table 13. 

Table 13. Obtained RMSE values and estimated parameters of PV cells. 

Parameters Iph (A) Rs (Ω) Rp (Ω) α1 α2 I01 (µA)  I02 (µA) RMS 
MSGO 3.2810 0.3562 105.6204 1.4046 1.4046 4.48 4.48 1.3637 × 10−6 

SCA 2.74 0.169 72.000 1.456 1.200 9 9 1.3937 × 10−5 
ALO 2.733 0.489 50 1 1 0.6869 0.6786 1.5665 × 10−4 
GSA 2.716 0.818 140.659 1.013 1.058 0.6999 0.6405 4.8032 × 10−5 
VCS 2.734 0.333 70.189 1.003 1.002 0.6990 0.6993 1.6188 × 10−6 

WOA 2.75 0.351 90 1.60 1.48 7 7 3.6935 × 10−4 
SSA 2.722 0.174 98 1.2 1.3 7.8 7.8 1.5777 × 10−6 

Table 13 shows the extracted parameters of the TITAN-12-50 PV module at G = 810 
W/m2 and T = 22.70 °C. The MSGO parameter results are compared with previous results, 
given by Ref. [40], taking into account the same temperature and irradiation conditions. 
The proposed MSGO algorithm achieved the lowest RMSE value compared to all other 
algorithms by 1.3637 × 10−6. After analyzing the data presented in Table 13, Figure 10, and 
Figure 11, it can be inferred that the MSGO algorithm exhibits several advantages, such 
as rapid convergence and minimal errors. 

5. Discussion 
The MSGO algorithm was developed to enhance the precision of solar cell parameter 

extraction. It was tested on monocrystalline, polycrystalline, and amorphous PV cells with 
the SDM and DDM to evaluate its performance. The MSGO algorithm was then compared 
to other techniques in the literature to determine its effectiveness. Results from statistical 
analysis and figures indicate that the MSGO algorithm is highly accurate and robust. Ad-
ditionally, the results obtained from the MSGO algorithm are more promising than those 
of other previously proposed methods. 

Figure 11. Average fitness functions.

All different parameters of the TITAN-12-50 solar panel extracted under G = 810 W/m2

and T = 22.70 ◦C are illustrated in Table 13.

Table 13. Obtained RMSE values and estimated parameters of PV cells.

Parameters Iph (A) Rs (Ω) Rp (Ω) α1 α2 I01 (µA) I02 (µA) RMS

MSGO 3.2810 0.3562 105.6204 1.4046 1.4046 4.48 4.48 1.3637 × 10−6

SCA 2.74 0.169 72.000 1.456 1.200 9 9 1.3937 × 10−5

ALO 2.733 0.489 50 1 1 0.6869 0.6786 1.5665 × 10−4

GSA 2.716 0.818 140.659 1.013 1.058 0.6999 0.6405 4.8032 × 10−5

VCS 2.734 0.333 70.189 1.003 1.002 0.6990 0.6993 1.6188 × 10−6

WOA 2.75 0.351 90 1.60 1.48 7 7 3.6935 × 10−4

SSA 2.722 0.174 98 1.2 1.3 7.8 7.8 1.5777 × 10−6

Table 13 shows the extracted parameters of the TITAN-12-50 PV module at G = 810 W/m2

and T = 22.70 ◦C. The MSGO parameter results are compared with previous results, given
by Ref. [40], taking into account the same temperature and irradiation conditions. The pro-
posed MSGO algorithm achieved the lowest RMSE value compared to all other algorithms by
1.3637 × 10−6. After analyzing the data presented in Table 13, Figure 10, and Figure 11, it can
be inferred that the MSGO algorithm exhibits several advantages, such as rapid convergence
and minimal errors.

5. Discussion

The MSGO algorithm was developed to enhance the precision of solar cell parameter
extraction. It was tested on monocrystalline, polycrystalline, and amorphous PV cells
with the SDM and DDM to evaluate its performance. The MSGO algorithm was then
compared to other techniques in the literature to determine its effectiveness. Results from
statistical analysis and figures indicate that the MSGO algorithm is highly accurate and
robust. Additionally, the results obtained from the MSGO algorithm are more promising
than those of other previously proposed methods.

To further confirm the accuracy of the simulation model, experimental tests were
conducted. The results of these tests indicate that the proposed MSGO algorithm is remark-
ably accurate, fast, and convergent, outperforming other similar algorithms proposed in
the literature.
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