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Abstract: Plug-in hybrid electric vehicles (PHEVs) have gradually become an important member of
new energy vehicles because of the advantages of both electric and hybrid electric vehicles. A fast
and effective energy management strategy can significantly improve the fuel-saving performance
of vehicles. By observing the dynamic programming (DP) simulation results, it was found that the
vehicle is in the charge-depleting mode, the state of charge (SOC) drops to the minimum at the end
of the journey, and the SOC decreases linearly with the mileage. As such, this study proposed an
improved rule-based (IRB) strategy enlightened by the DP strategy, which is different from previous
rule-based (RB) strategies. Introducing the reference SOC curve and SOC adaptive adjustment, the
IRB strategy ensures that the SOC decreases linearly with the driving distance, and the SOC drops to
the minimum at the end of the journal, similar to the result of the DP strategy. The fuel economy of
PHEV in the RB and DP energy management strategies can be considered as their worst-case and
best-case scenarios, respectively. The simulation results show that the fuel consumption of the IRB
strategy under the China Light-duty Vehicle Test Cycle is 3.16 L/100 km, which is 7.87% less than
that of the RB strategy (3.43 L/100 km), and has reached 44.41% of the fuel-saving effect of the DP
strategy (2.84 L/100 km).

Keywords: plug-in hybrid electric vehicle; energy management strategy; dynamic programming
strategy; rule-based strategy; the reference SOC

1. Introduction

Energy shortage and environmental pollution have promoted the rapid development
of new energy vehicles. However, due to the limitations of battery technology and charging
infrastructure, electric vehicles (EVs) are difficult to popularize at a large scale in a short
time. In view of this, plug-in hybrid electric vehicles (PHEVs), which have both EV
and hybrid electric vehicle advantages, have naturally become an ideal model for the
transition from internal combustion engine vehicles to EVs. PHEVs typically consist of
series [1], parallel [2], series–parallel [3], and power-split configurations [4]. Among parallel
configurations, the P2 configuration PHEV has become one of the leading members because
of its simple structure and strong power [5]. The P2 configuration PHEV has a mechanical
connection between the engine and the wheels, which makes the fuel economy of the
vehicle greatly affected by the driving conditions.

For this reason, the energy management strategy based on driving condition identifica-
tion is proposed in [6–8], and a good fuel economy is achieved. However, when the driving
condition changes dramatically, the identification result of the driving condition will lag
behind the actual driving condition to a certain extent [9–11]. The energy management
strategy based on condition prediction is proposed in [12–15], which usually can only
accurately predict the speed in the next few seconds (<10 s). Therefore, it can be regarded
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as an instantaneous optimization management strategy, so fuel economy improvement is
limited [16,17]. The energy management strategy based on an intelligent transportation
system is proposed in [18,19]. The overall planning of power battery power has achieved
good fuel economy, but it depends on the current construction of an intelligent transporta-
tion system. The energy management strategy based on intelligent network connection
is proposed in [20–22], which is similar to an intelligent transportation system, and can
also ensure that vehicles achieve good economy. Considering the limitations of the above
energy management strategy, it is necessary to design a fast, efficient and stable energy
management strategy.

The RB strategy based on the optimization strategy is proposed in [23–26]. Du et al.
optimized the logic threshold value of the RB strategy by using the improved NSGA_II
algorithm to obtain the optimal logic threshold value, and combined the optimized RB
strategy with the minimum equivalent fuel consumption strategy, and a real-time control
strategy for a multi-mode hybrid electric vehicle is proposed [23]. Li et al. improved
the adaptability of the RB strategy by optimizing parameters under multiple historical
driving cycles and obtaining a new RB strategy [25]. Two rule-based control strategies,
i.e., the Engine-Dominant and Motor-Dominant strategies, are proposed for a power-split
configuration and compared regarding fuel consumption and emissions under a city-
highway combined driving cycle [26]. Using the off-line optimization results, the new RB
can improve the vehicle’s fuel economy, but there may be a problem of driving condition
adaptability [27–29]. RB is not fuel efficient but requires less computing power, and DP is
fuel efficient, but computation might be more complex. Hence, an intermediary strategy is
required to combine the advantages of both. As such, this study proposed an IRB strategy
enlightened by the DP strategy.

In summary, this study proposes an IRB energy management strategy based on the
enlightenment of DP optimization results. By observing the simulation results of the DP
strategy and the RB strategy, it is found that the DP strategy is in the charge-depleting (CD)
mode throughout the journey, and at the end of the journey, the SOC of the power battery
drops to the minimum, and the SOC is inversely linear with time and driving distance.
Considering that the actual driving time is often limited by traffic conditions, taking the
driving time as a reference may lead to a significant error. The linear programming of the
power battery SOC is carried out by using the driving distance, and the IRB strategy is
established. By introducing the reference SOC curve and SOC adaptive adjustment, the IRB
strategy ensures that the SOC decreases linearly with the driving distance, and the SOC
drops to the minimum at the end of the journal, similar to the result of the DP strategy.

The rest of this article is arranged as follows. Section 2 introduces the process of
establishing the simulation model; the energy management strategy is given in Section 3;
the last part is the summary and conclusion.

2. The PHEV Model of the RB Energy Management Strategy
2.1. The Vehicle Model

The research object of this study is the P2 configuration PHEV, whose engine is
coaxially connected with the start–stop-integrated motor (ISG) and can drive the vehicle
alone or together. The power system structure and vehicle parameters are shown in Figure 1
and Table 1, respectively. There is a mechanical connection between the engine and the
wheels of the P2 configuration PHEV, so the vehicle’s fuel economy is greatly affected by
the driving conditions.

Table 1. Vehicle parameters of PHEV with P2 configuration.

Components Parameter Value

Vehicle
Mass 1449 kg

Wheelbase 2.600 m
Front area 2.25 m2
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Table 1. Cont.

Components Parameter Value

Engine
Displacement 1.0 L

Maximum speed 6000 rpm
Maximum torque 170 N m at 4000 rpm

Motor
Maximum torque 140 N m

Rated voltage 288 V

Power battery Capacity 35 Ah
Voltage 300 V

Gearbox Speed ratio 3.84/2.43/1.71/1.27/1/0.82/0.69

Main reducer Speed ratio 3.94
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Figure 1. Structure of an PHEV dynamic system with P2 configuration.

2.2. The Engine Fuel Consumption Model

The engine fuel consumption in the engine static diagram model can be obtained
by looking up the table of engine speed and torque, which has the characteristics of fast
calculation and high accuracy [30]. The instantaneous fuel consumption of the engine can
be calculated by the following formula:

.
m f = f (Te, ne) (1)

In the formula,
.

m f is the instantaneous fuel consumption of the engine, Te and ne
are the torque and speed of the engine, respectively, and the corresponding relationship
between them can be obtained by looking up the table of the universal characteristic curve
of the engine, which is shown in Figure 2.
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2.3. The Battery Model

Usually, the purpose of establishing the power battery model is to predict the change
in the SOC of the power battery under a given electric load [31].

When using the ampere-hour method, the power battery SOC can be expressed as:

SOC = SOCi −
1

3600Qb

∫
Ibdt (2)

Among them, SOCi is the initial SOC and is dimensionless, Qb is the power battery
capacity with Ah, and Ib is the power battery current.

The characteristics of open circuit voltage and equivalent internal resistance of power
battery varying with SOC at an ambient temperature of 25 ◦C are shown in Figure 3. When
the SOC is less than 0.6, there will be a rapid increase in the internal resistance of the power
battery. According to Joule’s law, an increase in internal resistance will increase the energy
loss of the power battery.

Figure 3. Relation curve between open circuit voltage, equivalent internal resistance and SOC.

2.4. The ISG Model

According to the working mode of ISG, the power of the motor can be calculated by
the following formula:

Pisg =


nisgTisg
9550ηisg

, Tisg ≥ 0
nisgTisg

9550 ηisg, Tisg < 0
(3)

Among them, Pisg is the motor power; nisg is the motor speed; Tisg is the motor torque,
which defines that the torque is positive when ISG is driven and negative when ISG is
generated; ηisg is the motor efficiency under the corresponding speed and torque.

ηisg can be calculated by the following formula

ηisg = f
(
Tisg, nisg

)
(4)

In the formula, ηisg is the ISG efficiency and Tisg and ηisg are the torque and speed of
the engine, respectively, as shown in Figure 4.
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3. Energy Management Strategy
3.1. The RB Strategy

Under the RB strategy, PHEV usually has two working modes: the CD mode and the
Charge Sustaining (CS) mode. In the CD mode, the vehicle is mainly driven by ISG, and
the engine is driven only when the ISG cannot meet the power demand; in the CS mode,
the vehicle is mainly driven by the engine, and the ISG only participates in the work when
the engine cannot meet the power demand or when the braking energy is recovered. The
designed RB energy management strategy is mainly based on the SOC switching mode.
When SOC is greater than 0.3, the vehicle is in the CD mode; when SOC is less than 0.3, the
vehicle enters the CS mode to ensure that SOC can be maintained near 0.3. Choosing SOC
equal to 0.3 as the switching point of the two operating modes is mainly due to the effect of
equivalent internal resistance of the power battery. When the SOC is lower than 0.3, the
equivalent internal resistance of the power battery will increase rapidly.

3.2. The DP Strategy

The required torque at the input of the gearbox can be calculated reversely from the
tangential force of the wheel. According to the given driving conditions, based on the
inverse dynamics model, the required torque Treq of the vehicle can be calculated as

Treq = Ft·r·i0·
ig

ηt
(5)

Among them, Ft is the tangential driving force generated by the driving wheel, r
is the wheel radius, i0 is the speed ratio of the main reducer, ig is the speed ratio of the
transmission, and ηt is the transmission efficiency of the mechanical system.

According to the longitudinal dynamic equation, Ft can be expressed as

Ft = mg f cosαslap + CD A
ρ

2
u2 + mgsinαslap + σm

d
dt

v (6)

where m is the vehicle mass, g is the gravity acceleration, f is the rolling resistance coeffi-
cient, αslap is the road slope, CD is the air resistance coefficient, A is the windward area, ρ is
the air density, u is the relative speed, σ is the rotation mass conversion coefficient, and v is
the speed.

In addition, the required torque is jointly provided by the engine and ISG, and can
also be expressed as

Treq = Te + Tisg (7)
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The DP strategy solves for each instantaneous engine torque Te and ISG torque Tisg
for the global driving conditions to ensure that the global fuel consumption is minimized
in the feasible domain, so the optimization objective can be expressed as

minJ
(

t f

)
=
∫ t f

t0

.
m f (u(t))dt (8)

where u(t) is the control quantity, and the engine torque is selected.
In the DP strategy, SOC is generally taken as the state variable x, so the state equation

of the whole process can be described as

.
x =

.
SOC = − Ib

Qb
= −Voc −

√
V2

oc − 4PbR0

2R0Qb
(9)

Among them, Voc, R0 and Pb are the open circuit voltage, the internal resistance and
the output power of the power battery, respectively.

The constraints of a DP strategy are usually physical constraints of key components,
which can be expressed as 

SOC ∈ [SOCmin, SOCmax]

Te = [Temin, Temax]

nemin < ne < nemax

Tisg =
[

Tisgmin, Tisgmax

]
nisgmin < nisg < nisgmax

(10)

where SOCmin and SOCmax are the minimum and maximum usage limits of SOC, respec-
tively; Temin and Temax are the minimum and maximum torque of the engine, respectively;
nemin and nemax are the minimum and maximum speed of the engine, respectively; Tisgmin
and Tisgmax are the minimum and maximum torque of the ISG, respectively; nisgmin and
nisgmax are the minimum and maximum speed of the ISG, respectively.

3.3. Simulation Results

The script of the RB and DP strategies is written in MATLAB software. The simulation
condition is the China Light-duty Vehicle Test Cycle (CLTC). The period of CLTC is the
1800s, and its length is 14.48 km. Since the mileage of the electric driving of the PHEV
is usually larger than that of the 50 km, 10 fold the mileage of the CLTC is carried out.
Considering the equivalent internal resistance of the power battery, the values of SOCmax
and SOCmin min are 0.7 and 0.3, respectively. The starting and ending SOC of RB and DP
energy management strategy are 0.7 and 0.3, respectively.

Figure 5a shows the SOC decline of RB and DP strategies under 10*CLTC driving
conditions. The simulation results are also listed in Table 2. Under the 10*CLTC condition,
the SOC of the DP strategy is linear with time, and the SOC drops to the minimum at
the end of the journey. On the other hand, when the RB strategy is in the CD mode, SOC
decreases linearly with time, but when entering the CS mode, SOC fluctuates around the
minimum value of 0.3. In addition, in terms of fuel consumption, the DP strategy has
reduced 17.72% compared with RB, and the corresponding power efficiency has increased
by 17.15%. In addition, it is known from the equivalent internal resistance characteristics of
the power battery: the equivalent internal resistance of power battery near the minimum
value of SOC is larger, and the corresponding energy loss is also larger, which may be one
of the reasons for the more fuel consumption of RB. Therefore, the optimal fuel economy of
the DP strategy is highly related to the overall planning of power battery power.
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Table 2. Simulation settings and results of RB and DP strategies under CLTC.

Control Strategy RB DP

Initial SOC (%) 70 70
Terminal SOC (%) 30.72 30.01

Fuel consumption (L/100 km) 3.43 2.84
Electricity consumption (kW h/100 km) 2.74 3.21

Electricity utilization rate (%) 0 17.15
Fuel-saving rate (%) 0 17.72

Figure 5b shows the relationship between SOC and distance under the DP strategy.
The DP strategy shows a linear relationship between SOC and driving distance. When the
RB strategy is still in the CD mode, SOC decreases linearly with driving distance, but when
entering the CS mode, SOC fluctuates around the minimum value of 0.3 with distance.

However, under the actual driving conditions, the driving time is complex and change-
able relative to driving distance. The following is mainly according to the inspiration
of the DP strategy that SOC decreases linearly with the driving distance to improve the
RB strategy.

4. The IRB Strategy

After the driving conditions are known, the DP strategy will search in the feasible
region for the state space (SOC planning) that minimizes global fuel consumption. Although
it is mainly collected in the time domain, it also shows a certain law in the space domain
(SOC decreasing linearly with driving distance) and reaches the minimum value at the end
of the journey. The full use of the electric energy stored in the battery package improves the
fuel economy of the PHEV. Inspired by this, the linear SOC reference curve be added to the
original RB strategy to obtain the IRB strategy, which can adaptively adjust the SOC of the
power battery. The IRB strategy mainly comprises power battery SOC linear programming
and adaptive adjustment. They will be introduced in detail as follows.

4.1. Power Battery Linear Programming

With the development of intelligent transportation technology and big data, the
driving distance of a single trip and the whole day has been mastered in advance [32]. For
this reason, the use of power battery can be linearly planned according to driving distance
to improve the vehicle’s fuel economy.

The design method of reference SOC is given as follows.

SOCr = SOC0 −
SOC0 − SOCmin

Dt
·Di (11)
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where SOCr and SOC0 represent the referenced and initial SOC, respectively. Dt and Di
are the total distance traveled and current distance traveled, respectively.

4.2. Adaptive Adjustment

To ensure that the power battery SOC can drop according to the reference SOC tra-
jectory during the actual driving, it is necessary to set a penalty function to restrain the
fluctuation of the power battery SOC. Most of the common adaptive methods use PI or
PID control, and although the SOC follow results are better, it will bring the problem of
frequent engine start and stop. Therefore, the method of interval control is adopted. When
the SOC approaches the lower limit of the reference SOC, the engine participates in the
work and charges the power battery to prevent the SOC from falling too fast; when the
SOC approaches the upper limit of the reference SOC, the ISG participates in the work and
discharges the power battery so that the SOC decreases rapidly.

The adaptive adjustment method can be written as

Mmode =


Electric, SOC > SOCru
Hybird, SOC < SOCrl

Hold on, SOCrl < SOC < SOCru

(12)

where Mmode is the vehicle working mode, and SOCru and SOCrl represent the upper and
lower limits of the referenced SOC, respectively. Hold on mode means maintaining the
previous working mode.

SOCru and SOCrl can be written as{
SOCru = SOCr + ∆SOC
SOCrl = SOCr − ∆SOC

(13)

where ∆SOC is the specific upper and lower boundary offset reference SOC.
The specific upper and lower boundary offset reference SOC depends on the power

battery capacity of the vehicle. ∆SOC, the upper and lower bound offset of the reference
SOC curve, selected in this paper is ±2%. The process of the IRB strategy can be described
in Figure 6.
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4.3. Simulation Comparison and Analysis

The IRB simulation initial settings are the same as RB and DP. The simulation results of
the three strategies are shown in the Table 3. It is worth noting that the IRB strategy shows
an extraordinary fuel consumption performance, which saves 7.87% of the fuel compared
with the RB strategy, which has reached 44.41% of the fuel-saving effect of the DP strategy.
However, the DP strategy needs to obtain the global driving conditions, while the IRB
strategy only needs to predefine the driving distance.

Table 3. Simulation settings and results of three strategies under CLTC.

Control Strategy RB IRB DP

Initial SOC (%) 70 70 70
Terminal SOC (%) 30.72 30.94 30.01

Fuel consumption (L/100 km) 3.43 3.16 2.84
Electricity consumption (kWh/100 km) 2.74 2.83 3.21

Electricity utilization rate (%) 0 3.28 17.15
Fuel-saving rate (%) 0 7.87 17.72

For the three strategies under the CLTC condition, the SOC decrease with driving
distance is shown in Figure 7. Although SOC can decrease linearly with mileage in the early
stage of RB, most of the latter half of the journey is in the CS mode, and SOC fluctuates
around the minimum value of 0.3 with distance.
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The engine operating points of the three strategies are shown in Figure 8. A large
number of operating points of the engine under the RB strategy are distributed in the high
load area, which may be one of the reasons for the more fuel consumption of the RB strategy.
Compared with the RB strategy, the engine operating points under the IRB strategy are
relatively uniform, and the operating points in the high-load area are reduced. Under the
DP strategy, the working points of the engine are mainly concentrated in the high-efficiency
area, and there are almost no working points distributed in the low-load and high load
areas, which is also the essential reason for the high fuel economy of the DP strategy.

The ISG operating points of the three strategies are shown in Figure 9. The working
points of the ISG under the RB strategy are relatively scattered. Compared with the RB
strategy, under the IRB strategy, the ISG operating points are relatively concentrated, and
the number of operating points in the high-efficiency area also increases significantly. Under
the DP strategy, the ISG operating points are mainly concentrated in the high-efficiency area,
and only a minimal number of operating points are distributed outside the high-efficiency
area, contributing to the DP strategy’s higher fuel economy.
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The key component energy losses for the three strategies are shown in Figure 10. Their
energy loss can be obtained by reverse solving the efficiency MAP. The instantaneous fuel
consumption MAP of the engine can also be converted into efficiency MAP, which is not the
focus of this research. The engine energy loss is the largest under the RB strategy, reaching
100.91 MJ, while the engine energy loss under the IRB and DP strategies is only 94.34 MJ and
83.19 MJ, respectively, which is the essential reason for the higher fuel economy of the IRB
and DP strategies. Secondly, the ISG energy loss under the RB strategy is 8.30 MJ, while the
ISG energy loss under the IRB and DP strategies is only 6.26 MJ and 5.75 MJ, respectively.
Furthermore, the battery energy loss is 6.65 MJ under the RB strategy, while the electric
energy loss is only 4.59 MJ and 4.11 MJ under the IRB and DP strategies, respectively. It
is worth noting that the energy loss of the gearbox is the same under the three strategies,
mainly because the shifting logic adopted by the three strategies is the same. It means the
energy flowing into and out of the gearbox at each instant is the same.
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Compared with the RB strategy, the IRB and DP strategies have higher fuel economy,
mainly due to improved engine and ISG operating points, significantly reducing energy
loss. This also avoids the rapid charging and discharge of the power battery and reduces
energy loss.
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5. Conclusions

In this study, an IRB energy management strategy based on the enlightenment of
dynamic programming optimization results is proposed. By observing the economy sim-
ulation results of the DP strategy and the RB strategy, it can be found that it is in the CD
model throughout the journey. At the end of the journey, SOC drops to the minimum value,
and SOC is inversely linear with time and the driving distance. Therefore, this paper uses
the driving distance to carry the linear programming to the power battery SOC, establishes
the IRB strategy, and conducts the simulation analysis.

(1) The RB strategy prioritizes the use of power battery electricity, resulting in the ve-
hicle always being in the CS mode at the end of the trip, increasing the secondary
energy conversion loss of the vehicle. However, the DP strategy is in the CD model
throughout the journey, and the SOC drops to the minimum at the end, which signifi-
cantly taps the fuel-saving potential of the PHEV vehicle. However, it is necessary to
predefine the global driving conditions.

(2) Similar to the DP strategy, the IRB strategy can linearly plan the power battery use
so that the PHEV is in the CD mode throughout the journey, reducing the vehicle’s
secondary energy conversion loss and improving the vehicle’s fuel economy. It only
needs to obtain the driving distance.

(3) The fuel consumption of the IRB strategy under CLTC condition is 3.16 L/100 km,
which is 7.87% less than that of the RB strategy (3.43 L/100 km). It has reached 44.41%
of the fuel-saving effect of the DP strategy (2.84 L/100 km).

(4) Compared with the RB strategy, the IRB and DP strategies have higher fuel economy,
mainly due to the improvement of the engine and ISG operating point, which not only
significantly reduces the energy loss but also avoids the rapid charging and discharge
of power battery, and further reduces the energy loss.

In view of the effectiveness of the IRB strategy, the next step of the research will
consider more road condition information, such as slope and average speed, to further
improve the fuel-saving potential of this strategy.
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