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Abstract: This study aimed to identify suitable sites for tea cultivation using both random forest and
logistic regression models. The study utilized 2770 sample points to map the tea plantation suitability
zones (TPSZs), considering 12 important conditioning factors, such as temperature, rainfall, elevation,
slope, soil depth, soil drainability, soil electrical conductivity, base saturation, soil texture, soil pH,
the normalized difference vegetation index (NDVI), and land use land cover (LULC). The data were
normalized using ArcGIS 10.2 and the models were calibrated using 70% of the total data, while the
remaining 30% of the data were used for validation. The final TPSZ map was classified into four
different categories: highly suitable zones, moderately suitable zones, marginally suitable zones, and
not-suitable zones. The study revealed that the random forest (RF) model was more precise than the
logistic regression model, with areas under the curve (AUCs) of 85.2% and 83.3%, respectively. The
results indicated that well-drained soil with a pH range between 5.6 and 6.0 is ideal for tea farming,
highlighting the importance of climate and soil properties in tea cultivation. Furthermore, the study
emphasized the need to balance economic and environmental considerations when considering tea
plantation expansion. The findings of this study provide important insights into tea cultivation site
selection and can aid tea farmers, policymakers, and other stakeholders in making informed decisions
regarding tea plantation expansion.

Keywords: tea plantation; site suitability; random forest; logistic regression; machine learning; Darjeeling

1. Introduction

Darjeeling tea (Camellia sinensis L.) is world-famous for its unique taste [1]. It was
the first Indian product to obtain a geographical indication (GI) tag. The tea plantations
of Darjeeling are the major contributors to the region’s economy. The expansion of the
tea plantation areas is, therefore, essential for long-term socioeconomic sustainability [2].
The increased demand for Darjeeling tea and the limited land available for tea plantations
have presented difficulties in recent times. Along with socioeconomic development, tea
garden development plays a critical role in attaining self-sufficiency for the dependent
population [3].

Sustainability 2023, 15, 10101. https://doi.org/10.3390/su151310101 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su151310101
https://doi.org/10.3390/su151310101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-8505-7185
https://orcid.org/0000-0002-2956-2117
https://orcid.org/0000-0001-9840-2486
https://orcid.org/0000-0002-1086-8466
https://doi.org/10.3390/su151310101
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su151310101?type=check_update&version=1


Sustainability 2023, 15, 10101 2 of 21

Land suitability analysis (LSA) is a technique for determining the inherent and po-
tential capabilities, as well as the suitability, of various goals [4]. Geospatial data are
successfully investigated using geographic information system (GIS)-based multi-criteria
evaluation (MCE) methodologies to permit rigorous and flexible land suitability analy-
sis, which include the analytical hierarchical process (AHP), the frequency ratio (FR), the
weight of evidence (WoE), and the evidence belief function (EBF) [5]. Physical criteria
such as geology, soil characteristics, geomorphology, atmospheric conditions, vegetation
conditions, and economic and sociocultural circumstances are considered when evaluating
a site’s suitability [6]. The integration of geospatial techniques with the multi-criteria
decision-making (MCDM) method has been employed in numerous studies to effectively
address intricate challenges pertaining to land management.

These techniques are extensively used in LSA to identify the potential lands for
watershed management [7], plantation [3], and agriculture [8–12]. Jayansinghe et al. (2020)
assessed the land suitability for tea crops in Sri Lanka using the AHP and the decision-
making trial and evaluation laboratory (DEMATEL) model, wherein all the conditioning
factors were integrated to generate a land suitability map [13]. In their study on sustainable
tea-production-suitability areas in Bangladesh, Das et al. (2020) used phenological datasets
from remote sensing and geospatial datasets of soil-plant biophysical properties, and
based their findings on expert opinions [14]. The classification of the suitability zones
was finally determined using a weighted overlay spatial analysis technique. This method
included integrating reclassified raster layers for all important criteria, as well as the
results of the multi-criteria analysis. In their study on tea suitability along the Laos–China
border, Chanhda et al. (2010) used a combination of multi-criteria analysis and system
dynamics techniques to analyze forest land utilization and land suitability, with the goal of
anticipating future land use patterns for tea cultivation. [15]. Kamkar et al. (2014) opined
that selecting locations for agricultural land use necessitates taking into account geophysical
constraints, different topological conditions, and climatic conditions [16]. Accordingly, it is
important to take into account current and accurate land use/land cover (LULC), as well as
other geographical, environmental, and environmental thematic layers, when determining
the best tea-plantation suitability.

New-age machine learning techniques have also been employed for land suitability
assessment (LSA) studies. In their study on wheat production in Iran, Fereydoon et al. (2014)
employed a two-class support vector machine (SVM) model, wherein 22 models of soil
profile information were used, including relief, slope, precipitation, temperature, calcium
carbonate content, organic carbon content, pH, and gypsum content [17]. The models were
tested on a nonlinear class boundary that provided results of R = 0.84 and RMSE = 3.72.
Dahikar and Rode (2014) demonstrated the employability of an artificial neural network
(ANN) for ascertaining the cropland suitability zones [18]. They used attributes such as pH,
potassium content, sulfur content, manganese content, iron content, soil depth, temperature,
rainfall, and humidity. Mokarram (2015) employed several machine learning algorithms
such as Bagging, adoptive boosting (AdaBoost), and RotForest for wheat land suitability
analysis [19]. The thematic layers included in the study included topography, alkalinity,
salinity, soil texture, calcium carbonate content, soil depth, pH, gypsum content, and
wetness. The study found that the RotBoost algorithm provided the highest-accuracy score.

In their study on the suitability evaluation of tea cultivation in the Xinming Township
in Huangshan City, Anhui Province, China, Xing et al. (2022) compared the following
machine-learning-based models: logistic regression (LR), extreme-gradient boosting (XG-
Boost), AdaBoost, gradient-boosting decision tree (GBDT), random forest (RF), Gaussian
Naïve Bayes (GNB), and multilayer perceptron (MLP). These models were employed as
computational models to ascertain the precision of weight calculations for the evaluation
factors [20]. Xing et al. selected twelve factors and, using the RF model, calculated the
evaluation factors’ weights and obtained suitability evaluation results.

Wei and Zhou (2023) compared different machine-learning and deep-learning models
for evaluating suitable areas for the best tea in Yunnan, China. For the computation
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of the evaluation variables, climate, terrain, and green-cropping system variables were
used [21]. Six machine-learning models were used in the study. Among all the models, the
FA + ResNet model demonstrated the best performance, with an accuracy score of 0.94 and
a macro F1 score of 0.93.

In the current study, due to the study area’s great elevation variations and the abun-
dance of natural resources, there is very little land that is accessible for tea-garden expansion.
In land-suitability mapping, the priority is to identify suitable lands with the highest pro-
ductivity and the lowest input. Therefore, the analysis of agricultural land’s suitability is
a reliable and appropriate technique. The primary goal of the current study was to use a
random forest and logistic regression model to examine the tea-plantation-suitability zones
(TPSZs) in the Darjeeling district.

2. Study Area

The strategic geographical position of Darjeeling (Figure 1) holds significant impor-
tance, as it shares borders with Sikkim to the north, Bhutan to the east, and Nepal to the
west. This configuration establishes Darjeeling as a crucial region, encompassing interna-
tional boundaries and interstate border areas. Darjeeling tea is known for its unique flavor;
it is often referred to as the “champagne of teas”.
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Figure 1. Location map of the study area.

Darjeeling’s climate is suitable for tea growth. The environment in the region is cool
and moist, ideal for growing tea. The geographical extension of this area is 26◦27′ N to
27◦13′ N and 87◦59′ E to 88◦53′ E. The average annual temperature exhibits variation,
ranging from 24 ◦C in the low-lying areas to less than 12 ◦C at higher elevations. In the
summer season, temperatures on the ridge can reach approximately 16 ◦C to 17 ◦C, while
during winter, they tend to drop to around 5 ◦C to 6 ◦C. The southern slope of the ridge
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receives much higher rainfall (4000–5000 mm) than the leeward sides (2000–2500 mm).
Darjeeling tea is cultivated within the elevation range of 3000 to 7000 feet above sea level.
This altitude contributes to the tea’s distinct fragrance and aroma. Darjeeling’s soil is rich
in minerals, which contributes to the tea’s flavor. Darjeeling tea is traditionally farmed on
tiny, family-owned tea estates. To assure the best quality, the tea is grown using traditional
methods and the leaves are hand-picked.

Darjeeling tea is harvested four times a year, with each season yielding a unique flavor
character. The first flush, which occurs in March and April, produces a light and delicate
tea. The second flush, which occurs in May and June, produces a fuller-bodied tea with a
musky aroma. The monsoon flush, which occurs in July and August, produces a tea with a
robust flavor. The autumn flush, which occurs in October and November, produces a tea
with a milder flavor. Overall, Darjeeling tea cultivation is a highly specialized process that
requires skill and expertise [22]. The result is a tea that is highly prized and sought after by
tea connoisseurs around the world.

3. Materials and Methods
3.1. Database

To carry out the TPSZ analysis, different types of data were used. The data were
acquired from different sources (Table 1). The LULC map for 2022 was prepared using
Landsat 8 OLI data in Google Earth Engine [23], using the support vector machine (SVM)
method [24,25]. The LULC map was used for TPSZ analysis after validation by the Kappa
co-efficient method [26,27]. Tea-plantation sample points were collected randomly using
the LULC map and field surveys.

Table 1. Different data sources for the tea-plantation-suitability analysis (accessed on 5 January 2023).

Thematic Layers Dataset Resolution Sources

Rainfall CRU 0.5 km × 0.5 km https://crudata.uea.ac.uk
Temperature CRU 0.5 km × 0.5 km https://crudata.uea.ac.uk

Elevation SRTM DEM 30 m × 30 m https://earthexplorer.usgs.gov
Slope Calculated from SRTM DEM 30 m × 30 m https://earthexplorer.usgs.gov

Soil depth BHUVAN 5 km × 5 km https://bhuvan-app3.nrsc.gov.in
Soil drainability ISRIC 0.5◦ × 0.5◦ https://data.isric.org

Soil electrical conductivity ISRIC 0.5◦ × 0.5◦ https://data.isric.org
Base saturation ISRIC 0.5◦ × 0.5◦ https://data.isric.org

Soil texture ISRIC 0.5◦ × 0.5◦ https://data.isric.org
Soil pH Soil grids 250 m × 250 m https://soilgrids.org
NDVI Landsat 8 OLI 30 m × 30 m https://earthexplorer.usgs.gov
LULC Landsat 8 OLI 30 m × 30 m https://earthexplorer.usgs.gov

3.2. Conditioning Factors for Tea Cultivation
3.2.1. Rainfall

Rainfall is one of the most important factors that affect tea cultivation, as it plays a vital
role in determining the growth and yield of tea plants. Tea plants require a specific amount
of rainfall for optimal growth and yield, which varies depending on the stage of growth.
During the vegetative stage, tea plants require regular and adequate rainfall, typically
ranging from 1500–2500 mm annually, for the growth of new leaves and shoots. However,
during the reproductive stage, tea plants require less rainfall, ranging from 1000–1500 mm
annually (Figure 2A), to support the flowering and development of quality shoots [28,29].
Insufficient rainfall can lead to water stress, reduced photosynthesis, and poor growth and
yield of tea plants. On the other hand, excessive rainfall can lead to waterlogging, soil
erosion, and the spread of diseases, resulting in poor-quality tea leaves.

https://crudata.uea.ac.uk
https://crudata.uea.ac.uk
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
https://bhuvan-app3.nrsc.gov.in
https://data.isric.org
https://data.isric.org
https://data.isric.org
https://data.isric.org
https://soilgrids.org
https://earthexplorer.usgs.gov
https://earthexplorer.usgs.gov
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3.2.2. Temperature

Temperature is one of the most important factors that affect tea cultivation, as it affects
the growth, development, and quality of tea plants. According to a study [30], tea plants
have a specific temperature range for optimal growth and yield, which varies depending on
the stage of growth. During the vegetative stage, temperatures ranging from 20–30 ◦C are
ideal for the growth of tea plants. However, during the reproductive stage, temperatures
ranging from 10–20 ◦C are considered ideal for flowering and the development of quality
shoots (Figure 2B).

Extreme temperatures, either too high or too low, can have adverse effects on tea
plants, resulting in stunted growth, reduced yield, and poor quality of tea leaves. For
instance, temperatures above 35 ◦C can result in excessive transpiration, leading to water
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stress and reduced photosynthesis, while temperatures below 10 ◦C can result in frost
damage [31].

3.2.3. Elevation

Elevation is another critical factor that affects tea cultivation, as it affects the growth,
development, and quality of tea plants. Tea plants have a specific elevation range for
optimal growth and yield, which varies depending on the climatic conditions of the region.
Tea plants grow best at elevations ranging from 600 to 2000 m above sea level (Figure 2C),
with the ideal elevation varying depending on the region [32]. Higher elevations provide
cooler temperatures and lower humidity, which result in slower growth and better-quality
tea leaves with more complex flavors and aromas.

On the other hand, lower elevations provide warmer temperatures and higher humid-
ity, which result in faster growth and higher yields but may also result in lower-quality tea
leaves with a less-complex flavor profile.

3.2.4. Slope

Slope is another important factor that affects tea cultivation, as it affects the water
and nutrient availability of tea plants. Slope plays a significant role in tea cultivation, as it
affects soil erosion, water-holding capacity, and nutrient availability. Gentle slopes (less
than 20 degrees) are considered ideal for tea cultivation, as they promote water infiltration,
reduce soil erosion, and provide sufficient water and nutrients to tea plants. In contrast,
steep slopes (greater than 20 degrees) are not suitable for tea cultivation (Figure 2D), as
they promote soil erosion, reduce water infiltration, and result in poor growth and yield of
tea plants [33].

In addition, the slope affects the microclimate of a tea plantation, with south-facing
slopes receiving more sunlight and heat, resulting in faster growth and higher yields.
However, the south-facing slopes may also experience higher water stress, requiring
irrigation to maintain optimal soil-moisture levels.

3.2.5. Soil Depth

Tea plants require well-drained soil with good water-holding capacity, and the depth
of the soil determines the root system’s development and the availability of nutrients and
water. The depth of the soil significantly influences the growth and yield of tea plants [34].
Tea plants grown in deeper soils have higher shoot growth, greater leaf area, and higher
yield than plants grown in shallow soils (Figure 3A). Researchers have attributed this to
the greater availability of soil moisture and nutrients in deeper soils, which promote better
root development and plant growth. Soil depth significantly affects the accumulation
of catechins and caffeine in tea leaves. Tea plants grown in deeper soils have higher
concentrations of these compounds, which are important contributors to the taste and
health benefits of tea [35].

Soil depth is crucial in tea cultivation, as it affects the growth, yield, and quality of
tea plants. Tea farmers should consider the depth of the soil when selecting sites for tea
cultivation, and implement appropriate soil management practices to ensure optimal plant
growth and yield.

3.2.6. Soil Drainability

Soil drainability is an essential factor in tea cultivation, as it affects the growth and
yield of plants [36]. Drainage is necessary for tea cultivation because tea plants require
well-drained soil to thrive. Tea plants are susceptible to root rot and other soil-borne
diseases if they are grown in poorly drained soils, which can ultimately reduce the yield
and quality of the tea produced. Tea plants grown in well-drained soils (Figure 3B) show
significantly better growth and yield than those grown in poorly drained soils. A previous
study also found that soil drainage has a significant impact on the nutrient uptake of tea
plants. Plants grown in well-drained soils have higher nutrient uptake and show better
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leaf quality than those grown in poorly drained soils [37]. Therefore, tea growers need to
ensure that their soil has adequate drainage before planting tea.
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3.2.7. Soil Electrical Conductivity (EC)

Soil electrical conductivity (EC) is an important parameter that affects the growth and
development of tea plants. It is a measure of the ability of the soil to conduct electricity,
which is influenced by factors such as soil texture, moisture content, and the presence of
minerals and salts. Tea plants are particularly sensitive to changes in soil EC, as high levels
of salinity can lead to reduced growth, lower yields, and poor quality of the harvested
leaves [38]. High soil EC levels (Figure 3C) harm tea plant growth, particularly in terms
of reducing shoot length and leaf area. Tea plants grown in soil with high EC have
lower photosynthetic rates and chlorophyll content, which can ultimately lead to lower
tea quality [39]. Farmers and growers need to carefully monitor soil EC levels and take
appropriate measures to prevent excessive salinization of the soil, such as reducing the use
of fertilizers and irrigation water with high salt content.

3.2.8. Soil Base Saturation

Soil base saturation is a crucial factor in tea cultivation, as it determines the availability
of essential nutrients and influences soil pH. The base saturation refers to the relative
allocation of basic cations within the cation exchange capacity (CEC) of the soil, such as
calcium, magnesium, and potassium. In tea cultivation, a base saturation level of around
50–70% is considered ideal for optimal growth and productivity [40]. Soil base saturation
(Figure 3D) significantly influences tea yield and quality. A previous study was conducted
in the Darjeeling hills of India, where tea cultivation is a major economic activity. The
researchers found that tea plants grown in soils with base saturation levels between 50–70%
had higher leaf yield, better quality, and higher levels of important biochemical compounds
such as catechins and caffeine. On the other hand, tea plants grown in soils with low base
saturation levels (<50%) showed reduced growth, low yield, and poor quality.

3.2.9. Soil Texture

Soil texture is one of the most important factors affecting tea cultivation. The texture
of the soil can greatly influence the growth, yield, and quality of tea plants. Tea plants
require well-drained, deep soils that are rich in organic matter and have good water-holding
capacity. The texture of soil also affects the availability of nutrients and the activity of
soil microorganisms that are essential for plant growth. Tea plants grown in sandy loam
soils have higher shoot growth and yield than those grown in clay soils [41]. The sandy
loam soils (Figure 4A) also have higher levels of organic matter and available nitrogen,
phosphorus, and potassium. Tea plants grown in sandy soils have higher levels of catechins
and caffeine than those grown in clay soils. Therefore, soil with a sandy loam texture
is considered ideal for tea cultivation, as it provides good drainage, good water-holding
capacity, and good nutrient availability.

3.2.10. Soil pH

Soil pH is a critical factor in tea cultivation, as it influences the availability of essential
nutrients to the tea plant, affecting its growth, yield, and quality. The significant effect of
soil pH on the growth, yield, and quality of tea plants grown in soil with a pH range of
4.5 to 5.5 produces higher yields and better-quality tea than those grown in alkaline soils
(Figure 4B) with a pH range of 6.0 to 7.0 [42]. Furthermore, a previous study suggested
that maintaining optimal soil pH is crucial for sustainable tea production, as it not only
improves plant growth and yield but also reduces the use of chemical fertilizers and
pesticides, leading to a more environmentally friendly approach to tea cultivation.

3.2.11. Normalized Difference Vegetation Index (NDVI)

The normalized difference vegetation index (NDVI) is widely used for monitoring and
assessing vegetation health, productivity, and stress (Figure 4C). Tea cultivation is a major
agricultural activity in many countries, and the NDVI is a useful tool for monitoring and
managing tea plantations. Several studies have highlighted the importance of the NDVI
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in tea cultivation [39]. For instance, a study conducted in China found that the NDVI can
effectively monitor the spatial–temporal variability of tea growth and yield. Another study,
conducted in India, showed that the NDVI can be used to assess the effect of different
nutrient management practices on tea growth and yield.
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3.2.12. Land Use/Land Cover (LULC)

Land use/land cover (LULC) mapping is an important tool for understanding the dis-
tribution and extent of different land cover types, including tea cultivation. Tea cultivation
is a major land use in many countries and LULC mapping can provide insights into the
spatial distribution of tea plantations, as well as their environmental and socioeconomic im-
pacts. Several studies have highlighted the importance of LULC mapping in tea cultivation.
LULC mapping (Figure 4D) can help to identify areas where tea plantations are expanding
and encroaching on forested areas [43]. Another study conducted in India showed that
LULC mapping can help to assess the impact of different land use types on tea productivity
and quality [44].

LULC mapping is an important tool for tea farmers and researchers to understand the
spatial distribution and impact of tea cultivation. Its applications in tea cultivation have
been widely documented and it has been shown to have practical benefits in improving tea
productivity and sustainability.

3.3. Methods
3.3.1. Logistic Regression Model (LR)

The logistic regression (LR) model is a statistical approach used to model the relation-
ship between an independent variable and a dependent variable [45,46]. This technique
is commonly used in classification problems, where the goal is to predict the probability
of a binary outcome based on one or more input variables. It is a supervised learning
method that is widely applied in various fields. Logistic regression is categorized into two
main types: simple logistic regression and multivariable logistic regression. Simple logistic
regression involves only one predictor variable, while multivariable logistic regression
is applied when there are several predictors, including both categorical and continuous
variables. Logistic regression is a popular technique for binary classification problems and
is widely used in the field of statistical modelling [47].

Using a technique called maximum likelihood estimation, the logistic regression model
is trained by identifying the coefficient values that maximize the probability of examining
the training data. Once trained, the model may be used for predicting the likelihood of an
outcome for new input data by simply entering the values of the input variables into the
model equation and using the logistic function. The benefit of logistic regression is that,
unlike traditional linear regression, where the variables must all have normal distributions,
the variables can be continuous, discrete, or any combination of the two, and they are not
required to have normal distributions. This is accomplished by adding an appropriate
link function to the standard linear regression model. In our study, the binary dependent
variable represents the presence or absence of a tea plantation. To analyze the possibility of
tea plantation, the input value of the dependent variable must be either 0 or 1.

The equation below shows the relationship between the occurrence and its dependency
on multiple variables:

p = 1/
(
1 + e−z) (1)

where p is the probability of an event occurring and z is the linear combination. In our
study, the value p is the estimated probability of a suitable tea plantation site. The value of
p ranges from 0 to 1 on an S-shaped curve. Logical regression entails fitting an equation of
the following kind to the data:

z = b0 + b1x1 + b2x2 + b3x3 + bnxn (2)

where b0 is the intercept of the model, the bi (0, 1, 2, . . . , n) are the slope coefficients of the
LR model, and the xi (0, 1, 2, . . . , n) are the independent variables.

This model assessed the spatial relationship between tea cultivation samples and
conditioning factors. The spatial databases of each factor were converted raster to ASCII
format in ArcGIS 10.2 software for use in IBM SPSS V28 software. Therefore, logistic
regression mathematical equations were used to formulate each factor and obtain the coef-
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ficient values (Table 1). Finally, the probability assessment of tea plantation occurrence was
determined by analyzing spatial data via mathematical equations. (Equations (1) and (2)).
In addition, logistic regression mathematical equations (Equations (1) and (3)) were used
for all factors to generate an outcome of tea-plantation-suitability zones. The coefficient
values of different conditioning factors were used for mapping tea-cultivation-suitability
zones in ArcGIS 10.2, based on Equation (3) in the raster calculator (Figure 5).

zp = (0.001798× Rain f all) + (0.000295× Temperature) + (−0.07205× Elevation) + (0.04237× Slope) + Depthc
+ Drainabilityc + Ecc + Saturationc + Texturec + pHc + (0.024655× NDVI) + LULCc − 17.640

(3)

where Depth is soil depth, Drainability is soil drainability, Ec is soil electrical conductivity,
Saturation is base saturation, Texture is soil texture, pH is soil pH, and the coefficient values
are listed in Table 2. A positive coefficient indicates that the tea plantation is more suitable
at the level of a predictor than at the reference level of the factors. A negative coefficient
indicates that the tea plantation is less suitable at the level of predictors than at the reference
level of the factors (Table 2).

Table 2. Coefficient values of different discrete data factors.

Factors Class No. of Pixels in a
Class

% of Pixels in a
Class

No. of Pixels of
Tea Cultivation

% of Pixels of
Tea Cultivation

Coefficient of
Logistic

Regression

Soil depth

4.3–5.03 1091 3.66 268 9.69 0.29
5.03–5.68 2519 8.46 729 26.37 0.477
5.68–6.34 4738 15.91 1343 48.57 0.462
6.34–6.99 21,434 71.97 425 15.37 0.306

Soil texture

Sandy loam 11,286 37.90 495 17.92 0.07
Silt loam 7622 25.60 166 6.01 0.190

Clay loam 10,581 35.54 2082 75.35 0.412
Loam 287 0.96 20 0.72 0.057

Soil pH

below 5.2 267 0.90 0 0.00 −0.76
5.2–5.5 15,122 50.82 163 5.89 −1.01
5.5–5.6 7085 23.81 585 21.15 −0.34
5.6–6.0 7281 24.47 2018 72.96 0.09

Soil drainability

Moderately
well-drained 4570 15.36 169 6.11 0.745

Well-drained 18,024 60.57 2465 89.12 1.096
Somewhat
excessively

drained
6442 21.65 132 0.44 1.145

Excessively
drained 720 2.42 0 0.00 0.866

Soil electrical
conductivity

1.52–1.98 786 2.64 0 0.00 0.172
1.98–2.46 1963 6.60 543 19.63 0.069
2.46–3.22 10,265 34.49 2105 76.10 0.016
3.22–3.99 16,734 56.25 118 4.27 0.006

Soil base
saturation

3.0–3.7 14,062 47.27 350 12.65 −0.501
3.7–4.5 6981 23.46 955 34.53 14.021
4.5–5.3 7861 26.42 1461 52.82 14.593
5.3–6.1 847 2.85 0 0.00 14.238

LULC

Agricultural land 560 1.88 0 0.00 0.722
Built-up area 344 1.16 0 0.00 −0.567

Sand depositions 1636 5.50 0 0.00 0.019
Tea cultivation 2990 10.05 2770 100.00 1.381

Vegetation 20,288 68.21 0 0.00 0.206
Waterbodies 3927 13.20 0 0.00 −0.410

Coefficient of logistic regression value for continuous data: temperature 0.000295, slope 0.04237, rainfall 0.001798,
NDVI 0.024655, and elevation −0.07205.
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3.3.2. Random Forest (RF)

The random forest (RF) model is widely recognized as a prominent algorithm in the
domain of supervised machine learning, suitable for addressing classification as well as
regression tasks [48,49]. The algorithm constructs decision trees by leveraging multiple
instances, employing majority voting for classification and averaging values for regression
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tasks. An important feature of RF is its ability to handle datasets with both continuous and
categorical variables for both regression and classification tasks. RF has been shown to
achieve excellent performance in classification problems. This model is also very useful for
remote-sensing data classification [50]. The random forest approach [51] was developed by
Leo Breiman; it is a compilation of unpruned decision trees designed for classification or
regression purposes. These trees are built from randomly picked training data samples,
and random features are chosen during the induction process. To make a prediction, the
ensemble integrates the predictions of its members using a summing method. This typically
involves taking the majority vote of the ensemble’s members for classification tasks, or the
average prediction for regression tasks [52].

In this study, the tea-cultivation status of the study area was collected via the tea-
cultivation and non-tea-cultivation field investigation and the remote sensing techniques.
The tea-cultivation land value was denoted as 1 and the non-tea-cultivation land as 0 in
ArcMap 10.2. The values from all variables were collected using the “multi values to point”
algorithm. R statistical software provides limited tuning options for random forests [53,54],
including “ntree”, “mytr”, “sampsize”, “nodsize”, and “maxnodes”. The “ntree’”parameter
is used to specify the number of trees to be used in the algorithm. Using a proper number of
trees can help to reduce errors, but using an excessive number of trees might be inefficient,
specifically when dealing with large datasets. The “mytr” is the number of variables picked
at random as candidates at each split. When performing classification, a vector called
“sampsize” can be used to specify the number of samples to be drawn from each stratum
during stratified sampling. The vector’s length should correspond to the number of strata,
and each element represents the desired sample size for the corresponding stratum. In this
study, “ntree” is 100 number of trees and the “mytr” variable sample split is 1 [55]. The
data were split randomly, where 70% of the data were used as training data to calibrate the
model and the remaining 30% of the data were used as testing data for model validation.
Finally, we stacked all the variables as a raster layer and prepared it for the final output
(Figure 5).

3.4. ROC (Receiver Operating Characteristic) Curve

The receiver operating characteristic (ROC) curve is a visual representation of a
classification model’s performance across various classification thresholds. It plots the
relationship between the true positive rate (TPR) (Equation (4)) and the false positive rate
(FPR) (Equation (5)). TPR is computed as the ratio of true positives (TP) to the sum of true
positives and false negatives (FN) using Equation (4), while FPR is calculated as the ratio of
false positives (FP) to the sum of false positives and true negatives (TN) using Equation (5).

TPR =
TP

TP + FN
(4)

FPR =
FP

FP + TN
(5)

In these equations, TP represents acceptably classified positive cases, TN represents
correctly classified negative cases, FP represents wrongly classified negative instances, and
FN represents wrongly classified positive instances.

The area under the ROC curve (AUC) is a commonly used metric for evaluating the
performance of a classification model. AUC values range between 0 and 1, where higher
values show better performance. AUC values from 0.9 to 1 are considered outstanding,
values from 0.8 to 0.9 are considered excellent, values from 0.7 to 0.8 are considered fair,
values from 0.6 to 0.7 are considered poor, and values from 0.5 to 0.6 are considered failed.
The AUC provides a comprehensive measure of the model’s capability to discriminate
between positive and negative instances across different classification thresholds [56,57].
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4. Results

The study aimed to map the tea-plantation-suitability zones (TPSZs) in a particular
region and to compare the performance of two different models, random forest and logistic
regression, in predicting the suitability of an area for tea plantation. In this section, we
elaborate on the results obtained in the study, providing a comprehensive analysis of the
study findings. To begin with, the study collected data on various factors that are essential
for tea plantations, including topography, climatic conditions, soil characteristics, and land
use. There are six factors that play crucial roles, i.e., Lulc, NDVI, elevation, temperature,
slope. and soil pH, for this tea-plantation-suitability-zone analysis (Figure S1). The data
were collected from different sources, including satellite imagery, ground surveys, and
meteorological data records. The collected data were then preprocessed to ensure that
they were clean, accurate, and ready for analysis. To ensure that the random forest and
logistic regression models were accurately calibrated, all factors were adjusted to the same
scale and extension. The layers were prepared using ArcGIS 10.2, and the random forest
model utilized R-4.3.0 statistical software, while the logistic regression model used IBM
SPSS V28 software.

The study involved using the calibrated models to prepare a map of the tea-plantation-
suitability zones (TPSZs). The TPSZs were divided into four categories—highly suit-
able zones, moderately suitable zones, marginally suitable zones, and not-suitable zones
(Figure 6)—based on the predicted suitability values. The study involved using the cali-
brated models to map the TPSZs in the study area.
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4.1. Tea-Plantation-Suitability Zones (TPSZs)

It was found that the total area covered by the TPSZs was 3149 km2. The TPSZs were
divided into four categories—highly suitable zones, moderately suitable zones, marginally
suitable zones, and not-suitable zones (Figure 6)—based on the predicted suitability values.
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The highly suitable zones covered 17.59% (553.84 km2) for the random forest model and
20.87% (657.14 km2) for the logistic regression model. The moderately suitable zones
covered 16.59% (522.29 km2) for the random forest model and 28.74% (905.11 km2) for the
logistic regression model. The marginally suitable zones covered 13.35% (420.47 km2) for
the random forest model and 15.80% (497.58 km2) for the logistic regression model. The
not-suitable zones covered 52.47% (1652.40 km2) for the random forest model and 34.59%
(1089.17 km2) for the logistic regression model (Figure 7).
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The study also revealed that the highly suitable and moderately suitable zones covered
a significant proportion of the TPSZs, indicating that these areas have high potential for
tea plantation. These zones could be prioritized for tea-plantation development, as they
are likely to yield higher productivity and profitability. On the other hand, the marginally
suitable and not-suitable zones may not be suitable for tea plantation development and,
therefore, alternative land use options should be explored in these areas.

4.2. Accuracy Assessment of Models

The sample data were divided into two sets: 70% for model calibration and 30% for
model validation. The models were calibrated using the training data and the accuracy
of the models was assessed using the testing data. The performance of the models was
measured using the area under the c(AUC) of the receiver operating characteristic (ROC)
curve, which is a standard metric for assessing the performance of binary classifiers. The
results showed that both models were accurate in predicting the suitability of an area for
tea plantation, with AUC values of 85.2% and 83.3% for the random forest and logistic
regression models, respectively. The Kappa value was 0.6916 and the confusion matrix (see
the Supplementary Information for confusion statistics) showed that in the predicted map
of tea plantation, positive occurrence points accurately showed 650 points for tea plantation
and 865 points for no-tea plantation and negative occurrence points showed 197 points
for tea plantation and 76 points for no-tea plantation (Figure 8). However, the random
forest model performed better than the logistic regression model in terms of accuracy and
precision, as indicated by the higher AUC value (Figure 8).
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4.3. Intercomparison of Models for Tea-Plantation Suitability

This study’s findings provide valuable insights into the suitability of an area for tea
plantation and the performance of two different models in predicting such suitability. The
results showed that both models were accurate in predicting the suitability of an area for
tea plantation, but the random forest model performed better than the logistic regression
model. The ROC curve serves as validation for the suitability maps, and our findings
indicate that the random forest model yielded better results than the logistic regression
model, with an improvement in accuracy of 1.9%. The comparatively good performance of
random forest could be attributed to the fact that random forest is an ensemble method
that combines multiple decision trees, thereby improving the accuracy and robustness of
the model. The study highlights the high suitability of non-forest areas for tea plantations
but emphasizes the need to consider the potential positive and negative impacts on both
the environment and the economy.

This study’s results also highlight the importance of data preprocessing and calibration
in ensuring the accuracy and reliability of the models. The collected data were preprocessed
to ensure that they were clean, accurate, and ready for analysis. The models were then
calibrated using the calibration dataset, which helped to optimize the models’ parameters
and improve their performances. The validation dataset was used to assess the accuracy of
the models, and the AUC values showed that the models were accurate in predicting the
suitability of an area for tea plantation.

5. Discussion

In this study, we utilized both random forest and logistic regression models to identify
suitable sites for tea plantations. We conducted extensive mapping of 2770 tea plantation
locations using a combination of satellite imagery and field surveys. Both the random
forest and logistic regression models were employed to analyze the TPSZs, using the
aforementioned 12 factors. Before the analysis, we standardized the cell size and row
column to ensure an equal number of data points. We further normalized the data using
ArcGIS 10.2. The discrete data layer was subsequently classified based on the tea plantation
site, and both models adopted a grid-based analysis methodology.
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The climate plays a pivotal role in influencing the distribution, growth, and yield of
tea plantations. Optimal tea cultivation occurs in warm and moist climatic conditions, char-
acterized by a consistent temperature throughout the year. Adequate and well-distributed
annual rainfall, typically ranging from 1500 to 2000 mm, is necessary for successful tea
cultivation. However, extended dry seasons, excessively low temperatures (below 17.5 ◦C),
or extremely high temperatures (above 26.5 ◦C) can have detrimental effects on tea plant
foliage in the Darjeeling Himalaya [58]. Consequently, tea cultivation has been facing seri-
ous issues posed by inadequate water supply and large dam construction [2]. Furthermore,
the increasing intensity of temperature also impacts crucial biological processes such as
photosynthesis and reproductive growth in tea plantations [30,31].

Soil characteristics play a critical role in tea plantations. The physical, chemical, and
biological properties of the soil collectively contribute to the success of tea plantations.
Notably, soil texture and pH emerged as the most significant physicochemical factors, with
an acidic soil pH ranging between 5.6 and 6.0 being deemed ideal for tea cultivation in the
study area. However, in recent decades, increasing soil pH along with sediment-based soil
texture has created a barrier for the quality of tea plantation in the low-elevated areas of
northwestern Darjeeling Himalaya. Moreover, base saturation (i.e., Ca, Mg, K, and Na)
has been found to be less in the northeast section and, consequently, the quality of tea
production was also somewhat damaged. Similar kinds of results have been found in
Bangladesh tea gardens [40] and in Malaysia [59,60]. Regarding drainability, soils with
a sandy or coarser grain texture exhibit superior permeability and optimal drainability;
they are found in the low-elevated areas. except in the northwestern and northeastern
sections. Therefore, comparatively low-elevated but gentle-to-moderate slope areas provide
optimal conditions for tea growth, and the northwestern and northeastern sections are
comparatively less productive for tea growth.

However, the current land-use scenario—specifically, agriculture and vegetation
status—were determined where are favorable conditions for tea growth [2]. The analysis
revealed that the dominant LULC—specifically, agricultural land and vegetation cover—
have sometimes created a problem in tea plantations. Dense forest cover or intensive
agriculture activities near tea gardens consume more water, and recharge in the ground
creates a problem for the growth of tea.

This study has some limitations. The RF model tends to overfit the training data if
not properly tuned. Overfitting can lead to misleading predictions and reduced model
performance. Both the RF and LR models require a sufficient amount of high-quality data
for accurate prediction. The RF and LR models are best suited for site suitability analysis
and can be used in different studies, such as studies of flood susceptibility, landslide
susceptibility, forest fire susceptibility, landfill suitability, and urban built-up suitability [61].

This study was able to identify substantial potential areas for expanding tea plantations
in Darjeeling Himalaya, based on suitable surface and environmental conditions such as
slope, rainfall, and temperature. Moreover, the soil conditions in the study area were found
to be conducive to tea plantations.

6. Conclusions

This study employed random forest (RF) and logistic regression (LR) models to assess
the suitability of tea-plantation sites based on several factors, including temperature,
rainfall, elevation, soil characteristics, and land use/land cover. The models were calibrated
and validated using standardized data, and GIS techniques were employed to map tea-
plantation-suitability zones (TPSZs).

The study found that both the RF and LR models were effective in classifying TPSZs
into four categories: highly suitable zones, moderately suitable zones, marginally suitable
zones, and not-suitable zones. The total area covered by the TPSZs was 3149 km2. The RF
model identified 17.59% of the total area as highly suitable, 16.59% as moderately suitable,
13.35% as marginally suitable, and 52.47% as not suitable. The LR model identified 20.87%
of the total area as highly suitable, 28.74% as moderately suitable, 15.80% as marginally
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suitable, and 34.59% as not suitable. The study used 2770 sample points for TPSZ mapping,
with 70% of the locations used for model calibration and 30% for validation. The area
under the curve (AUC) for the RF model was 85.2%, while for the LR model, it was 83.3%.
These high AUC values indicated the accuracy and justification of the models in predicting
tea-plantation potential.

The study found that climate factors such as temperature and rainfall played a crucial
role in determining tea-plantation suitability. Soil characteristics, including soil depth,
texture, pH, drainability, electrical conductivity, and base saturation, were also significant
determinants. The analysis of land use/land cover using the NDVI and LULC indices
highlighted the dominant presence of forest cover and tea plantations in the study area.
The RF model outperformed the LR model, demonstrating a 1.9% improvement in accuracy.
The suitability maps generated by the RF model provided valuable insights into tea-
plantation potential, while considering the balance between environmental and economic
impacts. This study recommends the protection of natural reserve areas, while promoting
tea plantation expansion in non-forest regions.

In summary, the RF and LR models facilitated the identification and classification
of suitable tea-plantation sites based on multiple factors. The study’s findings can assist
stakeholders in making informed decisions regarding tea-plantation site selection and
management, while considering environmental and economic aspects.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su151310101/s1, Figure S1: Importance of different factors for
Tea plantation suitability analysis.
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