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Abstract: The urban population has been growing rapidly, especially in the European Union. The
trend of urbanization has led to an increased demand for mobility, through both passenger and goods
transportation. One of latest trends in passenger transportation is electric scooters, which have been
offered under a framework of shared mobility since 2017. This paper addresses an optimization
problem emerging from the process of collecting e-scooters from the streets of Vienna during the
night. One of the major planning issues for rental companies is the uncertainty of service times,
i.e., the time needed to locate and load the e-scooters onto the vans. We formulated the e-scooter
collection problem as an extension of the vehicle routing problem with the goal of minimizing the
number of vans needed to collect the scooters and the distance traveled by vans, as well as penalizing
belated collection. We proposed a solution method based on a large neighborhood search and solved
problem instances generated based on real-world data. We then evaluated the impact of the service
time uncertainty on the total system costs through a scenario analysis. Furthermore, we proposed a
dynamic re-optimization policy that made use of real-time information on service times. We showed
that the dynamic policy outperformed the static policy by 4–17% and could lead to reductions in
delays of 49–54%, depending on the standard deviation.

Keywords: vehicle routing problem; electric scooters; dynamic policies; shared mobility; heuristic
solution method

1. Introduction

The global population in urban areas is growing yearly, from 43% in 1990 to 56% in
2021, with an upward trend. Even higher numbers have been reported in the European
Union: the urban population grew from 69% in 1990 to 75% in 2021 (see [1]). With the
increase in the urban population, more vehicles are needed for transportation, for the
movement of both freight and people. Mobility in cities is essential to sustain life; however,
it has a high impact on the environment. Road transportation is the sector with the highest
CO2 emissions (26%) in the European Union. Since 1990, the CO2 emissions from this sector
have increased by 7% [2].

1.1. Motivation and Goals

As cities move towards greener and more sustainable solutions for transportation,
there is an increase in the demand for more environmentally friendly transportation modes.
One of the newest trends in passenger transportation is electric scooters (e-scooters)—c-
ollapsible kick-scooters, which utilize a small electric motor in order to move forward [3].
When powered by sustainable fuel, e-scooters constitute an environmentally friendly
transportation option for short trips within cities [4]. E-scooter rental companies use the
concept of shared mobility and a free-floating sharing system. They provide their e-scooters
for a specified price to anybody for the period during which they need transportation.
As e-scooters are relatively light-weight and small, they can be made available in many
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more places around a city than other forms of transportation (e.g., bicycles). Recent studies
show that e-scooters are a competitive transportation mode in urban areas (see [5]), as was
especially evident during the COVID-19 pandemic with its associated mobility restrictions
(see [6]).

Although e-scooters are a very efficient and economical transportation mode, they
have a major drawback, i.e., their short operating period due to the limitation of their battery
charge. Furthermore, the recharging process of the battery is quite time-consuming and
can take anywhere between 6 and 10 h [7]. One of the solutions for the recharging problem
could be to equip the e-scooter with a swappable battery. A depleted battery can be replaced
with a fully charged one, so there would be no need to bring the e-scooter back to the
depot for recharging. However, several issues and concerns come with swappable batteries.
As swappable batteries are designed to be easily removable, they must be accessible to
everyone. Thus, they are more exposed to theft, vandalism, and damage. E-scooters are
powered by energy-dense lithium-ion batteries. Although providers emphasize that these
industrial-grade high-quality devices are highly endurable and safe for daily use, there are
still reports worldwide of fire incidents, electrical faults, and self-ignition [8,9]. Therefore,
several operators, e.g., LINK, Kiwi, and Bird, mistrust swappable batteries and do not plan
to use them as long as the safety standards are not completely fulfilled.

The companies that do not use swappable batteries typically collect their e-scooters
from the streets late in the evening and charge them at a central depot during the night. A
fleet of vans is assigned to collect the scooters from the street and bring them to the depot
at a certain time. The same vehicle fleet is in charge of distributing fully charged e-scooters
at designated locations early in the morning. All these processes follow very tight policies:
the e-scooters have to be collected after the operating hours end, which is typically around
10pm, and distributed again in the streets at 7 a.m.

Discussions with practitioners have shown that the collection policies in major cities,
e.g., Vienna, are typically static. This can, however, lead to sub-optimal solutions, as the
service times needed to locate e-scooters on the streets and load them onto vehicles are
uncertain. Furthermore, the predicted time windows for the collection of e-scooters are
quite tight, as the e-scooters need to be recharged at the depot for a long time. Therefore, any
delay in the collection process can lead to delays in e-scooter distribution in the morning,
which would result in high costs and lost sales.

In this paper, we propose an e-scooter collection problem that takes into account the
uncertainty of service times. We formulated the problem as a vehicle routing problem
(VRP) and proposed a solution method based on a large neighborhood search heuristic.
The goal of the model was to minimize delays and resulting costs. We addressed both a
static and dynamic policy for the collection of e-scooters. A simulation of real-world service
times measured the impact of real-time information on the re-optimization and compared
the costs of the dynamic solution with the static solution.

1.2. Related Literature

The usage of (electric) scooters for short-distance transportation in urban settings
pertains to the field of micro-mobility solutions. Micro-mobility includes transportation
with smaller vehicles, such as bicycles, scooters, skateboards, segways, and hoverboards.
For a recent review of the literature on micro-mobility solutions for urban transport, see [10].

The business concept of e-scooter rental companies is based on shared mobility. This
principle is based on the idea of a sharing economy, wherein users pay a specific price and
rent a product or service for a defined time frame. Sharing is typically achieved via online
platforms (see [11]). Shared mobility includes the transportation of people via carsharing,
bikesharing, moped or scooter sharing, ridesharing, public transit services, and on-demand
ride services [12]. For a recent review of vehicle-sharing systems, see [13–16].

This paper deals with an optimization problem emerging within e-scooter rental com-
panies. However, the majority of the literature on e-scooters is not related to the field of
optimization and vehicle routing. In [17], a data-driven demand model was used to compare
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different electric-scooter-sharing designs. The authors evaluated the impact of the charging
costs and the number of e-scooters on real-world demand in Minneapolis and Louisville.
In [18], the travel times of different micro-mobility solutions were analyzed and compared
with car travel times. The authors showed that, in urban settings, e-scooters and bikes take
noticeably less time for journeys than passenger cars. In [19], GIS hotspot spatial analysis and
negative binomial regression models were used to analyze the spatio-temporal travel patterns
of rental e-scooters in two US cities. The authors identified the factors that influenced demand
for e-scooters, such as topography, infrastructure, and local uniqueness. The authors of [20]
conducted a similar study in the city of Indianapolis, and those of [21] in the city of Belgrade.

In [22], a demand prediction model for shared e-scooters based on deep learning
was presented. The authors of [23] conducted a study to investigate the impact of pricing
packages on demand in e-car and e-scooter sharing. However, the conjoint analysis showed
that users still prefer e-cars over e-scooters. In [24], a literature review on the laws, trends,
prices, and environmental impact related to e-scooters was presented. The authors showed
that regulations for rental e-scooters varied from city to city. Furthermore, they conducted
a study and showed that typical users of rental e-scooters are young males. In [25], focus
groups were used to analyze user attitudes towards rental e-scooters in the city of Riga.
The results showed that young people (18-35 years) see e-scooters as a sustainable mode
of transportation and use them as a substitute for taxis, private cars, and public transport.
The authors of [26] argued that rental e-scooters might not be a sustainable solution for
urban transportation at all, due to their short life cycle.

A handful of optimization problems related to battery charging have been addressed
in the literature. In [27], the best locations for e-scooter battery swapping stations were
determined. The authors formulated the problem as a mixed-integer program and solve it
with a large neighborhood search. The authors of [28] discussed the factors that influenced
customers’ willingness to use battery swapping stations, such as availability, design, and
user-friendliness.

Another problem faced by e-scooter providers is the mismatch in the demand and
supply of e-scooters throughout the day: scooters are distributed at designated locations
in the morning; however, according to the usage levels throughout the day, the number
of available scooters at certain locations either surpasses or does not meet the demand.
A solution to this problem is the repositioning of the scooters from the locations with
high supply and low demand to locations with low supply. In [29,30], the problem of
relocating e-scooters with the additional task of relocating inappropriately parked vehicles
was presented. The authors formulated the problem as a mixed-integer linear program
and proposed a matheuristic based on a genetic algorithm as a solution method. The
authors of [31] discussed the problem of the on-board charging of e-scooters while they
are being transported or relocated in a van. They solved an inventory routing problem for
a real-world dataset with the help of a heuristic solution method. For a recent survey on
further optimization problems and methods emerging in shared mobility, see [32].

Our problem belongs to the field of dynamic vehicle routing problems (DVRPs).
The vehicle routing problem was first introduced in [33] as a truck dispatching problem,
wherein a set of vehicles had to be assigned to deliver goods to a set of customers in a
cost-minimizing way. Typically, the input data for such problems are known in advance.
However, in real-world scenarios, this is often not the case, and the data may vary. In
the late 1970s, researchers were already aware of the impact of data uncertainty and
availability on the quality of the solution (see [34]). The authors of [35] addressed the issue
of uncertainty in travel and service times. They pointed out that the skills of drivers as well
as the characteristics of the parking or loading bay play an important role in the estimation
of service times. In [36], the authors stated that the uncertainty of arrival times for delivery
vans had a high impact on customer satisfaction. They analyzed different scenarios to find
the trade-off between the total carrier costs and the customer service levels.

The literature distinguishes between four different categories of problems based
on whether data are available and certain (see [37]). Hence, problems are defined as:
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(i) deterministic and static, (ii) deterministic and dynamic, (iii) stochastic and static, and
(iv) stochastic and dynamic. Our problem belongs to the deterministic and dynamic
group. For reviews on dynamic problems, see [37–43]. The authors of [43] showed that,
of the literature on DVRPs in the last seven years, 35% dealt with deterministic and
dynamic problems. Furthermore, 17.5% was dedicated to the transport of people, and
(meta)heuristics dominated as solution methods.

2. E-Scooters in the City of Vienna

This section provides some insight into the current state of the market for rental e-
scooters in the city of Vienna, as well as on the regulations that have been issued by the city
administration to manage the vehicle fleets on the streets.

2.1. State of the Viennese E-Scooter Rental Market

Table 1 shows an overview of the e-scooter rental companies that have entered the
Viennese market, together with their status as of December 2022 and numbers of permits
issued for e-scooters. The first providers, Bird and Lime, entered the Viennese ridesharing
market in September 2018, followed by Tier and Wind in November of the same year. New
competitors such as Flash/Circ, Hive, and Kiwi joined in the next year, increasing the
Viennese total fleet size from 600 to 6000 e-scooters [44]. The presence of and increasing
interest in this transport mode turned out to be fatal for some e-bike rental companies.

In 2019, the first rental companies started leaving the Viennese market. During the
harsh winter conditions of 2018/2019, Wind left the market. High competition and new
strict regulations were some of the reasons for Hive leaving the market by the end of 2019.
During 2020, Max Motion and Holmi/Rollmi, Austrian-based start-ups, left Vienna to focus
on smaller Austrian cities. Furthermore, Bird took over Circ. In April 2021, Link joined
the market and managed to establish a large user base rather quickly, mainly due to their
offering of free rides in association with COVID-19 vaccines (see [45]).

Table 1. State of the Viennese E-Scooter Rental Market, as of December 2022.

Company Market Entry Date Market Exit Date No. Permits Issued Status

1 Lime 18 September - 1500 active

2 Bird 18 September - 1500 active

3 Tier 18 November - 1500 active

4 Wind/Byke 18 November 19 August 574 left

5 Flash/Circ 19 March 21 January 1500 left

6 Hive 19 April 20 February 790 left

7 Kiwi 19 July - 1500 active

8 Holmi/Rollmi 19 August 20 February 30 left

9 MaxMotion 19 October 20 June 130 left

10 Link 21 April - 1500 active

2.2. Regulatory Work in the City of Vienna

As citizens and users were not accustomed to e-scooters in Vienna when they were
introduced, several issues arose for safe urban transport. First, the lack of knowledge and
information on where and how to park the scooters after riding caused blockages in the
normal traffic flow. Scooters carelessly discarded on sidewalks or even on streets endanger
the safety of all traffic participants. Secondly, the lack of skills in handling the vehicles
on the road resulted in numerous traffic accidents, which led to a clear disapproval of
e-scooters among Viennese residents.

The Vienna City Administration saw the need to issue regulations concerning rental
e-scooters in 2018 [46]. The first set of regulations included the following municipality rules:
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• Each rental scooter company, including their subsidiaries, is allowed up to 1500 scooters.
• Improperly parked scooters have to be relocated within 4 h on weekdays and within

12 h on weekends. Otherwise, a fine of EUR 700 will be issued.
• All rental scooters need to have a permit issued and an official identification tag.
• The municipal waste management division of the city of Vienna is responsible for the

proper disposal of all vandalized or irreparable scooters.

Though these municipality rules brought some improvement in the regulation of
e-scooter fleets on the streets of Vienna, there were still no legal consequences for the
improper usage of the scooters. The national parliament saw the need to change this and, as
of 1 June 2019, e-scooters were brought under regulation with the 31st Amendment of the
Road Traffic Regulations Act. Legally, e-scooters became defined as motorized two-wheeled
vehicles that fall under the same regulations as bicycles in traffic. The legal regulations also
brought some changes to the design of e-scooters. The maximum motor capacity was set to
a limit of 600 watts. Though previous designs allowed for speeds of over 35 km/h, the new
regulations limited the speed of e-scooters to 25 km/h.

To ensure road safety for all participants, e-scooter legal regulations are equivalent to
those of bicycles [46]. The main rules are:

• The use of bicycle lanes or zones where cycling is permitted is mandatory.
• The use of sidewalks is prohibited.
• The maximum allowed speed is 25 km/h, and the actual speed has to be adjusted to

traffic situations.
• The use of mobile phones or listening to music is prohibited.
• The alcohol limit is set to 0.8.
• The minimum age requirement for users is 12 years. Younger users can still book a

ride; the ride then has to be supervised by a person over 16 years old.
• Head protection is recommended for everyone and mandatory for users under the

age of 13.
• The use of scooters by two or more riders at the same time is prohibited.
• The safety protocol must be checked before each ride.

In the summer of 2020, it became evident that the concentration of e-scooters through-
out the city was not balanced. Therefore, the Vienna City Administration issued amended
guidelines to balance the e-scooter distribution and, in particular, to make sure that enough
e-scooters were available in the outskirt districts of the city of Vienna [46]. The previous
guidelines for rental e-scooter providers were updated with additional rules:

• The 1st, 2nd, 9th, and 20th districts can hold up to 500 vehicles at most.
• In districts 10–22, a minimum of 500 scooters has to be provided.
• Improperly parked scooters have to be relocated within 2 h on weekdays.
• Operations teams in charge of collecting the e-scooters at night are not allowed to use

acoustic tracking signals.
• Scooter rental companies have to report the locations of the distributed scooters each

morning before 7 a.m.
• Scooters cannot be parked on a sidewalk narrower than 4 m.
• Adherence to the law will be checked by the City Administration.

The Vienna City Administration planned stricter regulations by the summer of 2021,
which eventually ended in a round-table discussion between the Austrian Chamber of
Commerce and e-scooter rental companies. Both the city’s and the companies’ aims were
to provide a sustainable last/first-mile transport solution and make sure that e-scooters
were used and parked in a safe way and did not interfere with other traffic. They agreed on
the stricter supervision of the riding and parking of e-scooters by users. A pilot project of
‘scooter sheriffs’, who were responsible for reporting violations, took place until September
of 2021.

For 2023, new, stricter regulations for e-scooters are being proposed by the Vienna City
Administration [46]. The new regulations will include the following:
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• The number of e-scooters in the inner districts will be further reduced to balance
the oversupply.

• Parking on sidewalks will no longer be permitted. Scooters should be parked in the
designated fixed parking areas or in the parking lane.

• A digital dashboard will make it possible to check the location of every single scooter
at any time—even retrospectively—and thus enable consistent penalties for illegally
parked scooters.

• Rental companies must ensure that scooters are properly parked; otherwise, penalties
will be imposed. The successful scooter sheriff project will be reinstalled, and they
will also monitor compliance with the rules on site.

• Certain places will become restricted to scooters. Geo-fencing will be used to prohibit
driving into restricted areas.

3. E-Scooter Collection Problem

In this paper, we address the problem of e-scooter collection by vans during the night.
Furthermore, we evaluate the impact of the uncertainty of service times on the problem.
We propose static and dynamic solution policies to solve the problem and evaluate them
using a simulation of service times.

3.1. Problem Description

The problem was inspired by an interview with a rental e-scooter company based in
the city of Vienna. The company employs an operations team responsible for collecting the
e-scooters in the night, recharging them at the depot, and distributing them to designated
locations early in the morning. According to the interviewed operations team, the collection
of e-scooters from the streets is a challenging task, as all planning and the routing of the
vans is carried out manually, which can lead to sub-optimal solutions. One of the biggest
problems is the estimation of the service time needed to load the e-scooters onto the van.
The team reports that approximately 2–4 min are needed to find a parking spot, locate
the e-scooter, and secure it in the van. However, these times may vary depending on the
location of the scooter: if the scooter is damaged, parked in an inaccessible area, or parked
in an area restricted for vans, the service times can be much longer. The typical policy of the
company is that, if a scooter cannot be found within 15 min, the driver should proceed to
the next location. The data are collected from the GPS coordinates of the vans responsible
for collecting the e-scooters.

An additional problem is the long charging times of e-scooters. Depending on the
model of e-scooter, the charging process can take between 6 and 10 h [7]. The recharging
time is crucial, especially when the vehicles are collected during the night and redistributed
to designated locations in the morning. If the e-scooters are not fully charged in the
morning, this can lead to delays in the supply.

This paper investigates the problem of collecting e-scooters during the night. The
goal was to generate a routing plan for the vans that minimized the total operational costs
of e-scooter collection—the number of vans needed for collection, the costs for the total
kilometers driven, and delays in supply. An additional task was to design a dynamic
collection policy to re-optimize the van routes after real-time information on service times
is disclosed. If one driver needs longer than planned to collect the e-scooters assigned
to his route, the remainder of his route might be assigned to another driver. In this way,
delays can be reduced or even prevented. Within this paper, we evaluate the effect of the
re-optimization by comparing the total delays and costs in the cases with and without
re-optimization. Unfortunately, we did not obtain any data regarding the real-world costs
and delays; therefore, a comparison with the current company’s policy was not possible.
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3.2. Mathematical Model

The mathematical model was based on the capacitated vehicle routing problem with
time windows (see [47,48]). Table 2 provides an overview of the sets, parameters, and
decision variables used in the model.

Table 2. Notation of sets, input parameters, and decision variables used herein.

Notation Description

Sets and nodes
0 Depot
n Number of locations of e-scooters
m Number of vehicles
N = {1, . . . , n} Set of locations of e-scooters
K = {1, . . . , m} Set of vehicles
Parameters
Cf Fixed costs per vehicle used
Cv Variable costs per kilometer traveled
Cp Penalty costs per minute delay
dtij Distance traveled between locations i and j
ttij Time taken to travel between locations i and j
si Service time at location i
Ei The end of the time widow at location i
Q Maximum number of e-scooters transported per vehicle
Dmax Maximum allowed delay
Decision variables
yik Binary variable equal to 1 if vehicle k is used for collection of e-scooter at location i, and 0 otherwise
xijk Binary flow variable equal to 1 if vehicle k travels from node i to node j, and 0 otherwise
ai Arrival time at location i
di Delay at location i

Let N = {1, . . . , n} be the set of locations of e-scooters that have to be collected by a
set of vehicles K = {1, . . . , m}. Furthermore, let 0 denote the location of the depot. The
homogeneous vehicle fleet consists of vans equipped to transport e-scooters, which can all
carry the same number of e-scooters, Q. For each vehicle used, fixed costs of C f ix have to
be paid. Additionally, Cvar denotes the costs per kilometer traveled. The distance traveled
and travel times between nodes i and j are denoted by dtij and ttij, respectively. The service
time needed to locate the e-scooters at each location i and load them onto the van is denoted
by si. E-scooters should be located within the given time frame; otherwise, a penalty has to
be paid. Let Ei denote the end of the time widow at location i and Cpenalty the costs that
have to be paid per minute delay. The maximum allowed delay is denoted by Dmax.

Binary variable yik indicates whether vehicle k is used for the collection of e-scooters
at location i or not. Binary flow variable xijk is equal to 1 if vehicle k travels from node i to
node j, and 0 otherwise. ai denotes the arrival time at location i, and di denotes delays.

The e-scooter collection problem can be formulated as follows:

min ∑
k∈K

y0kCf + ∑
i∈N∪0

∑
j∈N∪0

∑
k∈K

xijkdtijCv + ∑
i∈N

diCp

subject to
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∑
i∈N

yik ≤ Q ∀ k ∈ K (1)

∑
j∈N

xijk = ∑
j∈N

xjik = yik ∀ i ∈ N ∪ 0, k ∈ K (2)

∑
k∈K

yik = 1 ∀ i ∈ N (3)

ai + si + ttij ≤ aj + (1− xijk)M ∀ i, j ∈ N ∪ 0, k ∈ K (4)

ai ≤ Ei + di ∀ i ∈ N (5)

di ≤ Dmax ∀ i ∈ N (6)

xijk ∈ {0, 1} ∀ i, j ∈ N ∪ 0, k ∈ K (7)

yik ∈ {0, 1} ∀ i ∈ N ∪ 0, k ∈ K (8)

ai, di ≥ 0 ∀ i ∈ N ∪ 0 (9)

The objective function minimizes the total costs: the fixed costs per vehicle used, the
variable costs for the distance traveled, and the penalties for delays. The constraints (1)
make sure that the number of e-scooters loaded onto the vehicle does not exceed the capacity
of the vehicle. The constraints (2) are flow conservation constraints, which also make sure
that the collecting vehicles start and end their routes at the depot. The constraints (3) ensure
that each scooter is collected by one vehicle. The connectivity of the routes is guaranteed
by constraints (4), where M represents a large number. A late arrival results in a delay,
as determined by constraints (5). The maximum delay cannot be violated, as guaranteed
by (6). Finally, constraints (7)–(9) define the domains of the decision variables.

4. Solution Method

The mathematical model explained in Section 3.1 was implemented in CPLEX and
tested for small problem instances. However, for realistic real-world instances, a fast
algorithm is needed that can provide a high-quality solution within a short computational
time. This is especially important as we included dynamic re-optimization, which needed
to be executed in real time.

We started by solving the static version of the problem. We proposed a solution
method based on the large neighborhood search procedure introduced by [49] and later
adapted by [50]). The heuristic method was used to obtain the number of vehicles needed
for the collection of e-scooters and the routing plan for the vehicles. In the static version, we
assumed fixed values for service times. The solution was then evaluated with the simulated
service time. As we did not have information on the actual service times from the company,
we created different scenarios for simulation purposes. More information on service time
simulation is provided in Section 5.3. After solving the static version of the problem, we
solved the dynamic version, wherein service times were updated during planning. More
details on dynamic re-optimization are provided in Section 4.2.

4.1. Large Neighborhood Search Framework

The pseudocode of the large neighborhood search used in this paper is presented in
Algorithm 1. The goal of the algorithm was to find the overall best solution S∗. We started
by obtaining an initial solution through a construction heuristic S (Step 1) and updated
the best solution, S∗, by setting S∗ = S (Step 2). Next, we defined a set of destroy and
repair operators (Steps 3 and 4), which were used to perturb and improve the solution until
a stopping criterion was met. We also defined a set of local search operators to improve
the solution at the end of each iteration (Steps 5 and 6). In each iteration, we randomly
selected one destroy operator to remove a certain number of allocations from the solution
(Steps 7 and 8) and one repair operator, which assigned the non-allocated locations to
vehicles (Steps 9 and 10). The solution was then further improved by applying a local
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search procedure (Steps 11 and 12). At the end of each iteration, we evaluated the solution
(Step 13) and checked whether the new solution was accepted or not (Steps 14–19).

Algorithm 1 LNS framework.
1: S← initial solution obtained from construction heuristic
2: S∗ ← S
3: D ← set of destroy operators
4: R← set of repair operators
5: L← set of local search operators
6: while stopping condition is not met do
7: select destroy operator d ∈ D
8: S′ ← destroy (S, d)
9: select repair operator r ∈ R

10: S′ ← repair (S′, r)
11: select local search operator l ∈ L
12: S′ ← localSearch (S′, l)
13: evaluate (S′)
14: if S′ is accepted then
15: S← S′

16: if S′ is better than S∗ then
17: S∗ ← S′

18: end if
19: end if
20: end while
21: return S∗

4.1.1. Initial Solution

An initial solution for the e-scooter collection problem was generated as follows: We
started by calculating the minimum number of vehicles needed to execute delivery. For
this purpose, we used the information on the available capacity of each van, i.e., how many
e-scooters could be loaded onto the van. Furthermore, to improve the lower bound, we
calculated the minimum route duration as the minimum travel time plus the service times
and compared this value to the time window plus the maximal delay. After obtaining the
number of vehicles, we assigned the locations using a regret insertion heuristic, which is
explained in more detail in Section 4.1.3.

4.1.2. Destroy Operators

We used three different destroy operators: random removal, worst removal, and
related removal. In each iteration, one destroy operator was selected and applied to the
solution. All operators had the same chance of being selected.

• Random removal is the simplest destroy operator: q locations were selected at random
and removed from the solution.

• In the case of the worst removal operator, we chose several locations that were very
expensive. For each location, we calculated the savings in cost that could be obtained
if this location was not visited. We selected q locations with the highest savings values
and removed them from the solution. We also included a randomized version of the
worst removal operator—we selected q locations such that the locations with a higher
savings value had a higher chance of being selected.

• The related removal operator identified locations that were similar in some way and
removed them from the solution. The authors of [51] argued that shuffling similar
requests can yield better solutions. We started by removing p locations from the
solution either by applying random or worst removal. We then identified locations
that were geographically similar to already deleted ones and deleted up to q − p
additional locations, such that locations closer to the already deleted ones had a higher
chance of being selected.
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p was randomly chosen from the range {pmin, pmax}, and q from the range {qmin, qmax}.
We made sure that pmax ≤ qmin. In each iteration, at least 1 location was removed.

4.1.3. Repair Operators

After removing locations from the solution, we applied repair operators to re-insert
the removed locations into a new solution. We used two regret operators: greedy insertion
and regret insertion.

• Within the greedy insertion operator, all non-inserted locations were stored in a non-
sorted array. A location was randomly chosen from the array and inserted at the best
position in the best route. The procedure terminated when all non-inserted locations
had been inserted.

• Within the regret insertion operator, for all locations which were not inserted, a regret
value was calculated. The regret value was defined as the difference between insertion
costs at the best position and the second best position. After calculating all regret values,
we selected the location with the highest regret value and inserted it at the best position.
The regret values for the remaining locations were recalculated, and the procedure was
repeated until all locations had been inserted. We also used a randomized version of this
operator wherein the locations were not inserted based on the descending order of their
regret values, but the locations with a higher regret value had a higher chance of being
selected for insertion.

Note that the best route for insertion could also be an empty route; hence, within
our insertion operators, we allowed the number of vehicles to increase. We did not allow
solutions that were infeasible due to capacity or maximum delay restrictions.

4.1.4. Local Search Operators

We used two local search operators: a two-opt operator and a relocate operator. In
each iteration, one local search operator was selected randomly and applied.

• The two-opt operator was applied between routes: for each pair of edges, we computed
the savings in costs when these edges were removed from the solution and the rest
of the route was reconnected. Following the best improvement acceptance strategy
proposed in [52], after all savings values were calculated, we selected the highest one.
The procedure stopped when no more savings could be achieved.

• The second local search algorithm also worked as an intra-route operator: each location
in a route was removed from its current position and re-inserted at the best position
within the same route. The procedure was repeated for all locations on the route as
long as further savings could be found.

4.1.5. Acceptance Criteria

For the presented problem, we used acceptance criteria based on simulated annealing.
This procedure was first introduced in [53] as a local search metaheuristic capable of
avoiding local optima. At the end of each iteration, we evaluated the solution and compared
it to the incumbent solution and the best solution. A better solution was always accepted.
However, a fraction of non-improving solutions were accepted instead of incumbent
solutions to avoid a local optimum. The probability that a solution was accepted was based
on the costs of the solution, and it decreased with each iteration.

4.2. Dynamic Re-Optimization

We extend our LNS procedure so that it could also take dynamic re-optimization into
account. In the dynamic setting, we made use of revealed information to improve our
routing decisions. We assumed that information on the service times needed to locate
and load the e-scooters would be revealed with time. This information could be used to
recalibrate the current position of the van and to check whether delays on the routes could
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be expected. Delays on identified routes could then be better managed by relocating some
of the delayed assignments to other drivers.

The adjusted LNS procedure is shown in Algorithm 2. We started with an initial
solution obtained using a construction heuristic and defined the destroy, repair, and local
search operators. We additionally kept track of time point t, which denoted the current time
and was necessary for re-optimization. Re-optimization was executed in the block 6–26. At
the beginning, we set t = 0 (Step 2). Within the re-optimization block, time t was increased
by fixed time intervals t f ix (Step 25). The re-optimization procedure stopped when time t
reached the end of the time window at the depot, E0 (Step 7).

At the beginning of each re-optimization iteration, solution S needed to be fixed at a
time interval up to time t, i.e., time interval {0, t}. To fix part of the solution, we used the
information from the simulated service times to recalculate the arrival times at locations
and the current position of the driver. No location that had been visited up until time t
could be changed. Destroy, repair, and local search operators could only be applied to
locations that were visited after time t. In order to create a solution method that could also
be used in the real world, we assumed that the drivers who were already on their way to
collect the next scooter should not be disturbed; therefore, all changes on the route were
applied to locations that a driver should visit after the next one. The destroy, repair, and
local search operators applied were the same as described and used in Section 4.1.

Algorithm 2 Dynamic re-optimization framework.
1: S← initial solution obtained from construction heuristic
2: t← 0 re-optimization time point
3: D ← set of destroy operators
4: R← set of repair operators
5: L← set of local search operators
6: while t ≤ E0 do
7: freeze S in interval {0, t}
8: S∗ ← S
9: while stopping condition is not met do

10: select destroy operator dependent on time t, d(t) ∈ D
11: S′ ← destroy (S, d(t))
12: select repair operator dependent on time t, r(t) ∈ R
13: S′ ← repair (S′, r(t))
14: select local search operator dependent on time t, l(t) ∈ L
15: S′ ← localSearch (S′, l(t))
16: evaluate (S′)
17: if S′ is accepted then
18: S← S′

19: if S′ is better than S∗ then
20: S∗ ← S′

21: end if
22: end if
23: end while
24: S← S∗

25: t← t + t f ix
26: end while
27: return S

5. Data and Parameters

For the analysis, we used the data provided by an e-scooter rental company pertaining
to the locations of e-scooters, their recharging times, and the time windows for picking
up the scooters in the night and distributing them in the morning. Further information
regarding the costs and distances were taken from the literature.
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5.1. E-Scooter Locations

The e-scooter rental company provided data on the locations of their e-scooters at
10 p.m. for March 2021. The data included information on the scooter ID, date, latitude,
and longitude for 1000 e-scooters each day. The depot of the operations team in charge
of collecting the e-scooters was located in the center of Vienna. Due to privacy issues, no
detailed information on the locations of the e-scooters can be provided.

5.2. Time Windows and Delays

The operating hours of the respective e-scooter sharing company ended at 10 p.m., i.e.,
the e-scooter collection process started at 10 p.m. In order to ensure the timely charging of the
e-scooters and their distribution in the morning, the latest time for picking up the scooters was
set to 12 a.m. The time windows were defined as soft time windows, which meant that delays
were allowed but penalized according to the objective of the model. If the pickup of a scooter
was delayed, the distribution of the scooter in the morning would also be delayed. Every minute
delay, therefore, “cost” EUR 0.19, which was derived from the rental pricing scheme per minute
of usage. Furthermore, for every late e-scooter, additional fixed costs of EUR 1 were incurred, as
the scooter was not available for usage. The maximum delay was set to 30 min.

5.3. Service Time Modeling

The service time was an important parameter as it captured the uncertainty within
the e-scooter collection problem. The service time at a location includes the search for a
parking space, finding the e-scooter, and then loading and securing it onto the van.

The operations team assumed that the average service time si at each location i was
equal to 3 min. However, in the real world, these times often vary. For the analysis, we
created different scenarios to analyze the impact of the service time on the planning and
overall costs. We first calculated the routing plan using a default value for service times
of 3 min. In the dynamic case, information on real-world service times was disclosed and
used to adjust the routing plan. We assumed that the time interval t f ix was equal to 20 min,
i.e., the routing plan was adjusted every 20 min until the end of the time window at the
depot at 12 am. In the static case, the plan was evaluated only at the end.

To simulate the real-world service times, we assumed that the service times were
normally distributed with a mean value of 3 min. We developed three scenarios with
different values for standard deviation: 1, 3, and 5, respectively, where the minimum
service time was 1 min and the maximum 15 min.

5.4. Vehicle Capacity and Costs

The vehicle type assumed for this analysis was a small delivery van. The operations
team reported that the typical van used was a PEUGEOT Boxer with a maximum capacity
of 30 e-scooters.

The drivers’ costs were based on the collective agreement for employees in the delivery
van industry effective as of 16 November 2021 [54]. For the analysis, we assumed a fixed
hourly compensation of 12 EUR based on a freelance contract.

For the kilometer charge, we used the average fuel consumption and the diesel price
as of January 2023. We assumed an urban consumption of 6.10–7.10 L per 100 km. In
January 2023, the average gasoline price amounted to EUR 1.78 per liter (see [55]). The
kilometer charge was calculated as (6.1 + 7.1)/200 × 1.78 = 0.12 EUR/km.

5.5. Travel Distance and Time

To calculate the distance between locations, we used the improved formulas for air
distance, which take into account the longitude and latitude and the curvature of the earth
and calculate the distance based on the Pythagorean theorem (see [56]). The air distance
was used instead of the real-world distance, as the real-world distance matrix between
1000 locations would have to be saved in a large file, and retrieving the data from a large
file would affect the computation time.
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The distance between two circles of latitude is constant and is equal to 111.3 km.
However, the distance between two longitudes is dependent on the latitude. The following
formula can be used to calculate the distance between two longitudes: diff = 111.3 cos(lat),
where lat is the mean value of the two latitude values in radians. The conversion of degrees
to radians follows the formula: 1◦ = π180rad ≈ 0.01745. If lon1, lon2, lat1, and lat2 are the
longitude and latitude of two locations, the formula used to calculate the distance is:

distance =
√

dxdx + dydy (10)

where (11)

dx = 113 cos(lat)(lon1 − lon2) (12)

lat = 0.01745
(lat1 + lat2)

2
(13)

dy = 113(lat1 − lat2) (14)

The travel time between locations was calculated using the distance and the information
regarding the average driving speed in 21 districts of Vienna provided by the operations team.

5.6. LNS Parameters

After the pretesting was carried out, we selected several parameters that yielded good
solutions. The termination criteria of the LNS procedure were set to 2000 iterations or
200 itartions without improvement. The cooling rate for the simulated annealing was set to
0.9. The pmin and pmax were set to 5% and 10% of all locations, respectively, and the qmin
and qmax to 10% and 30% of all locations.

6. Results

Table 3 shows the results for instances 1 to 15 of the dataset, and Table 4 shows the results
for instances 16 to 31. The column target shows the type of results: (i) P stands for planned costs,
which were calculated with a default value for a service time of 3 min; (ii) D stands for dynamic
policy and shows the actual costs if dynamic re-optimization was allowed; and (iii) S stands
for static policy, showing the actual costs if no re-optimization was allowed. The actual costs
were obtained by simulating the service times using different values for standard deviation
(SD). Columns 3–5 show the results for a standard deviation of 1, columns 6-8 the results for a
standard deviation of 3, and columns 9–11 for a standard deviation of 5. For all three scenarios,
we show the value of the objective function, i.e., the total costs for the planned scenario and the
actual costs with simulated service times for the static and dynamic policies. Furthermore, we
show the gap between the static and dynamic policies and the planned costs.

It was evident that there were not many variations in costs and planning between the
days. The planned objective value was around 2699–2773 for all thirty-one days, with no
delays and 37–38 vehicles used for the collection of 1000 e-scooters. As the value of the
standard deviation had no impact on the planned costs, only on the evaluation, the planned
costs for each day between scenarios were the same. The evaluations of the dynamic and
static policies were, however, noticeably different for each scenarios. With the increase in the
standard deviation, the delays and the value of the objective function for both the static and
dynamic policies increased. The dynamic policy outperformed the static policy for each day
and in each scenario. For SD = 1, the static policy resulted in an increase in the planned costs
of 7% to 10%, whereas the dynamic policy managed to keep the increase to 3–6%. In the case
of SD = 3, the static policy was responsible for an additional 17–22% increase in costs, whereas
the dynamic policy resulted in a 7–11% increase. The impact of the uncertainty of the service
times was even more evident in the case of SD = 5, where the static policy resulted in a 40–50%
increase in costs. The dynamic policy managed to keep the increase between 18 and 28%. The
impact of the uncertainty of the service times on the costs was mainly due to the very tight
time windows available for the collection of e-scooters.
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Table 3. Results for instances 1 to 15 (SD—standard deviation, P—planned, D—dynamic policy,
S—static policy, obj.—value of objective function, GAP—gap to the planned costs).

SD = 1 SD = 3 SD = 5

Instance Target Obj. GAP Obj. GAP Obj. GAP

1

P 2771 2771 2771
D 2900 4.66% 3002 8.34% 3367 21.52%
S 2997 8.16% 3291 18.78% 3974 43.41%

2

P 2772 2772 2772
D 2882 3.97% 3046 9.88% 3304 19.19%
S 2979 7.47% 3254 17.38% 3917 41.30%

3

P 2773 2773 2773
D 2896 4.42% 3055 10.16% 3285 18.45%
S 2997 8.10% 3302 19.06% 3952 42.51%

4

P 2772 2772 2772
D 2871 3.57% 3035 9.49% 3386 22.15%
S 2979 7.46% 3257 17.49% 3886 40.18%

5

P 2771 2771 2771
D 2867 3.44% 3030 9.34% 3313 19.57%
S 2985 7.73% 3280 18.37% 3956 42.75%

6

P 2771 2771 2771
D 2871 3.62% 3018 8.90% 3297 18.99%
S 2978 7.46% 3275 18.20% 3939 42.15%

7

P 2702 2702 2702
D 2860 5.84% 2945 8.98% 3372 24.77%
S 2972 10% 3312 22.58% 4073 50.74%

8

P 2771 2771 2771
D 2888 4.21% 3028 9.25% 3343 20.60%
S 3001 8.27% 3310 19.42% 4043 45.86%

9

P 2701 2701 2701
D 2840 5.14% 3017 11.70% 3408 26.17%
S 2941 8.87% 3251 20.37% 3951 46.28%

10

P 2702 2702 2702
D 2843 5.20% 2972 9.99% 3248 20.21%
S 2935 8.61% 3251 20.30% 3982 47.35%

11

P 2771 2771 2771
D 2874 3.69% 3041 9.75% 3322 19.87%
S 2989 7.85% 3281 18.39% 3955 42.70%

12

P 2699 2699 2699
D 2834 5.00% 2963 9.79% 3305 22.43%
S 2929 8.52% 3222 19.38% 3891 44.13%

13

P 2700 2700 2700
D 2812 4.14% 2966 9.84% 3248 20.28%
S 2926 8.37% 3236 19.83% 3961 46.69%

14

P 2702 2702 2702
D 2833 4.87% 2946 9.02% 3240 19.92%
S 2931 8.48% 3212 18.87% 3906 44.58%

15

P 2702 2702 2702
D 2821 4.41% 2976 10.15% 3298 22.05%
S 2919 8.02% 3209 18.73% 3925 45.26%
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Table 4. Results for instances 16 to 31 (SD—standard deviation, P—planned, D—dynamic policy,
S—static policy, obj.—value of objective function, GAP—gap to the planned costs.

SD = 1 SD = 3 SD = 5

Instance Target Obj. GAP Obj. GAP Obj. GAP

16

P 2702 2702 2702
D 2814 4.14% 2957 9.43% 3454 27.82%
S 2923 8.16% 3253 20.40% 4017 48.67%

17

P 2702 2702 2702
D 2830 4.73% 2997 10.93% 3302 22.20%
S 2931 8.47% 3229 19.48% 3928 45.38%

18

P 2773 2773 2773
D 2874 3.65% 2991 7.89% 3303 19.11%
S 2997 8.08% 3286 18.51% 3987 43.78%

19

P 2703 2703 2703
D 2811 4.01% 2914 7.79% 3201 18.43%
S 2918 7.95% 3254 20.37% 3953 46.23%

20

P 2701 2701 2701
D 2840 5.12% 2955 9.38% 3304 22.30%
S 2924 8.25% 3213 18.95% 3941 45.91%

21

P 2702 2702 2702
D 2824 4.50% 2939 8.76% 3219 19.12%
S 2918 7.99% 3218 19.11% 3910 44.70%

22

P 2703 2703 2703
D 2831 4.74% 2957 9.39% 3358 24.25%
S 2927 8.27% 3262 20.67% 4015 48.55%

23

P 2772 2772 2772
D 2885 4.06% 3066 10.57% 3277 18.20%
S 2995 8.02% 3301 19.06% 4006 44.49%

24

P 2703 2703 2703
D 2830 4.69% 2998 10.90% 3249 20.20%
S 2946 8.99% 3271 21.01% 4024 48.88%

25

P 2704 2704 2704
D 2841 5.08% 2940 8.74% 3288 21.61%
S 2932 8.43% 3278 21.23% 4048 49.70%

26

P 2772 2772 2772
D 2875 3.71% 3009 8.56% 3278 18.25%
S 3009 8.54% 3334 20.28% 4079 47.14%

27

P 2773 2773 2773
D 2873 3.59% 3000 8.19% 3305 19.19%
S 2982 7.53% 3252 17.28% 3892 40.32%

28

P 2773 2773 2773
D 2889 4.20% 2971 7.14% 3338 20.39%
S 3001 8.22% 3344 20.59% 4086 47.36%

29

P 2773 2773 2773
D 2889 4.18% 3006 8.42% 3340 20.48%
S 3007 8.46% 3350 20.81% 4038 45.65%

30

P 2704 2704 2704
D 2837 4.93% 3009 11.29% 3363 24.38%
S 2951 9.15% 3286 21.54% 4044 49.56%

31

P 2772 2772 2772
D 2885 4.05% 3017 8.81% 3301 19.06%
S 2978 7.41% 3267 17.85% 3961 42.88%
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Table 5 shows the aggregated results for 31 instances and the most important key
performance indicators—such as the average value of the objective function, the average
delay in minutes and EUR, and the average distance in kilometers for the static and
dynamic policies. With the dynamic re-optimization of the routes, the costs could be
reduced significantly. The average daily difference in objective value was 4% or EUR 106
in the case of a standard deviation of 1, 8% or EUR 277 for a standard deviation of 3, and
17% or EUR 665 for a standard deviation of 5. Delays could be reduced as well: delays
in minutes could be reduced by 57–60%, depending on the standard deviation, and the
number of delayed e-scooters and the costs for delays could be reduced by 49–54%, or EUR
109 to 671, on average per day. The re-optimization, however, led to an increase in distance
traveled: the vehicles had to travel between 3% and 5% more, or between 37 km and 55 km
further.

Table 5. Aggregated results over 31 instances (SD—standard deviation, D—dynamic policy, S—s-
tatic policy).

SD1 SD3 SD5
Avg. Objective Value

S 2961 3269 3975
D 2855 2992 3310

diff 106 277 665
diff in % 4% 8% 17%

Avg. Delay in Minutes
S 730 2084 5364
D 317 828 2127

diff 413 1255 3237
diff in % 57% 60% 60%

Avg. Delay in EUR
S 225 533 1239
D 116 252 569

diff 109 281 671
diff in % 49% 53% 54%

Avg. Distance in KM
S 1121 1121 1121
D 1158 1169 1176

diff −37 −48 −55
diff in % −3% −4% −5%

7. Managerial Implications and Discussion

Rental e-scooters are a novel mode of transportation that can be used for short trips,
e.g., for leisure trips, to commute to work or school, or as an addition to public transport.
There are multiple benefits of rental e-scooters: they can use bike lines and therefore help
avoid congestion, and they propagate active mobility. Additionally, they can complement
public transportation and help to reduce crowding, especially during rush hours.

However, there are many concerns related to e-scooters, which include irresponsible
rider behavior, safety issues, vandalism, cluttered streets, and space problems. Police re-
ports and case studies on patients with injuries associated with e-scooters have shown that
many underage riders use e-scooters illegally, and some riders do not observe traffic rules
and speed limits or use e-scooters under the influence. In order to successfully integrate
rental e-scooters in urban traffic, regulations are needed. The first regulations in the city
of Vienna were issued in the summer of 2018, appearing in the form of Municipal Laws
(decrees) published by the Vienna City Administration. As of 1 June 2019, e-scooters fall
under the same regulations as bicycles in traffic. Furthermore, the Vienna City Administra-
tion issued amended guidelines in the summer of 2020 to balance the scooter distribution
within the city. The upcoming planning phase contains further restrictions and integration
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elements such as the Mobility Sharing Dashboard. From 2023, in addition to parking
sheriffs, scooters will also begin to monitor user behavior via geo-fencing technology.

An additional problem related to e-scooters is their collection from the streets at night
by operation teams. The results of our case study indicated that there is significant potential
for improvement when it comes to organizing the collection of e-scooters from the streets
by vans. Switching from manual to software-based planning for the vans’ routes and using
optimization techniques could help to reduce delays in e-scooter distribution early in the
morning. Furthermore, using dynamic planning to re-optimize the vans’ routes could help to
better deal with uncertainty in service times. Based on the assumed compensation scheme for
drivers in our case study, dynamic re-optimization could reduce daily costs for delays by EUR
106 in cases of lower uncertainty and up to EUR 665 in cases of higher uncertainty. Note that
these savings do not include the costs of purchasing or developing such planning software.
The results of our study showed that dynamic re-optimization led to a decrease in delays but
an increase in distance traveled, i.e., the benefits of re-optimization were positively correlated
with the purchase prices of diesel vans and the prices of using a scooter and negatively
correlated with diesel prices.

A reduction in delays might have a further positive impact on the customers. If an
e-scooter is available at the time a potential rider starts their commute, they might choose it
instead of a less environmentally friendly mode of transportation. Furthermore, a reliable
service might attract new users, which would also be beneficial for the companies.

8. Conclusions, Limitations and Future Research

The goal of this paper was to investigate the problem of e-scooters and their collection
from the streets of Vienna. We first provided some insights into the state of the market for
rental e-scooters and then addressed the problem of the efficient collection of e-scooters by a
fleet of vehicles.

E-scooter rental companies use the concept of shared mobility and a free-floating sharing
system. The first providers entered the Viennese ridesharing market in September 2018. As
of 2023, 10 companies have launched their services in Vienna, but only 5 of them are still
active: Lime, Bird, Tier, Kiwi, and Link. The main reasons for leaving the Viennese market
were: (i) high competition, (ii) harsh weather conditions and decreased demand during winter
months, and (iii) strict regulations and laws imposed by the Vienna City Administration.

The interview conducted with an operations team responsible for managing the
inbound and outbound flows of e-scooters for an e-scooter rental company in Vienna
showed that there was high potential for improvement when it came to the collection of
e-scooters from the streets in the night. The planning and routing of vans responsible for
collection was carried out manually, which led to sub-optimal solutions. Furthermore, the
planning was always static and did not consider the uncertainty or availability of data.

We formulated the e-scooter collection problem as a version of the vehicle routing
problem and developed a solution method based on a large neighborhood search. Fur-
thermore, we evaluated the impact of the uncertainty of service times on the quality of
the solution. We developed different scenarios to simulate the service times by assuming
that they followed a normal distribution. We showed that, if the uncertainty of service
times was high, the impact on costs was high. This was mainly due to the very tight time
windows available for the pickup of e-scooters. The increase in costs could reach 50% if the
standard deviation was high.

We additionally proposed a dynamic policy that used real-time information on service
times to update the solution and re-optimize the routing plan. We showed that, with the
help of re-optimization, the costs of delays could be decreased by 50–60% compared to
under static planning. To assure that delays are minimized, the vehicles would have to
travel around 3–5% further; however, the savings in costs for delays could still reach EUR
665, depending on the uncertainty of the service times.

A limitation of this study was that no comparison to the company’s current collection
policy could be carried out in order to verify the validity of the results. Furthermore, the
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company could not provide historical data regarding service times, which might have
helped to identify patterns in service time distribution.

Some ideas for future work might include measuring the impact of e-scooter collection
processes on the environment, e.g., by considering costs for the CO2 emitted by vans.
Furthermore, a cost analysis of using electric vans for collection instead of diesel vans could
be considered. An additional idea is to extend the optimization model by also solving the
problem of the distribution of e-scooters early in the morning.
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