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Abstract: Previous studies on water quality assessment for watershed management have predomi‑
nantly focused on specific seasonal or annual average values, rather than considering water quality
variations based on flow fluctuations. It is crucial to identify the water quality characteristics within
a watershed by incorporating flow conditions to establish a customized watershed management ap‑
proach over different time periods. In this study, a vulnerability analysis was conducted to attain
the target water quality (TWQ) in 22 watersheds within the Nakdong River system in South Korea.
Additionally, factor analysis (FA) was employed to analyze the characteristics of water quality fluctu‑
ations in relation to flow conditions. The FA results categorized the pollution source characteristics
of the 22watersheds into various types, indicating the need for specific pollution sourcemanagement
strategies. These findings enabled an initial decision‑making process regarding which water pollu‑
tion sources to prioritize based on flow conditions. Moreover, detailed analyses of pollution sources
were performed for watersheds, where achieving TWQwas challenging. Subsequently, a data‑based
prediction model was developed using the naïve Bayes classification model to determine the likeli‑
hoodof achievingTWQ.As a result, this studyproposes a technique forwater qualitymanagement in
watersheds by introducing awater quality excess probabilitymodel, which employs data‑based anal‑
ysis instead of traditional numerical modeling for watershedwater quality assessment and proactive
prediction. The study discusses the potential of various data‑based tools to reduce development and
analysis time, providing a powerful alternative to physical‑based models that require extensive in‑
put data and are time‑consuming. To advance future studies, the establishment of comprehensive
water environment big data, improvement of real‑time monitoring systems within watersheds, and
advancements in spatial and temporal observation technologies are emphasized as essential for the
development of an advanced watershed management system.

Keywords: TMDL; target water quality (TWQ); watershed management; water quality assessment;
factor analysis; naïve Bayes classifier

1. Introduction
Forwater qualitymanagement, the assessment of the status of contaminations in river

systems and the identification of problems within the watershed based on management
goals are important. Appropriate countermeasures must be established to address these
issues. A representative water quality measure is the total maximum daily load (TMDL)
system, which allocates and manages the acceptable pollutant load from the set target wa‑
ter quality (TWQ) limit for each watershed. The acceptable pollutant load is determined
using water quality modeling to ensure that the TWQ can be met under baseline flow con‑
ditions [1]. The evaluation of model calibration and validation uncertainties for TMDL
reliability is limited. This is due to the complexity of water quality modeling, the availabil‑
ity and quality of data, and the absence of standardized guidelines [2]. Furthermore, this
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systemmanages pollutant loads in eachwatershed tomaintain TWQs at a specific standard
flow rate; however, there are limitations to managing water quality in a watershed with
different TMDL conditions than the standard flow [3]. Undoubtedly, water quality man‑
agement of a watershed can be carried out in a scientific and systematic manner. However,
it is problematic to establish a water quality management plan solely through a top‑down
uniform approach without taking into account the specific characteristics of the watershed
in detail.

Nakdong River, the study area, is a watershed where TMDL has been implemented
since 2004 [4]. To achieve TWQ, various pollution source management plans are being
established, and watershed water quality management is being undertaken continuously
through step‑by‑step TMDLs. For sustainable water quality management, an important
evaluation factor is to analyze whether the assessed watershed water quality has achieved
and maintained the TWQ [5]. In the Nakdong River TMDL, TWQ is evaluated as the av‑
erage transformed water quality measurement for one year, without considering the ref‑
erence flow. This method does not adequately reflect seasonal variability in water quality
and flow. Although it is convenient for management to achieve TWQ, it is insufficient for
the healthy recovery of water bodies as well as identifying and addressing fundamental
watershed management problems [6]. In addition, the Nakdong River watershed has se‑
vere seasonal flow deviations, which causes difficulties in water quality management [7].

In the United States and Europe, the load duration curve (LDC) method is used to
identify water pollution problems and to effectively evaluate TMDLs by considering the
magnitude of water quality changes or pollutant loads under full river flow conditions [8].
The Nakdong River watershed was also studied to evaluate TWQs and review their ade‑
quacy using LDC [9]. The LDC analysis can be utilized as an analytical tool to identify wa‑
ter body damage and improve water quality problems by focusing onmonths and seasons.
However, it has limited application when flow is not the dominant factor [3]. In addition,
TWQ is limited to biological oxygen demand (BOD), an organic matter indicator [10], as
well as total phosphorus (TP), a nutrient indicator [11]. Therefore, it is necessary to char‑
acterize the variation of TWQ owing to internal and external factors. Recently, various
approaches, such as numerical modeling methods and data‑driven analysis, have been
used to assess watershed management water quality. In [12], seven methods were used to
evaluate water quality impairment. In particular, the comprehensive water quality iden‑
tification index was proposed as an effective method to evaluate water quality impaired
by multiple pollutants. Ref. [13] analyzed the correlation between water quality variables
and proposed an alternative method for water quality assessment through a hierarchical
clustering analysis based on Mahalanobis distance analysis. In [14–17], multivariate statis‑
tical techniques were utilized to evaluate the spatial and seasonal variation of surface river
water quality data. In [18], the usefulness of numerical modeling as a decision‑making
tool for water quality assessment was described and applied to predict future conditions
after water quality assessment and implementation of remediation measures. However,
numerical models have limitations in reproducing nonlinear water quality variations due
to rainfall and various external watershed factors [19]. Most of the prior studies on wa‑
ter quality assessment for watershedmanagement were conducted on a partial basis using
specific seasonal or annual average water quality values, instead of assessingwater quality
according to flow fluctuations. It is crucial to identify water quality characteristics within
a watershed according to flow conditions, and to set a customized direction for watershed
management by period.

Therefore, this study analyzed the vulnerability of 22 watersheds in the Nakdong
River system in South Korea to achieve TWQ. In addition, it examined the characteristics
of water quality fluctuations according to flow conditions using factor analysis (FA). Using
the FA results, the watershed pollution source characteristics were classified. In addition,
the watersheds with difficulty in achieving TWQ were analyzed in detail through a factor
analysis network graph (FANG). Finally, a data‑driven prediction model was developed
using a naïve Bayes classification model to predict whether TWQ is achieved or not.
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2. Research Background
2.1. Descriptions of Study Area

The Nakdong River system consists of a total of 22 watersheds and eight multifunc‑
tional weirs, which are major hydraulic structures in the mainstream (Figure 1). The num‑
bering of watersheds indicated in the Figure 1 has been accurately labeled with the cor‑
responding watershed names in Table 1. To manage water quality effectively, target wa‑
ter quality (TWQ) standards are established within the framework of the national water
management master plan, which is formulated by the government. These TWQ standards
serve as a guideline for pollution source management activities implemented within the
watershed. The Nakdong River Watershed Water Environment Management Plan is an
overall plan that is the basis for subwatershed‑specific water environment management
plans in the Nakdong River watershed. The plan expands and develops water quality and
water ecosystem conservation measures. It analyzes water quality standard achievements
through sample analysis of representative points in the watershed, and it also conducts
overall water environment management. Further, the watershed has undergone environ‑
mental water changes owing to the installation of multifunctional weirs due to the Major
Rivers Project in 2012. This makes it an important watershed to evaluate the water quality
management due to environmental changes [20]. The Major Rivers Project in 2012, also
known as the Four Major Rivers Restoration Project, refers to a large‑scale initiative under‑
taken in South Korea for the comprehensive restoration and management of four major
rivers: the Han River, Nakdong River, Geum River, and Yeongsan River.
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Table 1. Water quality status of 22 watersheds in the Nakdong River system.

Watershed

Standard Water Quality

Grade
BOD
(mg/L)

T‑P
(mg/L)

BOD (mg/L) T‑P (mg/L)
′16 ′17 ′18 ′16 ′17 ′18

1⃝ Andong Dam Ia 1.0 0.020 0.9 0.9 0.9 0.021 0.023 0.027
2⃝ Imha Dam Ib 2.0 0.040 1.4 1.1 1.0 0.018 0.015 0.017
3⃝ Andong Dam downstream Ia 1.0 0.020 1.2 1.3 1.3 0.017 0.039 0.023
4⃝ Naeseongcheon Ia 1.0 0.020 0.9 0.7 0.9 0.045 0.038 0.050
5⃝ Yeong River Ia 1.0 0.020 1.3 1.1 1.3 0.020 0.024 0.027
6⃝ Byeongseongcheon Ib 2.0 0.040 1.6 1.4 1.7 0.048 0.053 0.064
7⃝ NakdongSangju Ia 1.0 0.020 2.0 1.7 1.9 0.031 0.033 0.041
8⃝Wicheon Ib 2.0 0.040 2.1 2.0 2.3 0.035 0.030 0.039
9⃝ Gumi Wier Ia 1.0 0.020 2.0 2.1 2.1 0.027 0.026 0.032
10⃝ Gamcheon Ia 1.0 0.020 1.5 1.1 1.1 0.055 0.038 0.050
11⃝ Gangjunggoryeong Weir Ib 2.0 0.040 2.5 2.4 2.4 0.034 0.030 0.040
12⃝ Geumho River II 3.0 0.100 3.7 3.8 2.9 0.085 0.070 0.060
13⃝ Hoecheon Ib 2.0 0.040 1.3 1.4 1.4 0.033 0.028 0.031
14⃝ HapcheonChangnyeong Weir II 3.0 0.100 2.4 2.2 2.8 0.053 0.039 0.052
15⃝ Hapcheon Dam Ib 2.0 0.040 1.3 1.4 1.3 0.032 0.033 0.035
16⃝ Hwang River Ia 1.0 0.020 0.9 0.6 0.7 0.029 0.020 0.023
17⃝ NakdongChangnyeong Ib 2.0 0.040 2.2 2.4 2.4 0.045 0.034 0.042
18⃝ Namgang Dam Ib 2.0 0.040 1.2 1.2 1.1 0.029 0.027 0.027
19⃝ Namgang Ib 2.0 0.040 2.2 2.6 2.2 0.040 0.042 0.036
20⃝ NakdongMiryang Ib 2.0 0.040 2.0 2.1 2.2 0.052 0.042 0.061
21⃝Miryang River Ib 2.0 0.040 1.9 2.9 2.0 0.038 0.044 0.031
22⃝ Nakdong River estuary Ib 2.0 0.040 1.9 2.1 2.0 0.050 0.039 0.064

The main status and water quality of the 22 watersheds of the Nakdong River system
are shown in Table 1 below. The water environment monitoring network data provided
by theWater Environment Information System (http://water.nier.go.kr (accessed on 1 June
2019)) were used. The water quality target grade is set based on BOD and T‑P. Currently,
the conditions for grade Ia are less than 1 mg/L and 0.020 mg/L of BOD and T‑P, respec‑
tively. Currently, eight watersheds are classified as Ia. They are relatively more prevalent
in the upper watersheds. The conditions for grade Ib are less than 2 mg/L and 0.040 mg/L
of BOD and T‑P, respectively, and 12 watersheds are classified as Ib. These are mostly
distributed in the middle and lower watersheds. The conditions for grade II are less than
3 mg/L and 0.100 mg/L of BOD and T‑P, respectively, and two watersheds are classified as
grade II.

2.2. Factor Analysis
Factor analysis (FA) is a technique that analyzes the interrelationships between vari‑

ables using covariance and correlation between multiple variables [21]. In addition, it
is based on the results, identifies the correlation and structure between questions and
variables, and represents the information of multiple variables by grouping them into
a small number of factors. By conducting an FA, information on multiple variables is
condensed into a few key underlying factors. This makes the information more under‑
standable and easier to analyze further [19]. The purpose of FA is to organize variables
in groups by determining how they relate to each other. Among the studies for water
quality management through FA, the authors in [22] inferred that the parameters respon‑
sible for groundwater chemistry through FA were due to mineral weathering of the par‑
ent rock, dissolution of chloride salts, excessive use of chemical‑based fertilizers, and an‑
thropogenic activities. Of note, [23] analyzed the main factors and empirical orthogonal
function (EOF‑patterns) which cause water quality fluctuations. In addition, the Nakdong
River monitoring network was evaluated spatially and seasonally based on the contribu‑
tion of each factor through exploratory factor analysis (EFA) and empirical orthogonal

http://water.nier.go.kr
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functions. Through [24], the main analyzed parameters related to pollution were found
to be nutrient factor, dissolved solids factor, and sediment factor. In addition, household,
industrial, and agricultural activities all contribute to pollution sources in the study area.
The studies listed above investigated the contribution and characteristics of water pollu‑
tion through FAs. In contrast to previous studies, this study analyzed the characteristics
of water pollution by flow rate and conducted a detailed analysis of the causes. In addi‑
tion, this study aims to suggest the direction of pollution sourcemanagement for achieving
TWQ by watershed.

2.3. Naïve Bayes Classification
The naïve Bayes classifier, a traditional classifier for classification, is not part of the

artificial neural network algorithm. However, it is a mainstream algorithm in machine
learning and is known to performwell in classification. It is data‑driven, notmodel‑driven,
based on conditional probabilities which do not make assumptions about the data [25,26].
The naïve Bayes classifier is a probability classifier type which uses Bayes’ theorem, a prob‑
ability theory that assumes independence between characteristics, and calculates the rela‑
tionship between prior and posterior probabilities using conditional probabilities [27,28].

p(Ck|X) =
p(X|Ck)p(Ck)

p(X)
(1)

The probability that new data falls into each classification is equal to the right‑hand
side of the equation. Without the assumption of independence between the independent
variables in the data, the right‑hand side of the equation requires complex computations
to account for the effect of each independent variable on each other. However, with the
independence assumption, it can be implemented as amultiplicative operation on the prob‑
ability of each independent variable, as shown in the equation, and can be calculated sim‑
ply. In the naïve Bayes (NB) model, the parameters are conditionally independent, and
therefore it is simple to manipulate data (add, delete, and change) within the network [29].
Existing water quality studies using NB are characterized by the training data for classi‑
fying pollution sources, as well as predicting that water quality grades are all limited to
water quality variables [30–32]. Therefore, this study aimed to develop a model to classify
TWQ grades using flow and drought conditions that could directly affect water quality.
It is believed that these meteorological variables can be implemented in a sophisticated
model that considers the nonlinear relationship to water quality variation characteristics.

3. Study Methods
TheNakdongRiverwatershed implementswater qualitymanagement through the di‑

vision of low and normal seasons as part of the TMDL system. In this study, the flow data
from all time periods was sorted in descending order based on the results of the Hydro‑
logical Simulation Program—FORTRAN (HSPF) model conducted in the Phase IV TMDL
Management Criteria Setting Study (I) for the Nakdong River. This enabled the develop‑
ment of a flow duration curve. The water quality standard excess rates were analyzed in
22 watersheds by dividing the range into four flow sections instead of five flow sections on
the flow duration curve presented in EPA (2007) [8]. The flood season was excluded from
the analysis due to the limited occurrence of events and insufficient water quality measure‑
ment data. A flow duration curve was calculated through the HSPFwatershedmodel, and
FA and naïve Bayes classificationwere applied to classify low‑ and high‑flowperiods. Data
preprocessing was conducted as well. The FA results were visually represented and ana‑
lyzed using a network graph to understand the water quality variation characteristics of
each factor. Moreover, the water quality variation characteristics of each watershed were
examined, and the main influencing factors on water quality based on flow duration were
identified. Additionally, thewater quality variation characteristics of eachwatershedwere
classified according to the pollution source associated with each flow duration. The data
used in this study were collected and analyzed from 2006 to 2018.
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Awater quality excess probability model was developed and validated using a naïve
Bayes classifier for each of the 22 watersheds in the Nakdong River system. The train data
consisted of 60% of the total data, and 40% was utilized as validation data. The predic‑
tor variables in this study were the achievement of water quality control items, specifically
BODandT‑P. The condition variables consideredwere flowduration conditions, including
four periods: base flow, low flow, average flow, and flood flow. Additionally, we incorpo‑
rated seven hydrological drought conditions based on the standardizedprecipitation index
(SPI), twelve conditions corresponding to each month of the year, and conditions based on
compliance with water quality standards. No existing studies apply the naïve Bayes classi‑
fier to predict TWQ grade by applying flow conditions and drought conditions as well as
water quality variables. Therefore, this study proposes a technique for water quality man‑
agement in a watershed by developing a water quality excess probability model for wa‑
tershed water quality evaluation, as well as the preemptive prediction through data‑based
analysis instead of conventional numerical modeling. The overall flow and key summary
of the research are described in Figure 2.
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4. Results
4.1. Evaluation of Water Quality Vulnerability

The ratio of attainment to non‑attainment values of water quality standards for the
watersheds were divided into four grades, and utilized as vulnerability assessment met‑
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rics. Figures 3 and 4 show the vulnerability of achieving TWQ for each watershed through
heat mapping.
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The BODwas found to have a high probability of exceeding the target standard under
low flow (approximately 60–100%) conditions. Gamcheon, Hoecheon, Hapcheon Dam,
and Nakdong River estuary watersheds were found to be particularly vulnerable to BOD
water quality control with a probability of exceeding the target standard by more than
1.4 times. Under high flow (approximately 10–60%) conditions, Nakdong Sangju, Gumi
Weir, and NakdongMilyangmiddle watersheds were found to be vulnerable to BODwith
a probability of exceeding the target standard by 1.2 times or more.

In contrast to the BOD results, T‑P showed a higher probability of exceeding the tar‑
get standard under high flow (approximately 10–60%) conditions. Eight watersheds, in‑
cluding Imha Dam, Naeseong Stream, Nakdong Sangju, Gumi Weir, Gamcheon, Gang‑
jeong GoryeongWeir, Hapcheon ChangnyeongWeir, and HwanggangMiddleWatershed,
were found to be particularly vulnerable to T‑P with a probability of exceeding the tar‑
get standard by 1.4 times or more. Under low‑flow (approximately 60–100%) conditions,
Hapcheon Dam andNamgang Dammiddle watershed were found to be vulnerable to T‑P
water qualitymanagementwith a probability of exceeding the target standard by 1.2 times.
Even though watershedmanagement is currently being implemented through various wa‑
termanagement policies, the target standard formiddlewatershedmanagement in theWa‑
ter Environment Management Plan was simplified. Therefore, it is necessary to set custom
target standards consideringwatershed conditions and characteristics, and in addition, the
target standards for each middle watershed required an increase.
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(T‑P).

4.2. Detailed Analysis of Vulnerable Watersheds
Hapcheon Dam and Namgang Dam watersheds were selected as watersheds vulner‑

able to water quality management during low flow periods. Therefore, they were catego‑
rized into priority management watersheds according to low flow, and FAwas conducted.
Based on the FA results, the following networking visualization analysis was conducted.
In Figures 5 and 6, the circle plot layout node represents the classified factors, while the
square plot layout node represents the variables. Correlations between the factors are color‑
coded. Green and magenta indicate a positive and negative correlation, respectively. The
brightness of the color displays the scale of the correlation. The higher the correlation be‑
tween variables per node, the closer they are distributed to each other [33].

The Hapcheon Damwatershed shows different water quality variation characteristics
during low and high flows. The peculiarity is that the phosphorus‑related water quality
items clustered in factor 2 are negatively correlated with flow during low flow periods.
This contrasts with the phenomenon that phosphorus is generally introduced by nonpoint
pollution sources due to rainfall runoff.

In the Namgang Damwatershed, we found that the variation of water quality character‑
istics during low and high flows are only marginally different. At low flows, phosphorous‑
based water quality items and total coliform counts are grouped in the same factor. This
contrasts with the influx of livestock manure, a nonpoint source of pollution that is gener‑
ally [34] attributed to rainfall runoff. It is believed that runoff from these nonpoint sources
also occurs at low flows.
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Figure 5. Hacheon Dam factor analysis network graph. W.T: water temperature, DTN: dissolved
total nitrogen, DTP: dissolved total phosphorus, Col: total coliform count, Q: Flow rate, Ch.: chloro‑
phyll a, NO3: nitrate nitrogen NH3: ammonia nitrogen, PO4: phosphate phosphorus, EC: electrical
conductivity, DO: dissolved oxygen.
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conductivity, DO: dissolved oxygen.
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Figures 7 and 8 below display the results of analyzing the pollutant load of two wa‑
tersheds. The Hapcheon Dam watershed was characterized by nutrients (nitrogen and
phosphorus) and organic matter. Furthermore, the proportion of livestock farming in the
pollutant load was very high (BOD: 56%, T‑P: 51%). Phosphorous‑based water quality
items were negatively correlated with flow. This contrasts with the influx of phosphorus
from nonpoint pollution sources during high flows. This suggests that certain pollution
sources are entering the watershed during low flows. In particular, the T‑P discharge con‑
centration of Geochang Wastewater Treatment Plant, a major sewage treatment facility,
was 0.169 mg/L, which is much higher than the TWQ of 0.04 mg/L. Thus, it is necessary to
strengthen the effluent concentration of sewage treatment plants during low‑flow periods.
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Namgang Dam watershed also has a very high proportion of livestock farming in
the pollutant load (BOD: 44%, T‑P: 48%). The FA results showed that phosphorus and to‑
tal coliform bacteria belong to the same factor. This suggests that runoff from livestock
pollution sources occurs at low flows. In addition, with nine public watershed treatment
plants (16,600 tons/day in total) and 145 small‑scale public watershed treatment plants
(11,562 tons/day in total), it should be necessary to control the discharge amount of treat‑
ment facilities during lowflowperiods in addition tomanaging livestock pollution sources.

The FA can be used to infer the watershed water pollution characteristics. Thus, the
water quality characteristics of a watershed can be identified efficiently and easily through
utilizing FA in a watershed. Before conducting detailed pollution source analysis, it is
effective forwater qualitymanagement to identify flowwater quality characteristicswithin
a watershed, even if only using water quality data.
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4.3. Classification of Water Quality Characteristics
Pollution source characteristics were classified based on the FA results for each water‑

shed. The water quality variables which were characterized by pollution source character‑
istics such as organic matter, nutrients, rainfall runoff, sewage, and livestock wastewater
are shown in the Table 2. Water quality variables were grouped by each factor using the
results of [23]. The variation characteristics of water pollution sources for each factor were
compared and summarized. In addition, the pollution source characteristics under low
and high flow conditions were analyzed for each watershed.

Table 2. Relevant source of pollution for water quality parameters.

W.Q. Parameter Relevant Source of Pollution

pH organic matter, biochemical reactions of pollutant, atmospheric
inputs, chemical contaminants (industrial wastewater)

BOD organic matter, sewage

COD organic matter, sewage

SS organic matter, algal or plankton blooms, aquatic plants,
stormwater run‑off

TN, TP stormwater run‑off, fertilizers, domestic wastewater

NH3‑N municipal and agricultural wastewater

NO3‑N biological treatment plants, eutrophication, algal blooms

DTN, DTP underground water seeping, sewage

W.T. inflow of tributaries or discharge from industrial or wastewater
treatment plant, change of seasons

EC industrial wastewater, eutrophication, algal blooms, salinity

FC, TC livestock wastewater, sewage

Chl‑a algal or plankton blooms, aquatic plants

Quantitative pollution source classificationwas performed using the factormatrix val‑
ues of the watershed, and the FA results displayed various pollution source characteristics
in the analyzed results. Two water quality variables, BOD and Chl‑a, were used to classify
water pollution sources according to biodegradable organic matter. Nutrients were classi‑
fied into N‑based and P‑based items to characterize water pollution sources. The chemical
oxygen demand (COD) and total organic carbon (TOC)were used to characterize thewater
pollution sources based on poorly degradable organicmatter. The classification criteria are
similar to the eigenvector of the principal component analysis (PCA). The average value of
each water quality variable was calculated using the factor loading value, which indicates
the influence of each common factor on themeasured variable. Subsequently, the pollution
source status of each watershed was evaluated for relative flow condition vulnerabilities.
Figure 9 displays the averagewater quality factor loading value of the variables of 22water‑
sheds classified by pollution source, divided by quantile, and compared by heat mapping.
It was possible to distinguish between watersheds with various pollution source charac‑
teristics and watersheds which required specific pollution source management. Through
this result, it was possible to make a primary decision on which water pollution source to
manage according to flow conditions.
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4.4. Water Quality Excess Probability Model
The training and validation results of the water quality excess probability model are

presented in Table 3. In the training phase, the average BOD for the 22 watersheds was
82.39%, while in the validation phase, it was 72.67%. Similarly, the average T‑P in the
training and validation phases was 76.46% and 80.60% respectively. These results provide
an overview of the performance of the model in predicting water quality exceedances for
the studiedwatersheds. Themodel accuracy varied for eachwatershed. Generally, it is not
common to use the naïve Bayes classifier for water quality prediction. However, the naïve
Bayes classifier assists in decision‑making for rapid water quality management as it can
provide a final decision based on probability distribution, i.e., known uncertainty [19]. In
addition, from the results, the nature of the naïve Bayes classification model is considered
to be based on probability according to various conditions. Therefore, it can be supple‑
mented with a precise model through data accumulation in the future. As a data‑driven
model, it is expected to contribute to rapid decision‑making for TWQ management in wa‑
tersheds by reducing the extensive input data and time required for conventional physical‑
based models for watershed water quality management.
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Table 3. Naïve Bayes classifier accuracy results.

Accuracy (%)

BOD T‑P

Training Validation Training Validation

Andong Dam 83.91 80.17 81.03 70.69
Imha Dam 93.05 90.40 97.33 93.60
Andong Dam downstream 73.08 65.71 78.85 68.57
Naeseongcheon 74.59 73.39 86.49 82.26
Yeong River 80.27 71.43 76.87 72.45
Byeongseongcheon 90.21 87.50 76.92 73.96
NakdongSangju 96.34 87.50 73.17 75.00
Wicheon 70.95 72.00 74.32 74.00
Gumi Wier 98.04 97.00 84.31 70.59
Gamcheon 73.33 72.22 97.04 96.67
Gangjunggoryeong Weir 75.26 68.18 85.57 84.85
Geumho River 80.54 70.16 80.00 71.77
Hoecheon 84.87 81.37 86.18 82.35
HapcheonChangnyeong Weir 82.99 82.83 89.80 88.89
Hapcheon Dam 92.57 84.85 69.59 70.71
Hwang River 79.23 80.68 81.54 79.55
NakdongChangnyeong 74.36 71.15 73.72 71.15
Namgang Dam 86.58 89.00 93.29 84.00
Namgang 74.73 72.58 71.51 72.58
NakdongMiryang 82.89 61.54 68.42 67.31
Miryang River 80.67 70.00 77.33 73.00
Nakdong River estuary 84.13 65.12 69.84 58.14
Average 82.39 72.67 80.60 76.46

5. Discussion
The varying accuracies of the model across different watersheds indicate that the per‑

formance of the model can vary depending on the characteristics and conditions of each
watershed. This suggests that various factors such as geographical, climatic, and geological
characteristics of thewatershed, types and concentrations of pollutants, and the state ofwa‑
ter quality management systems can influence the prediction of water quality exceedances.
For example, one watershed may experience frequent water quality exceedances at higher
levels due to high concentrations of pollutants from industrial areas. On the other hand,
another watershed may have fewer occurrences of water quality exceedances due to rela‑
tively lower concentrations of pollutants from agricultural activities. These differences can
lead to variations in the predictive accuracy of themodel for eachwatershed. Furthermore,
there may be other conditions that influence the prediction of water quality exceedances.
Factors such as rainfall, inflow and outflow rates, and land use patterns within the water‑
shed can also play important roles in predicting water quality exceedances. Therefore, it
is important to consider these diverse conditions in order to improve and refine the model.
These findings can help water quality managers gain a better understanding of the water
quality status in specific watersheds and develop appropriate management and improve‑
ment strategies. Additionally, by incorporating and addressing these various factors, the
model can be further enhanced to achieve more accurate predictions in the future.

The data‑driven model, as opposed to the physics‑based model, can capture nonlin‑
ear relationships through powerful data modeling techniques. While physics‑based mod‑
els rely on the understanding of physical principles and processes, they may struggle to
accurately capture complex nonlinear relationships. In contrast, data‑driven models lever‑
age various input data and statistical analyses to learn and predict nonlinear relationships.
These data models excel in capturing nonlinear factors and intricate interactions, thereby
enhancing the accuracy of predictions. Data models utilize statistical techniques, machine
learning algorithms, artificial neural networks, and other approaches to learn the relation‑
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ship between input data and the desired output (in this case, water quality prediction). By
doing so, data models identify patterns and features in the input data and generate predic‑
tions considering nonlinear relationships. Consequently, datamodels offermore flexibility
in considering diverse variables and conditions, leading to improved prediction accuracy
compared to physics‑basedmodels. The application of datamodels holds significant impli‑
cations in the field of environmental water management. By learning and predicting non‑
linear relationships, data models can effectively consider multiple variables and complex
interactions, thereby aiding in accurate water quality prediction, monitoring, and the de‑
velopment of water quality management systems. Therefore, the data mining techniques
presented in this study can serve as valuable resources for the development of data‑driven
models that capture nonlinear relationships and contribute to the advancement of water
quality management technologies.

6. Conclusions
In this study, FAwas used to classify customizedwater pollution sourcemanagement

indicators for each watershed according to low and high flows. In addition, FANGs were
used to visualize the water quality variation characteristics during low and high flows per
watershed unit. Pollution source classification was performed using the factor matrix val‑
ues of FA results. Watersheds exhibiting diverse pollution source characteristics were clas‑
sified into specific pollution source management categories. To effectively manage water
quality in these watersheds, a naïve Bayes classification model was developed to predict
the attainment of TWQ.Various conditions, such as flow conditions, month, drought index,
and compliancewithwater quality standardswere considered as predictors to determine if
the water quality standards have been exceeded. This predictive model provides valuable
insights for proactive water quality management strategies in the watershed, aiding in the
identification and implementation of appropriate pollution control measures. However,
since it is based on probabilities according to the various conditions, it could be improved
to a precise model through data accumulation in the future. Physical‑based models, cur‑
rently used as decision‑making tools for policy water quality management, require large
amounts of input data and are time‑consuming. However, the existing development time
can be shortened, and in addition. The analysis time can be shortened using various data‑
based tools applied in this study. It can be used as a powerful data model through nonlin‑
ear relationship learning compared to physical models. Therefore, it is necessary to build
vast water environment big data, with the improvement of real‑time monitoring systems
in watersheds, and the development of spatial and temporal observation technologies. For
future studies, the data mining techniques analyzed in this study can be applied as water
quality management technologies in watersheds to establish an advanced watershed man‑
agement system.
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