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Abstract: This study addresses the limited coverage of regulatory monitoring for particulate matter
2.5 microns or less in diameter (PM2.5) in Thailand due to the lack of ground station data by
developing a model to estimate daily PM2.5 concentrations in small regions of Thailand using
satellite data at a 1-km resolution. The study employs multiple linear regression and three machine
learning models and finds that the random forest model performs the best for PM2.5 estimation over
the period of 2011–2020. The model incorporates several factors such as Aerosol Optical Depth (AOD),
Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), Elevation (EV),
Week of the year (WOY), and year and applies them to the entire region of Thailand without relying
on monitoring station data. Model performance is evaluated using the coefficient of determination
(R2) and root mean square error (RMSE), and the results indicate high accuracy for training (R2:
0.95, RMSE: 5.58 µg/m3), validation (R2: 0.78, RMSE: 11.18 µg/m3), and testing (R2: 0.71, RMSE:
8.79 µg/m3) data. These PM2.5 data can be used to analyze the short- and long-term effects of PM2.5
on population health and inform government policy decisions and effective mitigation strategies.

Keywords: PM2.5 estimation; satellite data; aerosol optical depth; machine learning; random
forest; Thailand

1. Introduction

According to the World Health Organization (WHO), ambient air pollution causes ap-
proximately 6.7 million premature deaths globally, with particulate matter, ozone, nitrogen
dioxide, sulfur dioxide, and other contaminants being some of the leading pollutants [1].
The most dangerous among them is particulate matter with an aerodynamic diameter of
less than 2.5 µm (PM2.5). These particles can easily enter the lungs and become trapped in
the lung’s parenchyma, leading to inflammation and oxidative stress [2]. This can cause
severe cardiovascular and respiratory diseases and even lung cancer. PM2.5 plays a critical
role in air pollution, and environmental health and its impact on human health are of
great concern.

PM2.5 has been associated with increased mortality and morbidity in several studies [3–5].
However, the coverage of ground-level PM2.5 monitoring sites is limited, which makes it
challenging to capture the spatial variability of PM2.5 for exposure and epidemiological
research. Researchers have increasingly used satellite-derived atmospheric aerosol optical
depth (AOD) to address this challenge as a proxy for ground-level PM2.5 [6–10]. AOD
measures the aerosol in the atmosphere and can serve as a proxy for surface PM2.5 [11].
Additionally, other factor variables, including meteorological factors, land use and cover,
and time variables, are often included to improve the accuracy of the modeling [12]. These
variables can explain seasonal variations and long-term trends in PM2.5 levels and indicate
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potential PM2.5 sources and areas of concern [13]. Conversely, the importance of these
factors varies among studies, and some analyses have found that satellite-derived AODs
do not improve model performance [14]. However, the study in the Pearl River Delta (PRD)
region southern coast of China demonstrates the usefulness of AOD-derived spatiotemporal
concentrations in health calculations [15]. Therefore, the association between satellite data
and PM2.5 in different locations must be considered.

Previous studies on the estimation of PM2.5 using satellite data have employed
a variety of models, but most have chosen only one [16]. The six studies were done
to compare model performance comprehensively with the Random Forest (RF) model
showing a high coefficient of determination (R2) in four studies, and the eXtreme Gradient
Boosting (XGBoost) model showing a high R2 in two studies [13,14,16–19]. However, it
should be noted that the RF model performed similarly to the XGBoost model. Among the
other Machine Learning (ML) models, Multiple Linear Regression (MLR) had the lowest
accuracy. Despite this, MLR is still widely used for its simplicity and practicality. Estimating
PM2.5 concentrations is challenging due to the numerous variables that can affect it. ML
has become popular for solving complex problems because it can find and use multiple
independent factors that impact the predicted variable [20].

Earlier research on estimating PM2.5 levels in Thailand using satellite data has been
limited due to a scarcity of data from both ground stations and satellites. Two previous
studies conducted in Thailand’s Chiangmai and central regions estimated PM2.5 using
MLR models with AOD (10 kilometers (km)), resulting in R2 values of 0.77 and 0.49 when
considering monitoring station meteorological parameters and 0.22 and 0.11 when not
considering them [21,22]. However, these meteorological parameters do not cover small
areas such as 1 km, 3 km, and 10 km, limiting the accuracy of PM2.5 estimation. A review
article on predicting ground PM2.5 concentration using satellite AOD found that MLR had
the lowest R2 accuracy compared to other models [16]. The low R2 values suggest further
examination into including covariates such as meteorological factors, land use, cover, and
season variables in MLR models [23].

In this study, we aim to develop a method for estimating PM2.5 concentrations through-
out Thailand using satellite data with a 1 km pixel resolution. Our approach seeks to
overcome the limitation of ground-level PM2.5 monitoring by not relying on monitoring
station factor variables. Instead, we begin with AOD as a base factor and then add other
variables to improve accuracy in estimating PM2.5 levels in Thailand. Specifically, we have
selected Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI),
and Elevation (EV) data to represent land use and cover, as well as year and week of the
year (WOY) as time factors. All factor variables are applied at a 1 km pixel resolution
throughout Thailand without the need for monitoring station data, which can be costly and
not cover all areas of the country. We will use MLR as the standard regression model and
other ML models such as RF, XGBoost, and Support Vector Machines (SVM) to compare
their performance. The final model with the highest accuracy will be selected to estimate
PM2.5 levels in Thailand.

Our study will serve as a reference for future satellite-based PM2.5 estimation studies
and will aid in exposure assessment in health studies of the Thai population. Using satellite
data to estimate PM2.5 concentrations at a high spatial resolution, our study can provide a
more comprehensive understanding of the distribution of PM2.5 in Thailand, which can
help inform policy and public health efforts to reduce exposure to harmful air pollutants.

2. Materials and Methods
2.1. PM2.5 Data and Area of Study

Thailand is a Southeast Asian country that borders the Andaman Sea and the
Gulf of Thailand, with an approximate population of 70 million people and an area of
513,120 square kilometers. The Pollution Control Department (PCD) is a legally recognized
government agency in Thailand that collects data on air pollution parameters from meteo-
rological stations throughout the country. Bangkok’s Air Quality and Noise Management
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Division (BAQ) also operates ground stations for monitoring PM2.5 in Bangkok. The PCD
and BAQ measure PM2.5 data using the same standard, the beta-ray attenuation method,
which follows the United States Environmental Protection Agency (USEPA) reference
method. Figure 1 presents PM2.5 data and the number of stations from PCD and stations
for BAQ from 2011 to 2020.
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2.2. Satellite Data

This study employed remote sensing data obtained from the MODIS satellite products,
specifically AOD, LST, NDVI, and EV, which were all retrieved from the National Aero-
nautics and Space Administration (NASA) Earth Observing System Data and In-formation
System (EOSDIS) offered by the Distributed Active Archive Center (DAAC). AOD data
were processed from the MCD19A2 product of both Terra and Aqua satellites, which
included “Aerosol Optical Depth at 045 Microns” [24]. The daily AOD data had a spatial
resolution of 1 km per pixel and was collected at 10:30 a.m. and 1:30 p.m. local standard
time. LST data was collected from Terra’s MOD11A1 product and Aqua’s MYD11A1 prod-
uct [25], and their measurements were combined with increasing the sample size. Daily
average LST values were calculated by taking the arithmetic mean of the two satellite mea-
surements or using only one satellite’s data. The study utilized NDVI data from MOD13A1,
with a temporal resolution of 16 days and a spatial resolution of 500 m, which was beneficial
in monitoring vegetation conditions, depicting land cover changes, and providing insights
for modeling global biogeochemical and hydrologic processes and regional climates [26].
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Additionally, EV data from “Land Digital Elevation Model (MODDEM1KM)—Land/sea
mask and digital elevation model” with a spatial resolution of 1 km was used.

2.3. Data Analysis

For this study, we found that satellite data and PM2.5 readings were consistent when
the sky was clear. At 1 km resolution, AOD and LST showed more than 50% missing
values. However, the average over a 5 km radius only accounts for less than 50% of the
missing number. To match the daily PM2.5 concentrations for each station from 2011 to
2020, we selected the average satellite data within a 5 km radius. We established a link
between PM2.5 outcomes and factors such as AOD, LST, NDVI, EV, WOY, and year by
using daily average PM2.5 data. Four models were developed to predict daily PM2.5: MLR,
RF, XGBoost, and SVM. We evaluated the model’s accuracy using R2 and root mean square
errors (RMSE). A higher R2 and lower RMSE indicate better-estimating performance.

When extending this model estimation to other geographical areas, including regions,
provinces, districts, and sub-districts, we can utilize the average satellite data within
the boundaries of each specific area. Furthermore, data imputation techniques, such as
nearest date and pixel, can be employed. The data handling and analysis procedures were
implemented using the R programming language.

2.3.1. Multiple Linear Regression (MLR)

The MLR statistical model is a commonly used method for identifying the relationship
between a continuous response variable and one or more predictor variables, which can
be continuous or categorical. MLR is a parametric model that assumes a normal distri-
bution, constant variance, and a linear relationship between the response and predictor
variables. This study uses a log-linear regression model because the PM2.5 data has a
skewed distribution, and the MLR model can be represented as:

log(PM2.5) = β0 + β1AOD + β2LST + β3NDVI + β4EV + β5WOY + β6Year (1)

where β0 is the intercept, β(1–6) is the coefficient of determinant.

2.3.2. Random Forest (RF)

RF is a method for creating an ensemble of decision trees. The RF algorithm builds
each tree using a bootstrap sample of the data, and each tree node is split based on the
best of a subset of randomly selected predictors [27]. The predictions of each tree are
then combined to produce an ensemble prediction of the target variable. The model also
calculates the “importance” of each predictor by measuring how much prediction error
increases when the data for that variable is permuted. In contrast, the data for the other
variables remain unchanged [28]. This study uses the R package “randomForest” [29].

2.3.3. eXtreme Gradient Boosting (XGBoost)

XGBoost is a gradient-boosting technique that improves performance and speed using
a tree-based ensemble ML algorithm [30]. Gradient boosting is a method where the loss
function is minimized by sequentially adding weak learners through gradient descent
optimization. The gradient boosting approach has three key components: a loss function,
a weak learner, and an additive model. The loss function measures how well the model
predicts the data. Even though a weak learner may not classify things accurately, it is still
better than guessing randomly. The additive model is a method of adding decision trees
one at a time and iteratively. This study uses the R package “xgboost” [31].
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2.3.4. Support Vector Machines (SVM)

SVM is a supervised learning model for regression concerns in ML [32]. SVM builds a
set of hyperplanes in a high-dimensional space using a nonlinear transformation based on
the following function [33].

f(x) = wx + b (2)

where x is the input predictors’ vector (6 variables), w is the weight vector of x, and b
is the error, which defines the hyperplane’s distance from the original. SVM is based on
decreasing the gap between the expected and actual output values. It reduces prediction
errors. This study uses the R package “e1071” [34].

2.3.5. Model Assessment

The rows of the PCD dataset were randomly shuffled and divided into a training
dataset (80%) and a validation dataset (20%) to ensure that model performance comparisons
could be made. A consistent random state was used for this purpose. Table 1 presents
the structure of the PCD and BAQ data. The distribution of the training and validation
datasets were similar; however, the testing dataset was different as it only included BAQ
data collected in Bangkok provinces.

Table 1. The data structure of datasets.

Variables Types
PCD (n = 34,748) BAQ (n = 7339)

Training (n = 27,798) Validation (n = 6950) Testing

Stations Nominal 68 stations 68 stations 49 stations
Date Date 2778 days 1865 days 734 days
Month Nominal 12 months 12 months 12 months
Year Discrete 10 years 10 years 6 years
WOY Nominal 53 weeks 53 weeks 53 weeks
PM2.5 (µg/m3) Continuous µ: 32.2, s: 23.7, IQR: 26 µ: 32.4, s: 23.8, IQR: 26 µ: 30.1, s: 16.2, IQR: 21
AOD Continuous µ: 0.5, s: 0.3, IQR: 0.4 µ: 0.5, s: 0.3, IQR: 0.4 µ: 0.5, s: 0.3, IQR: 0.4
LST (◦C) Continuous µ: 33.3, s: 4.5, IQR: 6 µ: 33.4, s: 4.5, IQR: 6 µ: 36.1, s: 3.8, IQR: 4.3
NDVI Continuous µ: 0.1, s: 0.2, IQR: 0.3 µ: 0.1, s: 0.2, IQR: 0.3 µ: −0.1, s: 0.1, IQR: 0.2

EV (m) Continuous µ: 144.6, s: 198.9, IQR:
265.3

µ: 142.4, s: 197.3, IQR:
265.3 µ: 6.8, s: 1.6, IQR: 2.9

n: Rows; µ: Mean; s: Standard deviation; IQR: Interquartile range; m: Meter.

After training the model, the model’s performance was evaluated by indicators such
as R2 and RMSE, shown in the following formulas:

R2 = 1 − ∑(yi − ŷi)
2

∑(yi − y)2 (3)

RMSE =

√
∑(yi − ŷi)

2

n
(4)

where yi is the observations of PM2.5, ŷi is the predicted value, y is the mean of the
observations of PM2.5, and n is the total sample count.

3. Results
3.1. Data Descriptive Statistics

Figure 2 presents a scatterplot matrix of the variables, with the first row and column
displaying positive skew histograms of the PM2.5 distribution. Each scatterplot matrix
includes the correlation coefficient (R) values, with the top row showing the relationship
between each predictor variable and PM2.5. The first column displays the R values for
all determinants with PM2.5. Positive R correlations between PM2.5 and AOD, LST,
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and EV indicate that these variables increase along with PM2.5 (R = 0.51, 0.20, and 0.13,
respectively), while negative R correlations between WOY (R = −0.27), NDVI (R = −0.19),
and year (R = −0.05) and PM2.5 suggest that as these variables increase, PM2.5 will decrease.
AOD has the highest positive association, and lower PM2.5 levels are observed during
WOY 20-40 in Thailand’s rainy season, indicating a negative correlation. Dry seasons with
increased LST show higher PM2.5 levels, while higher NDVI levels decrease PM2.5. Finally,
EV and Year have lower correlation values with PM2.5.
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3.2. Modeling Results

Table 2 presents the estimated performance of each model for the three datasets. The
results indicate that the RF model, which includes AOD, LST, NDVI, EV, WOY, and year, is
the most effective in predicting PM2.5 across all datasets. The R2 values for the training,
validation, and testing datasets were 0.95, 0.78, and 0.71, respectively, with RMSE values of
5.58 µg/m3, 11.18 µg/m3, and 8.79 µg/m3, respectively. In terms of model performance,
XGBoost and SVM were similar. However, the MLR model had the worst performance.
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Table 2. The performance of models for estimation of PM2.5.

Models
R2 (RMSE (µg/m3))

Training Validation Testing

MLR
AOD 0.18 (21.48) 0.19 (21.26) 0.04 (16.79)
AOD + LST 0.21 (21.25) 0.22 (21.04) 0.01 (17.15)
AOD + LST + NDVI 0.22 (21.26) 0.22 (21.19) 0.01 (17.27)
AOD + LST + NDVI + EV 0.25 (20.49) 0.25 (20.38) 0.01 (17.35)
AOD + LST + NDVI + EV + WOY 0.51 (18.42) 0.51 (17.94) 0.35 (14.07)
AOD + LST + NDVI + EV + WOY + Year 0.51 (18.28) 0.52 (17.83) 0.35 (13.78)

RF
AOD 0.79 (11.39) 0.16 (23.08) 0.02 (20.52)
AOD + LST 0.86 (10.12) 0.25 (20.88) 0.04 (18.59)
AOD + LST + NDVI 0.90 (8.82) 0.44 (17.87) 0.10 (16.03)
AOD + LST + NDVI + EV 0.89 (8.82) 0.60 (15.17) 0.15 (15.05)
AOD + LST + NDVI + EV + WOY 0.92 (7.23) 0.74 (12.35) 0.60 (10.47)
AOD + LST + NDVI + EV + WOY +Year 0.95 (5.58) 0.78 (11.18) 0.71 (8.79)

XGBoost
AOD 0.31 (19.77) 0.27 (20.27) 0.04 (17.45)
AOD + LST 0.34 (19.34) 0.30 (19.85) 0.05 (17.63)
AOD + LST + NDVI 0.40 (18.39) 0.38 (18.71) 0.08 (15.90)
AOD + LST + NDVI + EV 0.49 (16.94) 0.47 (17.34) 0.12 (15.23)
AOD + LST + NDVI + EV + WOY 0.61 (14.93) 0.60 (15.14) 0.43 (12.40)
AOD + LST + NDVI + EV + WOY + Year 0.62 (14.74) 0.60 (15.00) 0.45 (12.12)

SVM
AOD 0.28 (20.59) 0.28 (20.66) 0.04 (17.15)
AOD + LST 0.31 (20.08) 0.31 (20.16) 0.05 (16.91)
AOD + LST + NDVI 0.39 (18.83) 0.38 (18.93) 0.09 (15.68)
AOD + LST + NDVI + EV 0.47 (17.60) 0.46 (17.79) 0.14 (15.65)
AOD + LST + NDVI + EV + WOY 0.59 (15.64) 0.60 (15.44) 0.51 (11.51)
AOD + LST + NDVI + EV + WOY + Year 0.61 (15.32) 0.62 (15.17) 0.52 (11.63)

Although the final RF model has a higher R2 accuracy in the validation dataset than
the testing dataset, the testing dataset has a lower RMSE than the validation dataset. This
means the RF model can estimate PM2.5 in the validation dataset more accurately than
in the testing dataset. However, the difference between the actual and estimated PM2.5
in the testing dataset is closer than in the validation dataset due to the lower RMSE. This
discrepancy could be attributed to the fact that the testing dataset only covers Bangkok
provinces and thus has more data from these areas. In contrast, the validation dataset
covers all areas of Thailand.

RF approaches were used to estimate daily PM2.5 concentrations in Thailand, and it
was found that the model that included AOD, LST, NDVI, EV, WOY, and year had the best
performance. The RF results also show two alternative measurements of each predictor
variable’s relative contribution in Figure 3. The %IncMSE is a percentage increase in mean
square error, equivalent to accuracy-based importance. The IncNodePurity, calculated simi-
larly to Gini-based importance, is based on reducing the sum of squared errors whenever a
variable is split. Without WOY, AOD, EV, year, LST, and NDVI as predictors, the %IncMSE
was 72.4%, 59.3%, 50.7%, 43.2%, 32.4%, and 31.5%, respectively. The important variables
for IncNodePurity were WOY, AOD, EV, NDVI, LST, and year, respectively. These two
measurements were calculated using different methods due to their strong association with
ground-level PM2.5. Additionally, all the factors were needed to estimate PM2.5 levels
in Thailand, where WOY, AOD, and EV were the three most essential variables in the
two measurements.
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3.3. Estimation of Daily PM2.5

Figure 4 presents the PM2.5 time series plot and estimation for the training, validation,
and testing data. The three plots exhibit a consistent pattern in the observed and estimated
PM2.5 concentrations, with the highest concentrations observed during weeks 45 to 53
(November to December) and 1 to 10 (January to March). The difference between the
measured and estimated PM2.5 concentrations in the testing dataset was slight in 2015 and
2016 but remained consistent in 2017 and 2020.

Figure 5 presents the estimation of PM2.5 concentrations from 2011 to 2020 at a 1 km
resolution using the RF model. The values of PM2.5 at stations and the estimated PM2.5 are
comparable. The average percentages of correct estimation PM2.5 are between 68.9–75.2
with higher accuracy when PM2.5 is less than 15 µg/m3 and higher than 50 µg/m3. North-
ern Thailand exhibited the highest PM2.5 concentrations, while Southern Thailand showed
the lowest levels. Except for the southern part of Thailand, most of the region’s PM2.5 levels
exceeded the WHO 24-h standard of 15 µg/m3 but remained below Thailand’s national
standard limit of 50 µg/m3 overall.
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4. Discussion

We proposed using satellite data with a 1 km resolution to predict daily PM2.5 concen-
trations in Thailand and identified the best model to achieve this. The results of this model
estimation can be utilized as standards for simulating PM2.5 in other areas with a similar
mix of pollution sources and a need for more monitoring to understand the particle’s
spatiotemporal distribution. Investigating the spatiotemporal variations of PM2.5 at small
scales was made possible by estimating PM2.5 in 1 km grid cells. These PM2.5 values
are intended to aid epidemiological research and assist individuals in making informed
decisions about air pollution.

In our trials, RF outperformed MLR, XGBoost, and SVM models. Our findings align
with previous PM2.5 estimating studies from other countries, with an R2 of 0.95 (RMSE
of 5.58 µg/m3) for training data, 0.78 (RMSE of 11.18 µg/m3) for validation data, and
0.71 (RMSE of 8.79 µg/m3) for testing data. For example, the predicted PM2.5 in Greater
London using RF, Gradient Boosting Machine (GBM), and K-Nearest Neighbor (KNN),
with RF providing the best estimation with an R2 of 0.83 and RMSE of 4.28 µg/m3 [35].
In another study, using remote sensing data and AOD, eight approaches were used to
anticipate monthly PM2.5 in British Columbia, and RF was found to be the most reliable
ML method, with an R2 of 0.49 (RMSE of 2.67 µg/m3) [18]. The predicted daily PM2.5 at
a 1 km grid for 2013–2015 in Italy using RF with an R2 of 0.80 (RMSE = 7.05 µg/m3) [36].
The computed 1 km-resolution PM2.5 concentrations in China using RF, with an R2 of
0.98 (RMSE = 6.40 µg/m3) for model fitting and an R2 of 0.81 (RMSE = 17.91 µg/m3)
for model validation [20]. Another Chinese study used RF to predict daily PM2.5 from
2005 to 2016, with an R2 of 0.77 (RMSE of 22 µg/m3) [17]. These studies demonstrate
that estimating PM2.5 from satellite data using the RF model with an R2 of 0.49–0.83
(RMSE = 2.67–22 µg/m3) in the validation data is acceptable. On the other hand, the MLR
model performed poorly in this study. This may be due to the positively skewed and
non-normally distributed nature of PM2.5 data, which may not be well suited for MLR
models [37–39].

The study found that the RF model, utilizing AOD, LST, NDVI, EV, WOY, and year as
predictors, produced the best results for estimating daily PM2.5 concentrations in Thailand.
The strength of the RF model lies in its ability to avoid overfitting data by utilizing the
strength of individual trees in the forest and their correlation. However, the results of our
study differ from those of other studies, where other models, such as XGBoost, have been
found to outperform RF [17]. This may be due to how these decision tree-based models
take in and process training data. Our findings suggest that decision tree-based models are
recommended for estimating PM2.5 using satellite data.

The results indicate that WOY, AOD, and EV are significant factors in determining
PM2.5 concentrations, as shown by the two measurements of the RF model. This is con-
sistent with previous studies, which found AOD and EV to contribute to PM2.5 modeling
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significantly [18]. Daily PM2.5 concentrations often exhibit a favorable skewed distribution
similar to AOD. Similar to the research conducted in China, the bivariate correlation analy-
sis revealed that independent variables such as AOD strongly associate with PM2.5 [20].
Our results also show that the estimated PM2.5 concentrations align well with the observed
values at monitoring stations, with similar patterns in the time-series plots for observed
and estimated PM2.5. However, there was some discrepancy between observed and esti-
mated PM2.5 concentrations in 2015–2016. This may be due to the less varied geographical
distribution of pollutants in the PM2.5 sample taken before 2017, as suggested by research
from the United Kingdom [35].

The PM2.5 assessment indicates that northern Thailand experiences higher levels
of PM2.5 than other regions, particularly during the dry seasons of WOY 1–10 (January–
March) and WOY 45–53 (November–December). This is attributed to extensive agricultural
fields and open-air biomass burning in northern Thailand and neighboring countries [22].
These activities contribute to the elevated PM2.5 levels and also have a significant impact on
climate change. Except for the southern region, most areas in Thailand surpass the WHOs
24-h standard of 15 µg/m3 for PM2.5 levels, although they remain within the national limit
of 50 µg/m3. The high PM2.5 levels can negatively impact population health, including
respiratory and cardiovascular diseases. Our model’s PM2.5 data can be used to identify
links between PM2.5 levels and specific geographic areas, such as provinces, districts,
and sub-districts.

Although satellite data can provide higher coverage than ground monitoring stations
for PM2.5 data, it often has lower temporal coverage due to lousy observation conditions
such as clouds and fog. We used average satellite data within a 5 km radius of the stations
to decrease missing values. In our analysis, we used 42,009 (or 33.6%) data points out
of 124,846 valid data points. According to evaluate MODIS collection 6 AOD retrievals
against ground sunphotometer observations over East Asia cloud cover or high surface
reflectance can cause an average of 40% to 70% of satellite retrievals to go unrecovered [40].
Furthermore, Thailand’s overcast or foggy weather can invalidate the satellite retrieval
technique by reducing the sampling frequency of accessible satellite data. This issue has
also been identified in a study conducted in China [8]. As a result, new monitoring methods
with wider spatial coverage and fewer weather limitations should be developed. These
strengths can be used as benchmarks when estimating ground-level PM2.5 or other air
pollution metrics in Thailand or other countries using remote sensing.

5. Conclusions

This study proposed an efficient method for estimating daily PM2.5 concentrations in
Thailand using satellite data with a pixel resolution of 1 km. The RF model was the most
effective compared to MLR, XGBoost, and SVM models. The use of AOD, LST, NDVI, EV,
WOY, and year as predictor variables improved the model’s performance, resulting in R2

values of 0.95 (RMSE of 5.58 µg/m3) for the training dataset, 0.78 (RMSE of 11.18 µg/m3)
for the validation dataset, and 0.71 (RMSE of 8.79 µg/m3) for the testing dataset. The results
from 2011 to 2020 were consistent with PM2.5 values obtained from monitoring stations.
Using satellite data in this study allowed for examining air quality at various regional and
temporal scales. The developed models and projections can aid regulatory operations and
future epidemiological research in Thailand.
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