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Abstract: Understanding the impact of land use/land cover (LULC) change on hydrology is the key
to sustainable water resource management. In this study, we used the Soil and Water Assessment Tool
(SWAT) to evaluate the impact of LULC change on the runoff in the Rur basin, Germany. The SWAT
model was calibrated against the observed data of stream flow and runoff at three sites (Stah, Linnich,
and Monschau) between 2000 and 2010 and validated between 2011 and 2015. The performance
of the hydrological model was assessed by using statistical parameters such as the coefficient of
determination (R2), p-value, r-value, and percentage bias (PBAIS). Our analysis reveals that the
average R2 values for model calibration and validation were 0.68 and 0.67 (n = 3), respectively. The
impacts of three change scenarios on stream runoff were assessed by replacing the partial forest with
urban settlements, agricultural land, and grasslands compared to the 2006 LULC map. The SWAT
model captured, overall, the spatio-temporal patterns and effects of LULC change on the stream
runoffs despite the heterogeneous runoff responses related to the variable impacts of the different
LULC. The results show that LULC change from deciduous forest to urban settlements, agricultural
land, or grasslands increased the overall basin runoff by 43%, 14%, and 4%, respectively.

Keywords: SWAT model; LULC change; water resource; runoff; watershed modelling; basin

1. Introduction

An increasing population, climate change, and human activities have led to a pro-
gressive decrease in per capita water availability. Vörösmarty et al. [1] indicated that the
changes in the world population and economic activities will influence the water supply
demand relationship much more strongly than climate change over the period from 2000 to
2025. It is estimated that water use has increased 6-fold over the past century and is rising
by 1% per year [2]. Anthropogenic activities such as deforestation, agricultural devel-
opment, and urban development lead to change in LULC, which causes environmental
change and has major implications on earth–atmosphere interactions and sustainable de-
velopment [3,4]. Globally, humans are altering the landscape at an unprecedented rate and
many regions have experienced a massive LULC change. However, there is a significant
regional variability in the LULC change trends [5]. For instance, there is a decreasing trend
in the forested area in the tropical region, while an increasing trend is observed in the
temperate region [6,7]. During the 1980–2000 period, more than 55% of the new agricultural
land across the tropics came at the expense of intact forests, and another 28% came from
disturbed forests [8]. In the period 2010–2015, the forest area declined by 5.5 million hectare
per year across the tropics and increased by 2.2 million hectare per year in the temperate
region [9].
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LULC changes have impacts on the hydrological processes (evapotranspiration, runoff,
leaching, infiltration, etc.) and the hydrologic response [10]. Hence, the reliable quantitative
estimation and calculation of various hydrological variables such as stream flows, evapo-
transpiration (ET), ground water level, and spatio-temporal fluctuations under variable
basin conditions are very important for water resource management. Many studies have
been conducted to quantify the impact of LULC change on stream flow. Zhang et al. [11]
reviewed 312 basins worldwide. Their results showed that deforestation due to various
reasons (e.g., urbanization, agricultural expansion, wildfires, and insect infestation) caused
an increase in annual stream flow for more than 80% of the basins, whereas afforestation
had relatively inconsistent effect on the stream flow. Generally, stream flow increases with
deforestation whereas it decreases with afforestation [12–17]. However, the stream flow
response to LULC change can differ significantly from the general trend especially in large
basins (>1000 km2), and hence requires closer scrutiny [18,19]. In addition to the LULC,
climate change also needs to be accounted for in the hydrological models to understand
the hydrological regime of the region.

Key research methodologies to understand LULC change effects on hydrological
processes include paired catchment experiments and hydrological modelling. In paired
catchment experiments, two similar catchments are chosen for comparison (generally very
close to each other). One is made the control catchment and the other various treatments
such as afforestation, deforestation, and vegetation change are applied. Brown et al. [20]
performed a review of the use of paired catchment studies for determining the changes
in water yield due to variation in vegetation at various timescales. They found that the
period taken to reach a new balance under permanent land-use change varies considerably.
Deforestation treatments reach a new balance more quickly than afforestation ones. Bosch
and Hewlett [12] reviewed 94 catchment experiments that monitored the effect of vegetation
change on water resources. They found that in most of the cases, water yield is increased
as forest cover is reduced, but in some occasional cases of the sparsely vegetated land,
an increased forest cover reduces the water yield. It should be noted that there is high
variability in the hydrologic response to such deforestation. Sahin and Hall [21] performed
a meta-analysis of 145 catchment experiments using fuzzy linear regression to estimate the
change in water yield due to the change in different vegetation types such as coniferous
and hardwood. They found that a 10% reduction in the cover of conifer-type forest led
to an increase in the water yield by about 20–25 mm, while that in eucalyptus type forest
increased by only 6 mm. Brath et al. [22] showed that LULC change can affect the peak
flow regime and flood frequency in the Samoggia River basin, Italy. Now, hydrological
observatories have been set up to study, in detail, the causes of human influence on runoff
volumes and water qualities in some basins, such as the Rur basin [23]. However, long-term
catchment experiments, although an important method, take more time and are expensive
to set up. Particularly, runoff behavior takes a long time to adapt to the vegetation change
in catchment experiments [24].

Hydrological models offer a more viable option for quantifying water balance and
evaluating land management practices, and play an important role in scaling up field
observations and predicting the impacts of LULC changes on basin hydrology in the river
basins [25]. Many basin models have been developed in the last three decades, such as
Chemicals, Runoff, and Erosion from Agricultural Management Systems (CREAMS) [26];
Erosion Productivity Impact Calculator (EPIC) [27,28]; Agricultural Non-Point Source
model (AGNPS) [29]; Soil and Water Assessment tool (SWAT) [30–32]; and Hydrologic
Simulation Program–Fortran (HSPF) [33]. These basin models are applied for modelling
runoff and soil loss prediction, water quality, land-use change effect assessment, and climate
change impacts.

Among the foregoing models, the SWAT is physically a semi-distributed model for
analyzing the impact of land management practices on water, sediment, and agricultural
chemical yields in basins [30,34]. Numerous studies have been conducted using SWAT to
evaluate the effect of LULC and basin management scenarios on various aspects of the
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hydrological cycle. Nie et al. [35] used SWAT to quantify the effect of LULC changes on
hydrological components at the sub-basin scale in the upper San Pedro basin. Their results
showed that the urbanization was the strongest contributor to the increase in surface runoff
and water yield in the study period. In contrast, the replacement of desert scrub/grassland
with mesquite was the strongest contributor to the decreased base flow/percolation and
contributed to the increased ET. The SWAT model was used for simulating the stream
and sediment runoff of Beressa basin in Ethiopia [36]. Their results showed that the basin
experienced a significant increase in the stream and sediment runoff due to an increase
in farmland and settlement areas. SWAT have been used for simulating stream flow [37],
phosphorus export [38], pollutants [39,40], microorganisms [41], trends in frequencies
of extreme precipitation and floods [42], greenhouse gas emissions [43–45], and water
quality [32,46,47] in several catchments in Europe. Several studies showed that SWAT is not
very sensible for land-use change, besides ET, simply because the corresponding change in
soil parameters is not captured adequately [48–50].

Although the SWAT has been used for the effects of LULC changes on sediments, it has
not considered the changes in soil properties and slope when LULC changes in the SWAT.
The runoff response to the LULC change is a complex function of the slope, soil, vegetation,
sensitivity of the landscape to runoff, basin management operations, etc. The Meuse River
basin, a highly urbanized basin, is experiencing changes in its hydrological regime due to
climate change and LULC change impacts [51]. The Rur River, a tributary of the Meuse
River, supports a population of over 5 million by securing a water supply [52]. Despite the
importance of LULC changes to the basins, no studies have been reported to quantitatively
compare the performance of the widely used SWAT in the Rur basin. Particularly, LULC
change could change other hydrological conditions of a basin, such as slope, ponds, and
Riparian zones. These changes have not been represented explicitly in the hydrological
response units of the SWAT when LULC changes. The influence of LULC change on runoffs
can be masked due to multiple sources of uncertainties in the hydrological modelling in a
large basin. Therefore, a careful examination in estimating the impacts of LULC changes
is needed for managing water resources and evaluating the impacts of LULC changes on
water resources. Under some extreme scenarios of LULC changes, the impacts of LULC
changes on stream flow and runoffs of the Rur River need to be evaluated. Such a study
has not been accomplished before in the Rur basin, and this area is characterized by strong
land-use change, e.g., urbanization, reforestation, opencast mines, recultivation, etc. Finally,
the Rur basin can be seen as representative of other areas with similar developments.

The main objective of this study is to evaluate the impacts of LULC changes on the
stream flow of the Rur River and assess the feasibility of the SWAT model for this basin by
performing sensitivity analysis, calibration, and validation. We will design several specific
scenarios of LULC changes to represent extreme LULC changes, primarily concerning
deforestation, urbanization, and agricultural expansion. We will qualify the response
of stream flow and runoff to different LULC change scenarios. Hence, this study will
be helpful for the basin managers and will open up new dimensions for various other
applications of SWAT in the Rur basin.

2. Materials and Methods
2.1. Study Area

The Rur basin, covering 2354 km2, is located largely in North Rhine-Westphalia (Ger-
many) with small parts also in Belgium (6.7%) and the Netherlands (4.6%) [23]. It lies
between the coordinate locations around 6◦ E–6◦40′ N E and 50◦10′–50◦30′ N (Figure 1)
and shows variability in topography, land use, soil type, and meteorological parameters,
which are more pronounced when comparing northern and southern parts. The Rur basin
and its sub-basins are shown in Figure S1. The elevation and mean annual temperature
of the region approximately decline from 680 m to 30 m and 8.5–10.5 ◦C to 7.0–9.0 ◦C,
respectively, as we move from north to south. Further, the study area is characterized by
flat lowland in the northern part which is part of the German–Belgian loess belt consisting
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of unconsolidated rock deposits of mainly tertiary and quaternary periods. In the northern
part, the major soils are Cumulic Anthrosols near the drainage lines and Haplic Luvisols,
both with silt loam textures [53]. Soils with a loamy sand texture (Fimic Anthrosols and
Dystric Cambisols) are located in the northernmost part of the loess plain (Figure S2). The
soil in this region is very productive. Consequently, the dominant land use in the northern
part is cropland, with the main crops being winter wheat, sugar beet, and maize (Figure S3).
Other important land use includes open-cast lignite mines and urban settlements. This
lowland region receives between 650 mm and 900 mm of precipitation annually, of which
between 500 and 600 mm/year evaporates. The southern part of the Rur basin belongs to
the low mountain range Eifel, which mainly consists of consolidated rocks of the Rhenish
Massif from the Paleozoic and Mesozoic. The hard rock terrain, combined with moun-
tainous slopes and very shallow soil layers, causes low infiltration rates, so that the area
is at risk of flooding. Further, low temperature in winters cause low ET. Consequently,
strong seasonality with a strong runoff response to rainfall events is observed [54]. Mean
annual precipitation in the southern region ranges from 1200 mm/yr (windward side of
High Fen Mountains) to 700 mm/yr (leeward side). Coniferous forests, deciduous forests,
and pastures are dominant parts of the southern region [23]. Coniferous forests (17.6%),
deciduous forests (23.8%), and pastures (15.6%) are dominant parts of the southern region.
The main crops are winter wheat (WWHT) (13%), sugar beet (SGBT) (12.6%), and maize
(CORN) (5.9%). Other important land uses include open-cast lignite mines and urban
settlements (5.6%).

2.2. SWAT Model Description

SWAT is a small watershed to river basin-scale model that considers both upland
and stream processes and was developed originally by the United States Department of
Agricultural Research Service [2,55,56]. In SWAT, a basin is divided into multiple sub-
watersheds or sub-basins to incorporate spatial heterogeneity in terms of land use land
cover, soil type, and topography. Each sub-basin is divided into areas of homogenous
land-use, soil, and slope; these are called hydrologic response units (HRUs) [57]. SWAT
can simulate a number of different physical processes, such as snowfall and melt, vadose
zone processes (infiltration, evaporation, plant uptake, lateral flows, and percolation), and
groundwater flows in a basin [57]. The stream flow and runoffs are predicted separately
for each HRU and routed, using a variable channel routing method [58,59], to obtain the
total stream flow and runoff at the outlet of a basin. The SWAT model uses the Natural
Resource Conservation Service (NRCS) curve number method [60] to relate a calculated
runoff curve number (CN) to direct runoff, after taking into account initial abstraction losses
and infiltration rates for estimating surface runoff (Qsurf). The fundamental hydrology of a
basin in SWAT is based on the following water balance Equation (1), based on mass balance,
which calculates the change in soil water content (SWt):

SWt = SW0 + ∑t
i=1

(
Rday −Qsur f − EaWsweep −Wgw

)
(1)

SWt = final water content in (mm);
SW0 = initial water content in (mm);
t = time in (days);
Rday = precipitation amount on specific days i (mm);
Qsurf = runoff amount on specific days i (mm);
Ea = evapotranspiration amount on day i (mm);
Wsweep = the amount of water percolated into the vadose zones on a day i (mm);
Wgw = return amount of flow on a day i (mm).
Soil Conservation Service (SCS)–Curve Number (CN) approach is an empirical model

developed to estimate the rainfall–runoff relationships based on the land use, soil type, and
soil hydrologic conditions and slope. CN values range from 0 to 100. A higher CN (e.g.,
100 for pavement) means a higher potential of the surface to create runoff, in contrast to
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lower CN values (e.g., near 0 values for dry soils on very less slop terrain). The equation
used for estimating the surface runoff is as follows:

Qsur f =

(
Rday − Ia

)2

Rday − Ia + S
(2)Sustainability 2022, 14, x FOR PEER REVIEW 5 of 26 
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runoff measurements (marked with a red star) are shown.

Qsurf is the surface runoff. Ia is the initial abstraction and S is the retention parameter.
The retention parameter varies spatially due to changes in soils and land use; changes in
soil water content are defined as

S = 25.4
(

1000
CN

− 10
)

(3)
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The retention parameter is defined as (2) where CN = curve number for the day. The
initial abstraction Ia is commonly approximated as 0.2S. Therefore, Equation (2) becomes

Qsur f =

(
Rday − 0.2S

)2

Rday − 0.8S
(4)

The runoff will only occur when Rday > Ia. The graphical solution of Equation (3) for
different curve number values is also well documented in [60].

2.3. Model Input and Setup

Basin delineation is used to divide the basin into smaller sub-basins, called sub-basins
with the stream reaches and directions. The digital elevation model is used when the
basin delineation and flow directions (upstream and downstream) are decided. Sub-basin
numbers are generated and are used as references throughout the SWAT simulation. On the
stream network, sub-basin outlets are created, where water accumulates in the sub-basin to
become stream flow. In this study, 27 sub-basins were created. The stream network for the
Rur basin was delineated using the digital elevation model in the ArcSWAT 2012 software.
Figure 2 shows a flowchart of the SWAT model’s implementation.
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2.3.1. Land Use and Soil Definition

Land Use definition is performed where the SWAT-supported land-use classes are
mapped to the prepared land-use map of the area. In this study, land use data were
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downloaded from the CORINE land cover data (CLC) website for the year 2006 and
categorized into 13 classes (Figure S3) using the ArcSWAT software.

The SWAT model requires different soil textural and physicochemical properties such
as soil texture, available water content, hydraulic conductivity, bulk density, and organic
carbon content for different layers of each soil type (Neitsch et al., 2011) [61]. The soil
data were downloaded from the Food and Agricultural Organization (FAO), US website
(Table S1). The soil raster file for the study area was clipped from the global soil raster
database downloaded from the FAO website. For soil definition, the soil raster database
was downloaded from the Food and Agricultural Organization (FAO) website and a soil
map for the area was prepared using the SWAT-supported soil classification. SWAT uses
the NRCS CN method to estimate the runoff. Curve numbers are calculated for each
combination of land use and soil.

2.3.2. Digital Elevation Model (DEM), Slope, and Hydrological Response Units (HRUs)

The spatially distributed data (GIS input) needed for the Arc SWAT interface include
the Digital Elevation Model (DEM), soil data, land use, and stream network layers. Topog-
raphy was defined by a DEM that describes the elevation of any point in each given area
at a specific spatial resolution. The DEM was used to delineate the basin and estimate the
sub-basin parameters, such as the slope gradient, slope length of the terrain, and the stream
network characteristics such as channel slope, length, and width. Five slope classes were
made for this study, as shown in Figure S4. These classes were used in the HRU definition.
The slope is an important parameter in estimating the flow rates in the reaches.

The HRUs are the unique combinations of land use, soil, and slope. After the land-use,
soil, and slope definition in the SWAT, they are overlaid to create HRUs to account for the
spatial heterogeneity of the basin. However, the level of complexity can be adjusted by
providing thresholds (in percentage) for the land use, soil, or slope during HRU definition.
The greater the value of the threshold, the lesser the number of HRUs. In this study,
thresholds of 0%, 5%, and 10% were provided for the land use, soil, and slope, respectively.
A total of 758 HRUs were generated in this study. Creating HRUs increases accuracy
and complexity by providing a more detailed description of the water balance. In these
circumstances, the number of HRUs can be reduced by choosing appropriate thresholds for
land use, soil, and slope during HRU definition [61]. Runoff calculations are performed
separately for each HRU and then routed to obtain the total runoff for the basin.

2.3.3. Meteorological Data

Weather data include precipitation, temperature, relative humidity, solar radiation,
and wind speed. Of these, precipitation, temperature, and relative humidity are the
most important data for hydrological modelling. The weather input data are prepared
using observed weather data (temperature, relative humidity, and precipitation) in a
specific format supported by the SWAT. The locations of three weather stations are listed in
Table S2. SWAT provides a weather generator that uses the average weather statistics for
interpolations of the missing data between weather stations. For this study, a daily time,
and a warm-up period of 6 years were chosen. The simulation was run, and the different
output files for reaches, sub-basins, and HRUs were written. SWAT computes hydrological
components such as runoff, ET, sediments, nutrients, and other parameters that can be
obtained from the TxInOut folder. Weather data and river discharge data were also used
for calibration purposes and for the prediction of stream flow. Table S3 shows the sources
of different input data with their description.

2.4. Model Sensitivity Analysis, Calibration and Validation, and Performance
2.4.1. Model Sensitivity Analysis

There are two types of sensitivity analysis ‘one at a time’ and ‘global’. In “one at a
time” sensitivity analysis, one parameter is selected at a time and its sensitivity is assessed.
Spruill et al. (2000) [62] gave a detailed description of the sensitivity analysis results for
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a ‘one at a time’ selected parameter for daily stream flow, for a catchment in Kentucky,
USA. However, the sensitivity of a parameter often depends on the value of some other
parameter because the parameters are not necessarily independent. In this study, we
have used global sensitivity analysis, analyzing all the parameters for their sensitivity
simultaneously. Model parameters depict the catchment properties and the processes in the
catchment. A total of 18 model parameters were identified to affect surface runoff from the
preliminary literature survey. For instance, Kannan et al. [63] and White et al. [64] described
sensitive parameters for surface runoff. These parameters were checked for sensitivity, and,
finally, 13 parameters were selected.

Sensitivity is assessed by measuring the change in the output variable with respect to
the change in the input parameter. A greater change in the output variable corresponds a
to greater sensitivity. Model sensitivity analysis is an important step during the calibration
phase for choosing the most sensitive parameters from a bigger pool of potential parameters
affecting the output variable. For sensitivity analysis, SWAT-CUP 2012 software was used,
incorporating sequential uncertainty fitting (SUFI-2) optimization algorithm, whereby an
objective function (g) was chosen (R2 in this study) and initial uncertainty ranges were set
for each parameter (in Equation (5)). The upper and lower limit defining the uncertainty
band of the parameter was a subset of the absolute ranges provided by SWAT. SUFI-2 uses
Latin hypercube sampling [65] to generate as many combinations of parameter values as
there are simulations (100 simulations in our case). These parameter values were regressed
against the chosen objective function (equation) and a t-test was applied for assessing
parameter sensitivities and used for calibration and validation processes.

bj,min ≤ bj ≤ bj,max (5)

where j = 1, m.
g = α+ ∑m

i=1(βibi) (6)

where m is the number of parameters.

2.4.2. Model Calibration and Validation

Calibration is the process where the parameter ranges are adjusted in such a way
that a good fit is obtained between the observed and simulated time series data for the
period chosen as the calibration period. A different time period is chosen as a validation
period (having no overlap with the calibration period), with the same parameter values
and the number of simulations used as in the final calibrated model. The goodness-of-fit is
assessed based on the criteria that maximum observed data points are bracketed in the 95%
prediction uncertainty (95 PPU) band (signifying uncertainty in the predicted values) [66].
The fraction of observed data lying in the 95 PPU band is denoted by the p-factor (value of
p = 1 being ideal), whereas the thickness of the 95 PPU band (denoted by r-factor) should be
as small as possible (value of r close to 0 being ideal) [66]. In the present study, R2, p value,
r value, and percentage bias (PBIAS) are used as performance statistics.

After obtaining and processing input data, they were used to calibrate the SWAT
model from 2000 to 2010 and then to validate the model from 2011 to 2015. The LULC used
in the calibration and validation is taken from CLC 2006. The model calibration procedure
is developed based on optimization techniques [67] with the assumption that an optimal set
of parameters exists in the model to describe the surface runoff in the Rur basin. The results
from these permutations suggested that the set of optimal values of model parameters
allowed the model to optimally describe the basin hydrology, in the sense of having the
least error between the simulated and the observed surface runoff. Data from three stations
were used for calibration and validation following the sequential calibration technique.

2.5. Model Performance Evaluation

The performance of the hydrological model was assessed by using statistical parame-
ters such as the coefficient of determination (R2), p value, r value, and PBIAS.
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2.5.1. Coefficient of Determination (R2)

The degree of correlation between the observed and the simulated values is measured
by the R2 value. R2 ranges from 0 to 1. An R2 close to 1 means that observed and simu-
lated data points are in good agreement, whereas a value close to 0 means no agreement.
Although R2 has been widely used in the literature for estimating the “goodness-of-fit” of
the hydrological models, it is recommended to supplement the R2 with other performance
statistics because of its sensitivity to outliers and its inability to discern the additive and
proportional differences between simulated and observed data points [68]. The expression
for R2 is

R2 =

[
∑n

i=1(Oi −Oavr)(Pi − Pavr)

∑n
i=1(Oi −Oavr)

2 ∑∞
n=1(Pi − Pavr)

2

]2

(7)

where R2 is the coefficient of determination, Oi the ith observed value, Oavr is the average
observed value of the entire period in consideration, Pi the ith simulated (modeled) value,
Pavr is the average of the simulated values of the entire study period.

2.5.2. p Value and r Value

The goodness-of-fit is assessed based on the criteria that maximum observed data
points are bracketed in the 95% prediction uncertainty (95 PPU), calculated at the 2.5 and
97.5 percentiles of the cumulative distribution of the simulated variables to represent the
uncertainty in the predicted values. The fraction of observed data lying in the 95 PPU band
is denoted by the p-factor (value of p = 1 being ideal). Further, the thickness of the 95 PPU
band (denoted by r-factor) should be as small as possible (value of r close to 0 being ideal).
A detailed description of p and r values can be found in [66,69].

2.5.3. PBIAS Value

Percentage bias (PBIAS) measures the average tendency of the simulated data to be
underestimated or overestimated. During calibration, one tries to achieve lower values of
PBIAS. A positive PBIAS value means underestimation whereas a negative PBIAS means
overestimation. A value of PBIAS within the range of ±25% is considered to be satisfactory
for the runoff simulations [70]. The mathematical expression for the PBIAS value is

PBIAS = 100× ∑n
i=1(Qm,i −Qs,i)

∑n
i=1(Qm,i)

(8)

where Q stands for the hydrological variable, m stands for measured, and s stands for
simulated. The above expression is minimized if PBIAS is chosen as the objective function
in the SWAT.

For successful calibration and model performance assessment, Moriasi et al. [70] sug-
gested performance statistics such as R2, NS, PBIAS, RSR, etc., and their ranges. However,
it should be noted that these ranges are for a monthly time step. Generally, the values of
the test statistics deteriorate as the time resolution increases to a daily time step. In this
study, simulation was performed at the daily time step and the ranges in [70] are used only
as the reference.

2.6. Scenario Generation and Impacts

Three hypothetical scenarios were constructed to assess the impact of the LULC on
stream runoff due to forest area change. The average value of percentage change in the
daily runoff was calculated using the following formula:

Qaverage o f daily percentage change =
∑n

i=1
(Qscenario, sim, i−Qbase level, sim, i)×100

Qbase level, sim, i

n
(9)
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Variability in the percentage change in the daily runoff values was calculated by taking
the standard deviation of the percentage change in the daily runoff using the formula

Qvariability = Stdev
(

Qpercentage change in runo f f f or day i

)
1 ≤ i ≤ n (10)

Qpercentage change in runo f f f or ith day =
(Qscenario, sim, i −Qbase level, sim, i)× 100

Qbase level, sim, i
(11)

The percentage change in the average long-term (16 years) runoff was calculated using
the formula

Qpercentage change in average runo f f =
Qaverage, scenario,sim, i −Qaverage,base, sim, i

Qaverage,base, sim, i
× 100 (12)

Qaverage, scenario,sim, i =
∑n

i=1 Qscenario, sim, i

n
(13)

Qaverage, base level,sim, i =
∑n

i=1 Qbase level, sim, i

n
(14)

3. Results and Discussion
3.1. Sensitivity Analysis

To identify sensitive parameters, 18 parameters were chosen that affected the surface
runoff, reviewing previously calibrated SWAT parameters and documentation from the
SWAT manual [61]. Global sensitivity analysis was performed using SWAT-CUP to identify
the 13 most sensitive parameters. In this method, the smaller the p-value and greater
the absolute value of t-stat, the more sensitive the parameter [71]. Table S4 shows the
parameters used for different stations and their ranks at the end of the calibration process
for (a) Monschau, (b) Linnich, and (c) Stah, respectively. In order to calibrate the model,
the parameter ranges were adjusted to minimize the difference between simulated and
observed surface runoff values until an acceptable agreement was attained.

Groundwater delay (GW_delay), curve number (CN2), and base flow factor (AL-
PHA_BF) were the three most sensitive parameters for all three stations. GW_delay is
the time lag between water exiting the soil profile and recharging the aquifer. It de-
pends on the depth of the water table and the hydraulic properties of vadose and ground
water zones [61]. Sangrey et al. [72] provides a mathematical relationship between shal-
low aquifer recharge and GW_delay. Soil evaporation compensation factor (ESCO), aver-
age slope length (SLS_SUBBSN), and HRU_SLP (average slope steepness) are the lower
sensitivity parameters.

3.2. Model Calibration and Validation

Niraula et al. [73] concluded that the results for the relative change in the stream
runoff for the un-calibrated and the single-outlet-calibrated models can vary significantly
from the spatially-calibrated models. Hence, spatially-calibrated models should be used to
assess the relative change in the stream runoff due to land-use change. Model calibration
and validation were carried out for three stations, Stah, Linnich, and Monschau, with the
selected parameters after sensitivity analysis using a sequential uncertainty fitting (SUFI-2)
algorithm in SWAT-CUP [66]. The model was calibrated for a period of 11 years (2000 to
2010) with a 6-year warm-up period (1994 to 1999) at a daily time step. The model was
recalibrated multiple times by changing the lower and upper bounds of the parameter so
as to obtain an acceptable agreement between the simulated and observed data. The model
was automatically iterated 100 times to obtain the final simulation for the calibration period.
The results are given in Table 1.
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Table 1. Performance statistics for the simulation at various stations.

Station Year Period
Evaluation of Statistics

p r R2 PBIAS

Monschau (sub-basin 21)
2000–2010 Calibration 0.81 0.84 0.60 11.3
2011–2015 Validation 0.78 0.52 0.67 30.5

Linnich (sub-basin 6)
2000–2010 Calibration 0.67 1.42 0.71 −4.4
2011–2015 Validation 0.63 1.12 0.66 −17.3

Stah (sub basin 1)
2000–2010 Calibration 0.53 1.8 0.73 −8.6
2011–2015 Validation 0.48 1.49 0.69 −29.2

Figure 3 shows the comparisons of runoffs between simulation results and observed
data for the calibration period (2000–2010) and validation period (2011–2015) at all three
stations: (a) Monschau, (b) Linnich, and (c) Stah. The model’s performance during calibra-
tion and validation was the best at the Monschau station, followed by Linnich and Stah
stations. This is evident as the statistical performances are satisfied from the performance
statistics (R2, p, and r value) in Figure 4 and Table 1. The key reason for this can be a
relative increment in the anthropogenic interventions as we move from the Monschau
station in sub-basin 21 to the Stah station in sub-basin 1. From the land-use map, it is
evident that the northern part of the basin has much more agricultural and urban land
than the southern part of the basin. Water use by the urban population, industries, channel
diversions, and dams are not considered in this model but can significantly affect the stream
flow in the northern parts of the basin. This can explain why the Monschau station has
better performance statistics than the other two stations in regard to both calibrated and
validated values. Further, one land-use map was used to calibrate the model for all the
years in which the scenario was not a real case. Our simulation was performed at a daily
time step, and all absolute values of PBIAS in calibration periods were less than 25%, thus
being satisfactory (Table 1). Moriasi et al. [70,74] suggested that an absolute value of PBIAS
of up to 25% was satisfactory at a monthly time step. At the basin scale, the result was
consistent with other studies (runoff was simulated and compared with the base-level
scenario simulation for the individual gauging stations also).

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 26 
 

Table 1. Performance statistics for the simulation at various stations. 

Station  Year Period 
Evaluation of Statistics 

p r R2 PBIAS  

Monschau (sub-basin 21) 
2000–2010 Calibration 0.81 0.84 0.60 11.3 

2011–2015 Validation 0.78 0.52 0.67 30.5 

Linnich (sub-basin 6) 
2000–2010 Calibration 0.67 1.42 0.71 −4.4 

2011–2015 Validation 0.63 1.12 0.66 −17.3 

Stah (sub basin 1) 
2000–2010 Calibration 0.53 1.8 0.73 −8.6 

2011–2015 Validation 0.48 1.49 0.69 −29.2 

Figure 3 shows the comparisons of runoffs between simulation results and ob-

served data for the calibration period (2000–2010) and validation period (2011–2015) at 

all three stations: (a) Monschau, (b) Linnich, and (c) Stah. The model’s performance 

during calibration and validation was the best at the Monschau station, followed by 

Linnich and Stah stations. This is evident as the statistical performances are satisfied 

from the performance statistics (R2, p, and r value) in Figure 4 and Table 1. The key rea-

son for this can be a relative increment in the anthropogenic interventions as we move 

from the Monschau station in sub-basin 21 to the Stah station in sub-basin 1. From the 

land-use map, it is evident that the northern part of the basin has much more agricultur-

al and urban land than the southern part of the basin. Water use by the urban popula-

tion, industries, channel diversions, and dams are not considered in this model but can 

significantly affect the stream flow in the northern parts of the basin. This can explain 

why the Monschau station has better performance statistics than the other two stations 

in regard to both calibrated and validated values. Further, one land-use map was used 

to calibrate the model for all the years in which the scenario was not a real case. Our 

simulation was performed at a daily time step, and all absolute values of PBIAS in cali-

bration periods were less than 25%, thus being satisfactory (Table 1). Moriasi et al. 

[70,74] suggested that an absolute value of PBIAS of up to 25% was satisfactory at a 

monthly time step. At the basin scale, the result was consistent with other studies (runoff 

was simulated and compared with the base-level scenario simulation for the individual 

gauging stations also). 

 

Figure 3. Model calibration (in the period 2000–2010) and validation (in the period 2011–2015) for 

all three stations: (a) Monschau, (b) Linnich, and (c) Stah. 
Figure 3. Model calibration (in the period 2000–2010) and validation (in the period 2011–2015) for all
three stations: (a) Monschau, (b) Linnich, and (c) Stah.



Sustainability 2023, 15, 9811 12 of 24Sustainability 2022, 14, x FOR PEER REVIEW 13 of 26 
 

 

Figure 4. Correlations between observed vs. simulated runoff values for the three stations: (A) 

Monschau, (B) Linnich, and (C) Stah. 

3.3. Effect of LULC Change Scenarios on Stream Flows and Runoffs 

Three hypothetical scenarios were constructed to assess the impact of the LULC on 

stream runoff due to forest area change. Most of these forests were present in parts of 

the Rur catchment lying in the regions of the western highlands of Germany. Deciduous 

forests comprise 57.39% of the total forests (coniferous and deciduous combined). For 

the sake of simplification, the entire deciduous lands in the three scenarios were as-

sumed to be converted to the use of urban settlements, agriculture, or grasslands, re-

spectively (Figure 5). Table S5 shows the description of the three scenarios. The three 

scenarios were compared with the base-level scenario that was based on the 2006 

land-use map. Figure S5 shows that ET presents no changes across any of the scenarios, 

but there are clear differences regarding percolation, return flow, and runoff between 

the scenarios. The frsd_urbn scenario has the biggest runoffs, followed by the frsd_agrl 

scenario and the frsd_rnge scenario. 

 

Figure 4. Correlations between observed vs. simulated runoff values for the three stations: (A) Mon-
schau, (B) Linnich, and (C) Stah.

3.3. Effect of LULC Change Scenarios on Stream Flows and Runoffs

Three hypothetical scenarios were constructed to assess the impact of the LULC on
stream runoff due to forest area change. Most of these forests were present in parts of the
Rur catchment lying in the regions of the western highlands of Germany. Deciduous forests
comprise 57.39% of the total forests (coniferous and deciduous combined). For the sake
of simplification, the entire deciduous lands in the three scenarios were assumed to be
converted to the use of urban settlements, agriculture, or grasslands, respectively (Figure 5).
Table S5 shows the description of the three scenarios. The three scenarios were compared
with the base-level scenario that was based on the 2006 land-use map. Figure S5 shows that
ET presents no changes across any of the scenarios, but there are clear differences regarding
percolation, return flow, and runoff between the scenarios. The frsd_urbn scenario has the
biggest runoffs, followed by the frsd_agrl scenario and the frsd_rnge scenario.
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Figure 5. Land-use map of different scenarios: (a) base-level scenario, (b) deciduous forests (frsd) to
urban residential area (urbn) conversions, (c) deciduous forests (frsd) to agricultural area (agrl), and
(d) deciduous forests (frsd) to grasslands (rnge).
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3.3.1. Forest to Urban Residential

In the frsd_urbn scenario, the simulation results showed that the long-term average
runoff increased by 43.05% from 94.48 mm in the base-level scenario to 135.15 mm in the
frsd_urbn scenario in the entire basin (Figure 6). This was mainly due to the decrease in per-
colation from 249.83 mm to 210.61 mm after scenario application. The results also showed
that the average runoff in the entire basin increased by 13.47% for the frsd_agrl scenario
and 3.45% for the frsd_rnge scenario (Figure 6). This was primarily attributed to decreased
percolation in all the scenarios. The decrease in percolation was highest for the frsd_urbn
scenario because the impervious surface increased after scenario application. However, the
average yearly runoff values decreased for the frsd_urbn scenario at Monschau and Stah
while they increased at Linnich station.
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Figure 6. The percentage change in the runoff, percolation, and return flow with respect to the
baseline scenario for different scenarios.

Figure 7 shows the time series plot of the relative change (with respect to the base
level) in the cumulative stream flow for the period from 2000 to 2015. It was found that
there was pronounced seasonality in this scenario. The relative change in the cumulative
flow showed a decreasing trend (Figure 7a). This signifies that less water for this scenario
will be available from stream flow than that for the base-level scenario at Monschau station.
However, at Linnich, the change increased first and then decreased (Figure 7b). There was
a peak when the linear trend line fitted in the time series dataset. However, the change
showed lower seasonality compared to that at Monschau station. This means that the
upstream was more sensitive to seasonality than the downstream. This was consistent with
the results in Table 2. In Table 2, the average percentage change in the daily runoff was
a positive value of 7.42% at Monschau station while it was a negative value of −6.47%
at Linnich station and −9.42% at Stah station. This means that the average daily runoff
increased at Monschau station and decreased at the other two stations compared to their
baseline level. To obtain a sense of variability in the average daily runoff values, the
standard deviation for the daily relative change was calculated to be 56% at Monschau
station (%) but 29.87% at Linnich station. This meant that there was a lot of variability
observed in the daily runoff values at Monschau station. This can be explained by the fact
that when the forests were removed, there was a relatively quick runoff response to rainfalls
at a daily time step. The high value of variability can be explained due to the location of
the Monschau station in the forested area, with steeper slopes and shallow soil layers.
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Figure 7. The change in the simulated cumulative stream flows in million cubic meters (m.c.m) for
the forest-urban scenario with respect to the base-level scenario at (a) Monschau and (b) Linnich.
Q1–Q2 is the simulated cumulative stream flow for frsd-urbn scenario.

Table 2. Station-specific effects of various scenarios. (% changes used are with respect to the base-
level scenario).

Station Scenario Average Daily
Runoff Change (%)

Average Daily Runoff
Change (Stdev) (%)

Average Long-Term (16 Years)
Runoff Change (%)

Frsd_urbn
Monschau (sub-basin 21) 7.42 56.20 −0.36

Linnich (sub-basin 6) −6.47 29.87 2.17
Stah (sub-basin 1) −9.42 27.30 −8.97

Frsd_agrl
Monschau (sub-basin 21) 1.74 7.08 0.81

Linnich (sub-basin 6) 0.55 1.95 0.54
Stah (sub-basin 1) 1.18 7.64 0.46

Frsd_rnge
Monschau (sub-basin 21) −1.93 4.84 −0.72

Linnich (sub-basin 6) −0.65 1.39 −0.60
Stah (sub-basin 1) −0.10 2.86 −0.45

On the other hand, the annual surface runoff values showed a mixed trend. The
average long-term (16 years) runoff change decreased by −0.36% at Monschau station and
increased by 2.17% at Linnich station. This is because Linnich station is located in the
plane region of the Rur basin, with a slope mostly within the 0–5 % range (Figure S4). The
long-term average of the runoff at Stah station became more negative than at Linnich with a
value of ~8.97%. The percentage changes in the average monthly and average yearly values
were also computed (Figure 8). Percentage change in the monthly values averaged over the
period of 2000–2015 showed a positive change in the period April- September compared to
the baseline level, while a negative change was observed for the period October–March.
The average yearly values showed a mixed trend but a consistent negative relative change
from 2011 onwards, although most of these changes were only marginal except for in a few
years. Several reasons are attributed to this observation. Firstly, the basin is a complicated,
integrated system and the runoff has a different sensitivity to LULC change for different
sub-basins. The runoff trend at a certain sub-basin can decrease even if urbanization occurs
at the cost of deforestation. There can be a masking effect of some sub-basins [11].
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Figure 8. The relative changes in the average monthly runoff (A1,B1,C1) and average annual runoff
(A2,B2,C2) for the stations Monschau represented by (A), Linnich (B), and Stah (C). All graphs in this
figure are for frsd-urbn scenario.

To delve a bit into this issue, the Mann–Kendall test was applied to these three stations.
The Mann–Kendall test, as a rank-based non-parametric test, is widely used to test for
statistically significant increasing or decreasing trends in the data series [75,76]. The n time
series values (Y1, Y2, Y3, . . . , Yn) are replaced by their relative ranks (S1, S2, S3, . . . , Sn);
the statistical value P of Mann–Kendall test is

P = ∑n−1
1−1

[
∑n

j=i+1 sgn
(
Sj − Si

)]
(15)

where sgn(y) = 1 for y > 0;
sgn(y) = 0 for y = 0;
sgn(y) = −1 for y < 0.
If the null hypothesis Ho is true, then Z is approximately normally distributed with
µ = 0;
σ = n (n − 1) (2n + 5)/18.
The z-statistic is therefore
Z = P/σ0.5.
A positive value of p signifies that there is an increasing trend and vice versa [77]. At a

significance level of 0.05, if
Z < − 2, then the time series is said to have a statistically significant decreasing trend.
If Z > 2, then the time series is said to have a statistically significant increasing trend.
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The z-statistics were calculated (Table S6). The observed values of runoff for the Stah
station showed a clear decreasing trend from the years 2007 to 2015 (Figure 9). This was
because there was a significant increase in the urban fabric and a decrease in the deciduous
forest when comparing the LULC map with the CLC data of 2012 and 2000.
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3.3.2. Forest to Agriculture Land Conversion

In the frsd-agrl scenario, the deciduous forest was converted to agricultural land. Thus,
agricultural land comprises ~34% of the total basin, with winter wheat, sugar beet, potato,
corn, and barley being the dominant crops. The results showed that the long-term average
of runoff increased by 13.47% from 94.48 mm in the base-level scenario to 107.21 mm in the
frsd_agrl scenario for the entire basin (Figure 6). This was mainly due to the decrease in
percolation after scenario application.

Figure 10 shows that the simulated cumulative stream flows increased linearly with
little seasonality change at Monschau station and Linnich station. The percentage change
of the average daily runoff value was positive for all three stations (Table 2). However, the
variability in the relative change of daily runoff was less than that of the frsd_urbn scenario.
This implied that the daily runoff was more sensitive to the frsd_urbn scenario than the
frsd_agrl scenario in the basin. The long-term average runoff showed an increment at all
the three stations (Table 2).

Figure 11 shows the percentage changes in the average monthly and average yearly
values that confirm the results of Table 2. The percentage change in the monthly values
averaged over the period of from 2000 to 2015 indicated that most of the average monthly
runoffs showed either a positive increase (June to September) or a marginal decrease
(December to May) in spring and fall. Compared to the frsd_urbn scenario, the long-term
averages in the runoff increased for the three scenarios for the entire basin, with exceptional
margins across several years. This signifies that more water will be available from stream
flow for the frsd_agrl scenario than the base-level scenario. The increase was primarily due
to the greater runoff generation of the agricultural land, attributed to the relatively high
SCS curve number of the agricultural land as compared to the deciduous forest.
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Figure 10. The change in the simulated cumulative stream flows in million cubic meters (m.c.m.) for
the forest-agriculture scenario, with respect to the base-level scenario at (a) Monschau and (b) Linnich.
Q3–Q2 is the simulated cumulative stream flow for the frsd-agrl scenario.
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runoff (A2,B2,C2) for the stations Monschau represented by (A), Linnich (B), and Stah (C). All graphs
in this figure are for frsd-agrl scenario.
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3.3.3. Forest to Perennial Grassland Conversion

In the frsd-rnge scenario, the deciduous forest was converted to perennial grasslands.
Grasslands comprise ~16% of the total basin. The results showed that the percentage
change in the runoff slightly increased by 3.45% from 94.48 mm in the base-level scenario
to 97.74 mm for the entire basin (Figure 6). In Table 2, the percentage change in the average
daily runoff was a negative value at all three stations, while the standard deviation in the
daily runoff value was positive. The simulated cumulative stream flows decreased over
time at the Monschau and Linnich stations compared to the base-level scenario (Figure 12).
The long-term average values of the runoff showed a marginal decrease at all three stations.
The percentage changes in the average monthly runoff were mostly negative, except for
several months in winter at Stah station (Figure 13). The average yearly values showed
a consistent decrease for almost all of the years. This was mainly due to the increase in
percolation after scenario application compared to the other two scenarios (Figure S5). This
implied that the frsd_rnge scenario could reduce the runoff compared to the base level.

3.4. Discussion

The hydrological response to the LULC change is a complex function of the slope,
soil, vegetation, sensitivity of the landscape to runoff, basin management operations, etc.
The influence of LULC change on runoff can be masked by the complexities found in a
large basin [78,79]. Normally, LULC change should not be specific land use or cover. It
may involve different land-use changes occurring in mutual ways. For example, for urban
growth, the land-use changes may include changes from forest to urban, crop area to urban,
and grassland to urban. On the other hand, the greenbelt increase is a land change from
buildings to plants. Therefore, the specific changes have several reasons: (1). It is difficult to
reflect the reality in the mathematical representation because this needs complex processing
in the case of spatial and temporal changes. Thus, LULC changes have to be simplified
more or less in any modelling studies. (2). If different LULC changes are considered at
the same time, as a result, it will be difficult to explain which land-use change is more
important than the other land-use changes. Thus, we think it is better to define a single
LULC change to be able to compare the impacts of the different LULC scenarios. (3). The
scenarios could be designed for some extreme conditions, such as climate change RCP8.5.
Although they are not present in reality, they can somewhat represent the complexity.

The frsd_urbn scenario showed a strong increase in average daily discharge changes
compared to the baseline level at the station located in the mountain range, but a decrease
at the stations in the lowland agricultural region. Zhang et al. [17] also indicated that
upstream forests play an important role in regulating the stream flow through canopy
interception, evapotranspiration, and soil interception. In contrast, at the upstream station
(Monschau), there were only marginal increases for the frsd_agrl scenario and decreases
for the frsd_rnge scenario compared to the base level. The marginal changes in the average
daily runoff for the frsd_agrl and the frsd_rnge scenarios can be due to effects of the
percolation and return flows where the runoff response of deforestation was not decreased
in a sub-basin. For the frsd_urbn scenario, the average long-term (16 years) runoff decreases
at the upstream and downstream stations, but marginally increases compared to the base
level. In contrast, the average long-term runoff increases for the frsd_agrl scenario and
decreases for the frsd_rnge scenarios compared to the base level. These differences in
the short- and long-term responses of runoff at the different stations to LULC changes
highlight the importance of this study. For example, for the frsd_urbn scenario, a fast
increased response of daily and monthly average runoffs implies that urbanization may
cause regional flooding and seasonal drying. On the other hand, the grasslands are better
able than the forests to prevent runoff and soil erosion. Therefore, the quantitative analysis
for the three LULC change scenarios is helpful in developing the best land management
practices. In addition, it is found that the runoff response to the LULC change can exhibit a
threshold where the change in the surface runoff is not significant unless the threshold in the
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LULC change is reached. This is consistent with the results by Ghaffari et al. [80]. Further
studies remain to be conducted to quantify the threshold for different LULC changes.

Sustainability 2022, 14, x FOR PEER REVIEW 20 of 26 
 

 

Figure 12. The change in the simulated cumulative stream flows in million cubic meter (m.c.m.) for 

the forest-grassland scenario with respect to the base-level scenario at (a) Monschau and (b) 

Linnich. Q4–Q2 is the simulated cumulative stream flow for the frsd-rnge scenario. 

 

Figure 13. The relative changes in the average monthly runoff (A1,B1,C1) and average annual 

runoff (A2,B2,C2) for the stations: Monschau (A), Linnich (B), and Stah (C). All graphs in this figure 

are for frsd-rnge scenario. 

  

Figure 12. The change in the simulated cumulative stream flows in million cubic meter (m.c.m.) for
the forest-grassland scenario with respect to the base-level scenario at (a) Monschau and (b) Linnich.
Q4–Q2 is the simulated cumulative stream flow for the frsd-rnge scenario.
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Figure 13. The relative changes in the average monthly runoff (A1,B1,C1) and average annual runoff
(A2,B2,C2) for the stations: Monschau (A), Linnich (B), and Stah (C). All graphs in this figure are for
frsd-rnge scenario.
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SWAT might show a better performance in some Literature [70,74]. It is still not easy
for the model to fully capture high peaks and valleys. R2 and r are oversensitive to high
extreme values, and insensitive to additive and proportional differences between model
prediction and observed data. Therefore, this depends on the dataset quality available
rather than monthly or daily data. Generally, the calibration and validation of stream flow
are better than runoff, base flow, or water quality. This is mainly because the runoff data,
base flow data, and water quality are much less than the steam flows in most basins. In
Table 8 of the recent reference [74], for the stream flow, the model performance at the basin
scale can be evaluated as “good” if daily values are 0.70 ≤ R2 ≤ 0.85 or “satisfactory” if
daily values are 0.50 < R2 < 0.70. For sediment, model performance at the basin scale can
be evaluated as “good” if the daily values are 0.65 ≤ R2 ≤ 0.80 or “satisfactory” if the daily
values are 0.40 < R2 < 0.65. Therefore, our results should be “good” since we used runoffs
for the calibration and validation. In addition, it can be found that the performances in
Figure 4 were much better than those in Figure 3. All R2 in Figure 4 are greater than 0.79.

This study is limited in some respects. For instance, the climate change impact and
water-use patterns were not accounted for. In a recent study, a climate change simulation
and trend analysis of extreme precipitation and floods demonstrated a significant impact
on the hydrology of the Rur basin in the mesoscale Rur catchment in western Germany
until 2099, using the Statistical Downscaling Model (SDSM) and the SWAT model [42].
Furthermore, the SWAT model does not account for possible changes in soil properties and
slopes related to LULC changes and agricultural management, such as grazing, water-use,
tillage, and compaction. Particularly, these operations could significantly influence the
potential maximum soil retention. In this regard, the current algorithm for the potential
maximum soil retention has not represented the importance of vegetation growth and
LULC change, and needs to be improved. In addition, the model could be enhanced by
including dynamic land-use change, and more data from the ongoing TERENO project
(Bogena et al., 2018) [23] could be used for more detailed model evaluation. Finally, the
robustness and predictive power of the model can be improved by incorporating the
reservoirs, dams, industrial and agricultural water-use data, and climate change scenarios
in future studies.

4. Conclusions

Four LULC scenarios were used for assessing the impacts of the LULC changes on
stream flow and runoff in Rur basin using the hydrological model SWAT. Three of them
comprised deforestation, wherein the deforested land is converted to urban settlements,
agriculture, and grasslands, respectively, and one was the baseline scenario. The SWAT
model was calibrated for the period 2000–2010 and validated for the period 2011–2015 for
all three runoff gauging stations (e.g., Monschau, Linnich, and Stah). The simulation model
results showed that the hydrological responses to land use/land cover (LULC) changes
in the Rur basin were very different, both for the individual stations (Monschau, Linnich,
and Stah) and for different times of the year. The land-use change in the upstream areas
can affect more stream flow and runoff than that in the downstream. The relative average
daily runoffs were the most sensitive to the partial forest to urban (frsd_urbn) conversion
scenario, particularly at the upstream station (Monschau). Therefore, rainfall events lead
to higher runoffs or potential local flooding. The long-term average runoff for the entire
basin increased by 43% from 95 mm in the base-level scenario to 135 mm in the frsd_urbn
scenario due to the percolation decrease. The model also predicted an increase of 12 million
cubic meters (m.c.m.) at Monschau and 50 m.c.m. at Linnich in the relative cumulative
stream flows and runoffs for the scenario from partial forest converted to agricultural land
(frsd_agrl), which may cause soil erosion. In contrast, for the partial forest conversion to
rangeland (frsd_rnge), the average daily runoff and annual runoff decreased from −0.1%
to −1.93% at all three stations compared to the base-level scenario. This suggested that
the presence of more grasslands could reduce runoff and soil erosion. Critically, there are
thresholds within the various type and the level LULC conversion wherein a particular
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sub-basin is not affected until some configuration of land-use change reaches the onset of
the threshold. Finally, our study opens up new perspectives for qualifying the impacts
of various LULC changes on runoffs in the Rur, and ultimately the Meuse basin, and it
provides a powerful tool for runoff, sediment, and implicit nutrient management at the
basin scale. Future work needs to account for the impacts of climate change and water-use
patterns. The SWAT model should be improved to consider changes in the soil properties
and slope when LULC changes in the SWAT.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/su15129811/s1, Figure S1. Sub-basin boundaries (formed during
watershed delineation) and reach network with monitoring stations. Figure S2. Soil classes in the
Rur catchment. Figure S3. Land-use map of the Rur catchment classified into 13 land-use classes.
Figure S4. Slope classes for the Rur catchment. Figure S5. The evapotranspiration (ET), runoff,
percolation, and return flow for different scenarios. Table S1. Characteristics and texture of the SWAT
soil classes used in the simulations. Table S2. Weather stations used for temperature, precipitation,
and relative humidity. Table S3. Different model inputs, their descriptions, and sources. Table S4.
Calibrated parameter for Monschau, Linnich, and Stah stations. The parameters are ordered as per
sensitivity rank with the most sensitive parameter at the top. Table S5. Description of all the land use
land cover scenarios used in this study. Table S6. Mann–Kendall test results for trend analysis in the
average annual observed runoff data (2000–2015).
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