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Abstract: The natural landscape is fast turning into impervious surfaces with the increase in urban
density and the spatial extent of urbanized areas. Remote sensing data are crucial for mapping
impervious surface area (ISA), and several methods for ISA extraction have been developed and
implemented successfully. However, the heterogeneity of the ISA spectra and the high similarity of the
ISA spectra to those of bare soil in dry climates were not adequately addressed. The objective of this
study is to determine which spectral impervious surface index best represents impervious surfaces
in arid climates using two seasonal Landsat-8 images. We attempted to compare the performance
of various impervious surface spectral Index for ISA extraction in dry climates using two seasonal
Landsat-8 data. Specifically, nine indices, i.e., band ratio for the built-up area (BRBA), built-up
area extraction method (BAEM), visible red near infrared built-up index (VrNIR-BI), normalized
ratio urban index (NRUI), enhanced normalized difference impervious surfaces index (ENDISI),
dry built-up index (DBI), built-up land features extraction index (BLFEI), perpendicular impervious
surface index (PISI), combinational biophysical composition index (CBCI), and two impervious
surface binary methods (manual method and ISODATA unsupervised classification). According to
the results, PISI and CBCI combined with the manual method had the best accuracy with 88.5% and
88.5% overall accuracy (OA) and 0.76 and 0.81 kappa coefficients, respectively, while DBI combined
with the manual method had the lowest accuracy with 75.37% OA and 0.56 kappa coefficients. PISI
is comparatively more stable than the other approaches in terms of seasonal sensitivity. The ability
of PISI to discriminate ISA from soil and vegetation accounts for much of its good performance. In
addition, spring is the ideal time of the year for mapping ISA from Landsat-8 images because the
impervious surface is generally less likely to be confused with bare soil and sand at this time of
year. Therefore, this study can be used to determine spectral indices for studying ISA extraction in
drylands in conjunction with binary approaches and seasonal effects.

Keywords: urban area; index-based method; image analysis; Landsat-8; dry climates

1. Introduction

Studying the temporal and spatial evolution of cities can serve as an indicator of urban
development and environmental quality [1–4]. The expansion of impervious surfaces
destroys ecosystems and affects the migration of organisms [5]. Therefore, precise measure-
ments of urban impervious surface area distributions and impervious surface coverage
are of great significance for environmental protection studies [6], as well as natural re-
source management to ensure food, water, and energy supplies. Data from remote sensing
platforms provide up-to-date information and a comprehensive overview of landscape
features and changes in urban areas [7,8]. Mapping such an urban impervious built-up area
using remote sensing is not only cost-effective but also time-saving [9]. Urban monitoring
and planning can help minimize the degradation of the natural environment and mitigate
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climate change. In recent decades, various remote sensing methods, such as the Landsat
and Sentinel missions, have become widely available as a data source for mapping and
monitoring land use and land cover [10,11]. Owing to rapid urbanization, land cover
in many urban areas of the world is changing faster than ever before [12,13]. However,
accurately extracting urban areas is a difficult task because several factors influence the
classification. Urban areas consist of very different materials, both spatially and spectrally,
such as concrete, asphalt, metal, plastic, and glass, whose spectra can be similar to those of
other materials, such as bare land, wasteland, and sand.

In recent years, different methodologies have been proposed to extract impervi-
ous surfaces and urban extent from satellite data, whose results can vary depending
on the imagery used and the study areas. Multiple regression [14], artificial neural
networks [15,16], spectral unmixing [17,18], object-oriented and knowledge-based
classification methods [19–22], and the use of development indices are examples of
these methods, which, due to differences in geographic locations, spatial scales, landform
patterns, etc. Have advantages and disadvantages.

Separating bare soil, alluvial, and fluvial sediment regions from urban areas is a
fundamental and difficult task to obtain accurate estimates for urban regions. Consequently,
urban development rates and development trends may be misjudged at the very first step
of urban planning. Once barren land is efficiently distinguished from developed land,
this improves the assessment of urban expansion and contributes to other developments,
such as land management [10]. Methods based on ISA indices have proven to be effective
techniques for extracting cities due to their simplicity, ease of implementation, and speed. So
far, several build-up indices have been proposed in the literature that is suitable for medium
to coarse spatial resolution data, such as Landsat imagery. However, their performance
depends on spatial resolution, acquisition time, and surface relief [1,23–27]. An index-
based ISA extraction approach for multispectral imaging typically finds the brightest and
faintest reflectance bands of the impervious surface and enhances the intensity contrast
between the impervious surface and the background through mathematical operations on
selected bands [26].

Numerous spectral indices generated by Landsat and Sentinel-2 have been proposed
by researchers around the world to extricate ISA from other fields. Typical indices include
(but are not limited to) the normalized difference built-up index (NDBI) [28], Index-based
built-up Index (IBI) [2], Band ratio for built-up area (BRBA) [24], normalized difference
bareness index (NDBaI) [29], built-up area extraction method (BAEM), a built-up and bare
land index (BBIOLI) [2], visible red near infrared built-up index (VrNIR-BI) [30], normalized
ratio urban index (NRUI) [31], enhanced normalized difference impervious Surfaces index
(ENDISI, dry built-up index (DBI) [4] to map built-up areas from Landsat 8, combinational
build-up index (CBI) [32], built-up land features extraction index (BLFEI) [33], modified
normalized difference impervious surface index (MNDISI), perpendicular impervious
surface index (PISI) [34], modified normalized urban areas composite index (MNUACI) [35]
have been employed in various studies.

A number of studies have compared the performance of ISA indicators in many
regions under different climate types, for example. As-syakur et al. [1] proposed the
enhanced built-up and Bareness Index (EBBI) index and compared it with previous indices,
such as IBI, NDBI, and UI, in humid tropical climate regions. They concluded that EBBI
is a more effective index than other indices when applied to Landsat ETM+. Bhatti and
Tripathi [3] (2014) proposed the BAEM using Landsat 8 data in semi-arid climate regions
and compared it with modified NDBI for Landsat 8 data. The study resulted in an increased
output of the BAEM approach. Bouzekri et al. [36] developed the built-up area extraction
index (BAEI) and applied it in the Mediterranean climate region. When compared with
the BRBA, NDBI, normalized built-up area index (NBAI), and new built-up index (NBI),
the new index provided higher accuracy when using Landsat 8 data. Tian et al. (2018) [34]
proposed the PISI using Landsat 8 data and compared it with BCI and NDBI. The findings
show that in diverse climate regions, from humid to semi-arid, PISI is more precise and has
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greater separability for ISA and soil, as well as ISA and vegetation in the ISA extraction than
the BCI and NDBI. Li et al. [37] attempted to assess the performance of different spectral
indices (PISI, NBAI, BCI, and BCI) for ISA extraction using multi-seasonal Sentinel-2 images
in a humid subtropical climate. Results showed that PISI combined with the ISODATA
classification method achieved the highest accuracy of 92.6%.

A review of the literature on spectral indices leads us to conclude that the performance
of these indicators depends on spatial resolution, type of climate, acquisition time, surface
relief, and the materials of which they are composed [35]. In areas where vegetation is
scarce, it is difficult to distinguish impervious surfaces from bare soil. An evaluation of
the performance and accuracy of these techniques has been made in cities with humid to
semi-arid climates, but these indices have not been applied in arid climates, where about
one-third of the world’s population lives and where it is increasingly difficult to separate
the barren soils and wadi sediments, sand dunes, and salt marshes (sebkha) from urban
areas. Therefore, it is necessary to systematically and thoroughly analyze the efficiency
of the impervious surface index method using Landsat-8 imagery and its applicability
in dry climate cities where urbanization is expected to increase mainly due to increasing
population growth in Africa and Asia, which have more vulnerable environmental systems.
The first objective of this work is to evaluate the performance of the results of the index-
based methods proposed, such as VrNIR-BI, CBCI, ENDISI, PISI, BRBI, BLFEI, DBI, BCI,
and RNUI, using Landsat-8 imagery in arid climates, and to investigate the impact of
seasonal variations on the ISA extracted to check the consistency of the results. The second
objective is to evaluate the performance of the ISODATA classification method and manual
threshold for separating impervious surfaces from index images. It is hypothesized that
the spectral indicators studied differ in their performance in dry environments since some
of these indicators were tested in humid environments and others in semi-humid and
semi-dry environments. This hypothesis will be tested for validity within the analysis.

The organization of the document is as follows: Section 2 highlights the selection of
the study area and the data collection procedure and describes the methodology, including
spectral indices. Sections 3 and 4 present the results of comparative analysis of the separa-
bility, thresholding, and extraction precision analysis of spectral indices and discuss their
application to areas with different artificial surface features of the city. Finally, in conclusion,
Section 5 summarizes the main findings of this study and presents the proposed topics for
future research

2. Materials and Methods
2.1. Study Area

The study is conducted in Buraydah City, the capital of Qassim province and one of the
largest megacities in Central Saudi Arabia (Figure 1). Buraydah is located at 26◦21′33.23′′ N
and 43◦58′54.52′′ E, and the geographical area of Buraydah city is approximately 1300 km2.
The city is located at an elevation of approximately 610 m Above Sea Level (A.S.L). Most of
the city has flat terrain decorated with sand hills, sand seas, and agricultural land.

Buraydah City is dominated by a hot desert climate (BWh) according to the Koppen
climate classification, characterized by heat and dryness in the summer and moderately
cold temperatures in the winter [38]. The average air temperature of the city ranges from
13 ◦C in winter to 36 ◦C in summer. Annual precipitation totals 72 mm, mainly from
November to May. The city, which is one of the largest developing cities in Saudi Arabia,
has experienced significant population growth in recent decades, rising from 7377 in
1960 to 700,000 in 2022 [39]. Buraydah is currently experiencing the largest expansion
in its history. On the one hand, rapid growth provides numerous benefits to its citizens,
such as job opportunities, convenient transportation, beautiful views, and a modern living
environment. On the other hand, it causes significant air pollution, water pollution, and
agricultural land loss in the city.
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Figure 1. Study area.

2.2. Method
2.2.1. Data

For this study, Landsat 8 (OLI & TIRS) images were acquired from August 2020 (dry
season) and March 2021 (relative wet season) on path 168 and row 042 (cloud cover = 0.01%)
to extract the ISA area. Landsat 8 images acquired on two different dates were used in order
to check the reliability of the results as well. Landsat 8 (OLI & TIRS) has eight reflectance
bands with a resolution of 30 m, one panchromatic band with a resolution of 15 m, and two
thermal bands with a resolution of 100 m. The specifications of Landsat 8 (OLI & TIRS) are
given in Table 1. The raw data were analyzed using ArcGIS 10.6 software with atmospheric
correction. The images are in UTM projection (zone 38 N) and were retrieved from the
United States Geological Survey (USGS) website, Earth Explorer. Figure 2 shows the
method of data processing and analysis.

Table 1. Landsat-8 data for two seasons acquired for ISA Indices.

Landsat Scene Identifier
(Path/Row: 168/042) Sensing Date Sensor

Identifier Cloud (%) Season

LC81680422020243LGN00 2020/08/30 OLI_TIRS 0.0 Summer

LC81660432021071LGN00 2021/03/12 OLI_TIRS 0.0 Spring
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Impervious Surface Indices

One question remains unresolved, although several lines of evidence for the extraction
of impervious surfaces have recently been proposed in the literature. We do not yet know
the common spectral features of impervious surfaces that function globally under different
climate types. It also appears that the indicators have not been tested in very dry climates,
as is the case in our study area. Therefore, in this study, we will use nine indicators of
impervious surfaces that have been used in more than one climate type or that have been
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used in an area of semi-arid climate that most closely resembles the climate of our study
area (dry climates).

• The biophysical composition index (BCI): the BCI was proposed by Deng and Wu [40]
to identify different urban biophysical compositions based on the Tasseled Cap (TC)
transform, a transformation able to compress spectral information from multiple bands
into fewer space scenes, highlighting spectral characteristics of different land cover
types [3]. It is calculated as:

BCI =
(TC1 + TC3)/2− TC2
(TC1− TC3)/2 + TC2

(1)

where TC1 is associated with high albedo materials (brightness), TC2 with vegetation
(greenness), and TC3 with low albedo (wetness). Hence, the index is computed as

The proposed index was applied to images registered by different satellites over
different regions of the world.

• Built-up land features extraction index (BLFEI): Bouhennache et al. [33] developed a
built-up land features extraction index (BLFEI) using green, red, SWIR1, and SWIR2
operational land imager (OLI) bands. Because asphalt-like roads and arid soil have
nearly similar spectral responses for the spectrum from NIR to SWIR1, the NIR spectral
channel was not utilized. In BLFEI, vegetation had the lowest value, while water had
the greatest. The values of impervious surface areas were lower than water and higher
than bare soil areas. It is calculated as:

BLFEI =
((Green + Red + SWIR2)/3)− SWIR1
((Green + Red + SWIR2)/3) + SWIR1

(2)

• Perpendicular Impervious Surface Index (PISI): Tian et al. (2018) [34] proposed a
reference line equation known as the PISI, which distinguishes ISA from bare soil,
using feature spaces in the blue and NIR bands. Though it uses only two bands,
it has higher accuracy in separating the impervious area from the bare soil area up
to this point in time. PISI performed significantly better than the BCI and NDBI
indices. It applies to most optical sensors due to the use of only blue and NIR bands.
The example of PISI can be replicated in numerous other RS applications. Similar to
BBI, PISI increases the separability between ISA and bare soil and between ISA and
vegetation areas. The formula for PISI can be expressed as follows:

PISI = 0.8192 Blue − 0.5735 NIR + 0.075 (3)

where Blue and NIR denote the reflectance of the Blue and NIR bands, respectively.

• City Biophysical Component Index (CBCI): The modified bare soil index (MBSI) and
optimized soil adjusted vegetation index (OSAVI) were merged by Zhang et al. [27] to
create the city biophysical component index (CBCI), which effectively shows the four
major biophysical components of cities. The following are the formulas:

CBCI = (A + 1)∗MBSI−OSAVI + A (4)

CBCI =
(Red−Green)∗2
(Red + Green− 2)

(5)

OSAVI =
NIR− Red

NIR + Red + 0.16
(6)

where green, red and NIR are the surface reflectance values of the red, green, and near-
infrared, respectively. A is a correction factor, which was set to 0.5 in this study to distin-
guish between impervious surfaces, bare land, vegetation, and water.
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• Band ratio for built-up area (BRBA): Waqar et al. introduced two new BRBA [24] that
were employed to extract the built-up areas of Islamabad city, Pakistan. Here, BRBA
used red and only one SWIR band. The study claimed to increase built-up extraction
accuracy by 10–13% compared to NDBI and NBI. BRBA is computed according to
the expression:

BRBA =
Red

SWIR1
(7)

• Dry buildup index (DBI): Rasul et al. [4] suggested a DBI based on Landsat OLI blue
and thermal bands. The DBI assumes that built-up regions have less vegetation and,
therefore, low NDVI values. Therefore, a reduction in NDVI can further improve the
characteristics of built-up areas. DBI has an overall classification accuracy for urban
areas of 93% for an arid climate, as is the case in the city of Erbil. DBI is not suitable in
densely forested urban areas. There are several limitations to the thermal data that
must be considered before use: The spectral difference in thermal bands is small and
often shows phenological and diurnal differences between urban and non-urban areas.

DBI =
Blue− TIR1
Blue + TIR1

−NDVI (8)

• Enhanced Normalized Difference Impervious Surfaces Index (ENDISI): Chen et al. [41]
developed the enhanced normalized difference impervious surface index (ENDISI) to
amplify the difference between impervious surfaces (ISs) and pervious surfaces (PSs),
where preprocessing, such as removing waterbodies, is not required. The SWIR-1
band to SWIR-2 band ratio, the MNDWI, and the blue band are chosen by ENDISI
as enhancement and inhibitor factors, respectively. The equation is how ENDISI
is written (9):

ENDISI =
Blue− a

(
SWIR1
SWIR2 + MNSWI2

)
Blue + a

(
SWIR1
SWIR2 + MNSWI2

) (9)

where
a =

2Bluemean(
SWIR1
SWIR2

)
mean

+ MNDWI2
mean

(10)

where Blue, SWIR1, and SWIR2 are the surface reflectance values of the blue, first shortwave-
infrared, and second shortwave-infrared bands, respectively. Mean is the mean image
value. a is a correction factor calculated by Equation (10), which is used to stretch the value
of ENDISI to −1~1.

• Normalized Ratio Urban Index (NRUI) Piyoosh and Ghosh [31] have proposed the
NRUI, and they have mentioned that using the panchromatic (PAN) band (Band 8)
of Landsat 8 data leads to an overall improvement in discriminating between ISA,
bare soil, and vegetation. Subsequently, the MNDSI was utilized to develop a new
normalized ratio urban index (NRUI) by improving the capability of the BCI in two
phases. First, a ratio urban index (RUI) was developed, which discriminates urban and
soil better than the BCI. Second, the RUI was further improved, which then became
known as NRUI and is able to distinguish urban areas from the ground even better
than the RUI.

RNUI =
RUI−MNDSI
RUI−MNDSI

(11)

MNDSI =
SWIR2− PAN
SWIR2 + PAN

(12)
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RUI
BCI

MNDSI
(13)

Visible red near infrared built-up index (VrNIR-BI): Estoque and Murayama [30] (2015)
proposed the visible green-based built-up index (VgNIR-BI) and VrNIR-BI, which is a
simple and accurate index and is applied for Landsat 7, as well as Landsat 8. Among these
two, VrNIR-BI works better than the VgNIR-BI index, and these are best at classifying ISA
and dry vegetated areas. For this reason, the VrNIR-BI was used in this study, and the
expression of this index is given by:

VrNIR− BI =
Red−NIR
Red + NIR

(14)

where red and NIR are the surface reflectance values of the red and near-infrared,
respectively [42].

2.2.2. Separability Analysis

The purpose of the separability analysis is to see how well the three indices distinguish
between the three components (ISA, soil, and vegetation). To obtain assess the separability
(accurate proportions) of ISA, bare soil, and vegetation pixels from Landsat-8 imagery, we
randomly selected three main land cover types by interpreting high-resolution imagery
(Worldview-3 imagery) using imagery from 2020. We examined the land cover class
separability between urban areas and other classes using the spectral discrimination index
(SDI) [43,44], Jeffries–Matusita (J–M) distance [45], and transformed divergence (TD) [46],
which are representative separability measurements. The SDI (question), (J–M) distance
(question) and TD (question) are represented as follows:

The formulas for SDI, J–M distance, and TD are as follows:

JMij= 2
(

1− expBij
)

(15)

Bij=
1
8
(
ui − uj

)2 2(
v2

i − v2
ij

) +
1
2

ln

(
v2

i + v2
j

2viuvj

)
(16)

where Bij is the Bhattacharyya distance, ui and uj are the means, and vi and vj are the
variance of adjacent segments i and j, respectively.

The following degrees of distinguishability of pairs of land cover classes were adopted
in the research: low separability: from 0 to 0.999, moderate separability: from 1 to 1.299,
and very good separability: from 1.3 to 1.414.

SDI =

∣∣ui − uj
∣∣

σi + σi
(17)

TD = 2
[

1− exp
(
−D

8

)]
(18)

D =
1
2

tr
[
(Ci − Cj)(C−1

i − C−1
ij )
]
+

1
2

tr
[
(C−1

i − C−1
ij )(ui − uj)(ui − uj)

T
]

(19)

where C is the covariance matrix of the class and tr is the trace of the matrix.
PISI, BCI, and NDBI were then applied to grayscale photos of the four subregions.
These three indicators were used to evaluate the urban zone indicators and were

classified into three categories, as shown in Table 2. Specifically, the J–M distance indicates
the separability between two classes, with a value less than 1.00 indicating that the two
classes are poorly separable. Further, if the J–M distance is larger than 1.3, it indicates a high
degree of separability, and if its value is between 1.00 and 1.3, it means the two classes are
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moderately separable [47]. Similarly, a TD value of more than 1900 indicates a high degree
of separation between the two classes. A value of TD between 1700 and 1900 indicates
moderate separation. When it is less than 1700, the two classes overlap with each other,
which indicates poor separation [48]. If SDI < 1 means that the classes overlap and the
ability to discriminate the classes is poor [33]. When the SDI is greater than 0.99 and less
than 1.99, the means are relatively good separated (moderate separability), and the regions
are generally easy to distinguish. When the value SDI > 1.99 is very good discrimination of
land features, and there is no more overlap [33].

Table 2. Class of separability of J–M distance, TD and SDI.

Class of Separability J–M TD SDI

very good separability 1.3–1.414 1900< 2<

moderate separability 1–1.299 1700–1900 1–1.99

low separability <0.999 <1700 0.99

Accuracies Assessment

ISA Classification Using Thresholding
In the extraction accuracy analysis, the threshold is an important factor for land cover

extraction using the index-based method. Typically, researchers use their experience and
trial-and-error techniques to define a more accurate threshold for a given study that works
well for the chosen study time, location, and datasets. However, the threshold often varies
spatially and temporally. Therefore, an automatic threshold can speed up the segmentation
process. In urban ISA extraction, the exact threshold is crucial [49], such as in Otsu’s method,
but it works better for two well-distinguishable classes. Therefore, it is not recommended
when classifying into multiple classes.

Otsu’s method automatically performs histogram-based image thresholding or reduces
a grayscale image to a binary image. Otsu’s method is usually used to set and determine
the optimal thresholds for ISA indices, but Li et al. [37] found it to be the worst method to
determine the optimal thresholds for ISA compared to ISODATA and manual thresholding,
which were similar and outperformed Otsu’s method. Therefore, in this study, manual and
ISODATA thresholding algorithms were used to set and determine the optimal thresholds
for ISA indices based on classification. The ISODATA algorithm is an iterative process
that classifies data elements into different classes using Euclidean distance as a similarity
measure. Using high-resolution Google Earth imagery, the resulting clusters were divided
into impervious and pervious classes after categorization.

Accuracies Assessment
The satellite imagery in Google Earth of Buraydah, a metropolis in Saudi Arabia, was

used to assess accuracy. Random sampling was used to collect sample pixels to compare the
accuracy of the different indices and evaluate the difference between them. The accuracy of
mapping was expressed in terms of User Accuracy (UA), Producer Accuracy (PA), Overall
Accuracy (OA), and Kappa coefficient (κ). The OA was calculated as the ratio between
the total number of correctly labeled samples and the total number of tested samples
to evaluate the efficiency of the applied algorithms. The PA was used to calculate the
probability that the reference sample on the map would be correctly classified. The UA was
used as an indicator of the probability that a classified pixel on the urban area classification
map would accurately represent that category on the ground. The (k) was used to measure
the agreement between the urban area model (indices values) and the actual class values as
if it happened by chance.
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3. Results
3.1. Separability Analysis

The index images were uniformly rescaled to a range of values from −1 to 1 to allow
comparison between indices. The histogram overlap method, SDI, (J–M) distance, and (TD)
were used to evaluate the impervious surface indices mentioned in Section 2. This analysis
will help us quantify, at a given point, the degree of overlap of pixel values belonging to
each class, which is indeed a general problem for most indices. The land use categories
of impervious surface, bare surface, and vegetation are used as spectral signatures in the
region of interest (ROI). The impervious surface indices calculated for summer and spring
are shown in Figures 3 and 4. Histograms of land features show well-separated classes,
such as ISA and vegetation but poor isolation or overlap with barren land for most ISA
indices. In Figures 3 and 4, the bare land histograms for BCI, DBI, and ENDISI had a
medium wave peak on the right that overlapped with the ISA, while we find that the PISI
and CBCI overlap less between the bare land and ISA.

Table 3 shows that all indicators were able to discriminate moderately to well between
impervious surfaces and vegetation cover in spring and summer, with a performance
preference for spring. The chlorophyll content is high in spring, making it easier to separate
impervious surfaces from vegetation cover.

Table 3. Separability measures between ISA and soil and ISA and vegetation with different indices.

Summer Spring

ISA and Barre Soil J–M TD SDI J–M TD SDI

BLFAI 1092 1225 1.30 1095 1262 1.31

BCI 607 498 0.44 706 687 0.61

BRBI 1054 1118 1.28 1003 1114 1.18

CBCI 1075 1290 1.31 1073 1510 1.28

DBI 753 582 0.81 841 708 0.94

ENDISI 508 316 0.37 642 505 0.59

VegNIR 1053 1112 1.27 1098 1258 1.36

NRUI 945 1264 0.98 1004 1384 1.04

PISI 1094 1309 1.30 1078 1480 1.30

Summer Spring

ISA and Vegetation J–M TD SDI J–M TD SDI

BLFAI 1278 1635 1.84 1312 1746 1.99

BCI 1231 1577 1.69 1318 1760 2.02

BRBI 1254 1594 1.76 1313 1726 1.99

CBCI 1293 1673 1.90 1358 1933 2.31

DBI 1289 1989 1.95 1348 1999 2.33

ENDISI 1186 1453 1.56 1257 1602 1.70

VrNIR-BI 1364 1914 2.33 1387 1983 2.64

NRUI 1246 1978 1.37 1155 1970 1.34

PISI 1311 1729 2.13 1338 1806 2.13
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All indicators have SDI values (1.7–2.64), J–M distance (1.155–1.387), and TD (1726–1999)
in spring. In summer, chlorophyll content decreases, and plant surfaces are covered with
a dust layer due to dust storms at the end of spring and the beginning of summer. All
indicators have SDI (1.34–2.31), J–M distance (1.186–1.364) and TD (1453–1989) values in
the summer. Notably, the VrNIR-BI index perfectly separates impervious surfaces from
vegetation, while the ENDISI index is the least separative indicator between impervious
surfaces and vegetation cover but generally remains good (Figures 3 and 4 and Table 3). In
particular, PISI and CBCI index is the best among the studied indicators in the study area,
moderately separating impervious surfaces from barren land but confusing a small amount
of barren land with built-up regions. The separate results of the two indicators are very
close in the two seasons, with a relative advantage for the PISI. As shown in Figures 3 and 4,
the BAEI and VrNIR-BI are still a good and accurate index but also overestimate impervious
areas in arid regions. The BRBI and NRUI methods are relatively less efficient than the
previous indicators and have merged impervious surfaces with barren land. The ENDISI
has low J–M Distance (0.642, 0.508), TD (1399), and SDI (0.59, 0.37) values in spring and
summer, respectively, indicating the confusion between bare land and impervious surfaces
and overestimating urbanized areas in arid lands, as shown in Figures 3 and 4.

3.2. ISA Classification Using Thresholding

ISA were extracted for the study area from Landsat-8 imagery acquired in spring
and summer by applying the DBI, PISI, ENDISI, CBCI, BRBI, RNUI, VrNIR-BI, NRUI, and
CBI indices. Since threshold segmentation requires the actual category of each pixel in
the Landsat-8 images to be classified as ISA or non-ISA, it depends on how high the ISA
fraction is to classify the pixel into that category, i.e., the threshold for the ISA fraction. For
this reason, after calculating the index images, thresholding and unsupervised classification
methods were applied to these images to distinguish ISA from non-ISA. The manual
threshold was selected using a trial-and-error procedure, while the ISODATA method
extracted the ISA based on classification. To determine the threshold for impervious
surfaces using the ISODATA method, the following steps were performed: First, the index
images were classified into ten clusters. In this algorithm, the parameters for the minimum
and maximum numbers were set to 7 and 12, respectively, and default values were used for
the other parameters. After the classification, derived clusters were combined into pervious
and impervious classes with the help of high-resolution Google Earth images.

The values were modified a little for ranges from spring to summer due to the differ-
ence in soil moisture and the degree of the greening of plant leaves between the two seasons.

In general, the thresholding values are greater in the spring than in the summer for all
indices. The derived thresholds are presented in Table 4. As shown in Table 4, the optimal
thresholds selected by the ISODATA method for the index images were quite close to the
values selected manually.

The results of the ISA indices were compared with the pseudo-color images (Figure 5).
The ISA extraction results using threshold values are shown in Figures 6–9. Generally, these
nine indices were able to detect ISA features, especially for large and homogeneous areas
of ISA. Yet, the classification ability of these ISA indices is dissimilar. Most of the indicators
classified the ISA more than the real ones, especially the ENDISI, BCI, and DBI, i.e., it is
clearly depicted in the overview of bare soil layers. For instance, once many bare soil areas
were detected using the BCI index, ISA was misclassified as bare soil. Many of the water
and saline depressions have been classified as urban areas. When comparing the manual
and ISOcluster thresholds, it turns out that the manual threshold is slightly better for most
indices, especially in determining the roads and buildings on the outskirts of the city.
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Table 4. ISA Classification Using Thresholding.

ISA Indices Summer Spring

Manual ISO Cluster Manual ISO Cluster

CBCI −0.0787 −0.1354 0.2014 0.2307

IPIS 0.2014 0.2274 0.3796 0.4135

BCI −0.3022 −0.3186 −0.1192 −0.1287

VrNIR-BI −0.1419 −0.1101 0.2419 0.2143

BLFAI −0.4172 −0.4321 −0.3832 −0.3916

BRBA −0.7333 −0.7421 −0.7034 −0.6934

DBI 0.2371 0.2362 0.5216 0.5140

ENDISI −0.1419 −0.1220 −0.1216 −0.0042

NRUI 0.4427 0.4321 0.4201 0.4342

Sustainability 2023, 15, 9704 14 of 31 
 

VrNIR-BI −0.1419 −0.1101 0.2419 0.2143 

BLFAI −0.4172 −0.4321 −0.3832 −0.3916 

BRBA −0.7333 −0.7421 −0.7034 −0.6934 

DBI 0.2371 0.2362 0.5216 0.5140 

ENDISI −0.1419 −0.1220 −0.1216 −0.0042 

NRUI 0.4427 0.4321 0.4201 0.4342 

The results of the ISA indices were compared with the pseudo-color images (Figure 

5). The ISA extraction results using threshold values are shown in Figures 6–9. Generally, 

these nine indices were able to detect ISA features, especially for large and homogeneous 

areas of ISA. Yet, the classification ability of these ISA indices is dissimilar. Most of the 

indicators classified the ISA more than the real ones, especially the ENDISI, BCI, and DBI, 

i.e., it is clearly depicted in the overview of bare soil layers. For instance, once many bare 

soil areas were detected using the BCI index, ISA was misclassified as bare soil. Many of 

the water and saline depressions have been classified as urban areas. When comparing the 

manual and ISOcluster thresholds, it turns out that the manual threshold is slightly better 

for most indices, especially in determining the roads and buildings on the outskirts of the 

city. 

 

Figure 5. Pseudo-colors composite from Landsat-8: band 4, red; band 3, green; and band 2, blue. Figure 5. Pseudo-colors composite from Landsat-8: band 4, red; band 3, green; and band 2, blue.



Sustainability 2023, 15, 9704 15 of 31Sustainability 2023, 15, 9704 15 of 31 
 

 

Figure 6. Impervious surface in spring extracted using manual thresholding for indices (a) VrNIR-

BI, (b) RNUI, (c) PISI, (d) BRBI, I DBI, (f) CBCI, (g) BLFAI, (h) ENDISI, and (i) BCI. 

 

Figure 7. Impervious surface in summer extracted using manual thresholding for indices (a) VrNIR-

BI, (b) RNUI, (c) PISI, (d) BRBI, (e) DBI, (f) CBCI, (g) BLFAI, (h) ENDISI, and (i) BCI. 

Figure 6. Impervious surface in spring extracted using manual thresholding for indices (a) VrNIR-BI,
(b) RNUI, (c) PISI, (d) BRBI, I DBI, (f) CBCI, (g) BLFAI, (h) ENDISI, and (i) BCI.

Sustainability 2023, 15, 9704 15 of 31 
 

 

Figure 6. Impervious surface in spring extracted using manual thresholding for indices (a) VrNIR-

BI, (b) RNUI, (c) PISI, (d) BRBI, I DBI, (f) CBCI, (g) BLFAI, (h) ENDISI, and (i) BCI. 

 

Figure 7. Impervious surface in summer extracted using manual thresholding for indices (a) VrNIR-

BI, (b) RNUI, (c) PISI, (d) BRBI, (e) DBI, (f) CBCI, (g) BLFAI, (h) ENDISI, and (i) BCI. 
Figure 7. Impervious surface in summer extracted using manual thresholding for indices (a) VrNIR-BI,
(b) RNUI, (c) PISI, (d) BRBI, (e) DBI, (f) CBCI, (g) BLFAI, (h) ENDISI, and (i) BCI.
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Given the geographic location, alluvial and aeolian sediments, residential areas, and
industrial structure of Buraydah city, six typical categories of impervious and pervious
surfaces were selected for analysis to better understand how the categories of impervious
and pervious surfaces and time affect ISA classification across different indices. These
six categories of impervious and pervious surfaces include residential areas, urban–rural
intersections, industrial areas, road infrastructure, dry wadi, and sand dunes.

The manual method was used to compare the results of the indicators because it is the
best method for distinguishing impervious and pervious surfaces in the study area. The
classification results were compared with high-resolution Google Earth images.

Valleys and depressions on the outskirts of the city of Buraydah [see Figures 10 and 11A]
were formed by natural rivers and alluvium. The seasonal variation of the valleys affected
the ISA extraction results. This is due to the spectral signature being confusing, with light
pixels showing a similarity to industrial areas and dark pixels showing a strong similarity
to shadows and road infrastructure. All ISA indices overestimated ISA because they were
unable to accurately distinguish impervious surfaces from bare soil (fluvial and alluvial
sediments), which is clearly seen in the ISA summary layers. In general, ENDISI and BCI
performed best in the spring, while PISI and VrNIR-BI performed best in the summer.

Industrial areas [see Figures 10 and 11B] are located in the north of Buraydah. Com-
pared to residential areas, buildings in industrial areas are less dense and show little
seasonal variation. We found that VgNIR, PISI, BRBI, BLFAI, CBC, and DBI were good at
extracting ISA from most images in the spring and summer. The NRUI index was able to
decipher the tails of industrial buildings but could not classify roads between industrial
areas as impervious surfaces. ENDISI and BCI overestimated ISA because they were unable
to distinguish impervious surfaces from bare ground, especially in the spring.

Residential areas [see Figures 10 and 11C], which include a variety of land cover types,
such as tall buildings, roads, vegetation, bare land, shade, etc., are located to the west of
the city. The ISA layers extracted with VgNIR, PISI, BCI, RNUI, and CBC were relatively
similar in spatial pattern and distribution to the visible ISA in Google Earth imagery, except
for some small and scattered bare areas and some built-up areas that were misidentified.

The ENDISI shows more ISA areas than are present in reality. For example, many
built-up areas and roads were identified using the ENDISI index, while some areas of bare
ground were incorrectly classified as built-up.

Suburban-rural transitions [see Figures 12 and 13D] are located in the southwestern
part of the city, a representative urban expansion area with significant seasonal variation in
vegetation cover. Compared to the other indices, CBCI, BRBI, PISI, and BLFAI were found
to be more stable to seasonal changes in vegetation and effectively separate impervious
surfaces from bare ground. VrNIR-BI, DBI, and BCI underestimated ISA because they
were unable to distinguish impervious surfaces from vegetation, and indicator values were
closer to reality in the summer. The RNUI indicates more ISA areas than are present in
reality, especially in the summer when some green areas appear as ISA areas.

Figures 12 and 13E show the extraction results for road infrastructure (e.g., highways),
a precisely classified category of impervious urban surfaces. There are no significant
seasonal differences between the indicators in the extraction of roads in the spring and
summer. For some indicators, roads are close to reality, while for others, they are not in
spring and summer. Compared to the other eight indices, the CBCI was found to be more
stable to seasonal variations, outperforming the other indices and closest to ground truth.
The results show that VrNIR-BI, DBI, and BCI are not able to distinguish ISA from other land
cover types, while RNUI is slightly better than the other indices. The ISA layers extracted
with PISI, BRBI, BAFAI, and ENDISI were relatively similar to the high-resolution Google
Earth images and the visible roads in the composite images in terms of spatial patterns and
distribution, except for some small and scattered road areas that were misidentified.

Figures 12 and 13F show the sand dunes on the eastern edge of Buraidah City. It
is clear that all indicators are able to detect the ISA of sand dunes, which is due to the
different roughness of the ISA of sand dunes. Results indicate that CBCI and PISI are more
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accurate and have better separability for ISA and sand dunes than the other indices under
different conditions.
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Figure 10. ISA distribution extracted VrNIR-BI (A1,B1,C1), RNUI (A2,B2,C2), PISI (A3,B3,C3),
BRBI (A4,B4,C4), DBI (A5,B5,C5), CBCI (A6,B6,C6), BLFAI (A7,B7,C7), ENDISI (A8,B8,C8), and
BCI (A9,B9,C9), index-based methods from spring Landsat-8 images and fine spatial resolution
satellite imagery viewable in Google Earth Pro in the three subsets of the study area: Valleys and
depressions on the outskirts of the city (A); industrial area (B); residential area (C).
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Figure 11. ISA distribution extracted VrNIR-BI (A1,B1,C1), RNUI (A2,B2,C2), PISI (A3,B3,C3), BRBI 

(A4,B4,C4), DBI (A5,B5,C5), CBCI (A6,B6,C6), BLFAI (A7,B7,C7), ENDISI (A8,B8,C8) and BCI 

(A9,B9,C9) index-based methods from summer Landsat-8 images and fine spatial resolution satel-

lite imagery viewable in Google Earth Pro in the three subsets of the study area: Valleys and depres-

sions on the outskirts of the city (A); industrial area (B); residential area (C). 

Figure 11. ISA distribution extracted VrNIR-BI (A1,B1,C1), RNUI (A2,B2,C2), PISI (A3,B3,C3),
BRBI (A4,B4,C4), DBI (A5,B5,C5), CBCI (A6,B6,C6), BLFAI (A7,B7,C7), ENDISI (A8,B8,C8) and
BCI (A9,B9,C9) index-based methods from summer Landsat-8 images and fine spatial resolution
satellite imagery viewable in Google Earth Pro in the three subsets of the study area: Valleys and
depressions on the outskirts of the city (A); industrial area (B); residential area (C).
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Figure 12. ISA distribution extracted VrNIR-BI (D1,E1,F1), RNUI (D2,E2,F2), PISI (D3,E3,F3), BRBI 

(D4,E4,F4), DBI (D5,E5,F5), CBCI (D6,E6,F6), BLFAI (D7,E7,F7), ENDISI (D8,E8,F8), and BCI 
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Figure 12. ISA distribution extracted VrNIR-BI (D1,E1,F1), RNUI (D2,E2,F2), PISI (D3,E3,F3),
BRBI (D4,E4,F4), DBI (D5,E5,F5), CBCI (D6,E6,F6), BLFAI (D7,E7,F7), ENDISI (D8,E8,F8), and BCI
(D9,E9,F9), index-based methods from spring Landsat-8 images and fine spatial resolution satel-
lite imagery viewable in Google Earth Pro in the three subsets of the study area: suburban-rural
transitions (D); highways (E); and sand dunes (F).
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Figure 13. ISA distribution extracted VrNIR-BI (D1,E1,F1), RNUI (D2,E2,F2), PISI (D3,E3,F3), BRBI 
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Figure 13. ISA distribution extracted VrNIR-BI (D1,E1,F1), RNUI (D2,E2,F2), PISI (D3,E3,F3),
BRBI (D4,E4,F4), DBI (D5,E5,F5), CBCI (D6,E6,F6), BLFAI (D7,E7,F7), ENDISI (D8,E8,F8), and BCI
(D9,E9,F9), index-based methods from summer Landsat-8 images and fine spatial resolution satel-
lite imagery viewable in Google Earth Pro in the three subsets of the study area: suburban-rural
transitions (D); highways (E); sand dunes (F).

3.3. Performance Assessment

To quantitatively evaluate the accuracy of the nine ISA indices for two seasonal
images, we selected a total of 300 samples for the impervious (150 samples) and previous
(150 samples) classes. The ISA layers were compared to ground-truth points (i.e., the second
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dataset of pure pixels). The results were evaluated mainly using the confusion matrix,
overall accuracy (OA), and kappa as evaluation indicators. Table 5 shows the evaluation of
accuracy. The results of the study show that the manual method and the ISODATA method
provide similar results, with the manual method being relatively preferred. Therefore, we
will use the manual method to compare the performance of the nine tested indices in the
spring and summer. The PISI and CBCI indices performed best in classifying ISA compared
to the other indices, with an average OA of 88.5% and 88% and a kappa of 0.76 and 0.75,
respectively. However, the PISI index is better than the CBCI index in summer, with an OA
of 88.5% and a kappa of 0.75, and the CBCI index is better in spring, with an OA of 89.5%
and a kappa of 0.79 (Table 5). The difference in assessment scores between summer and
spring is also smaller for the PISI. The VrNIR-BI index had the second-highest performance
in detecting ISA, with an average OA of 85.7% and a kappa of 0.73.

Table 5. Accuracy assessment of ISA features extracted by nine ISA indices.

ISA Indices Accuracy
Manual ISO Data

Spring Summer Average Spring Summer Average

VrNIR-BI
OA (%) 88.5 86.5 87.5 86 85.5 85.75

Kappa 0.77 0.75 0.76 0.72 0.73 0.725

RNUI
OA (%) 79 78 78.5 78 79.5 78.75

Kappa 0.6 0.59 0.595 0.56 0.59 0.575

PISI
OA (%) 89 88 88.5 87.5 85.5 86.5

Kappa 0.77 0.75 0.76 0.75 0.71 0.73

BRBI
OA (%) 83 85 84.5 84.5 83.5 84

Kappa 0.69 0.71 0.7 0.7 0.69 0.695

DBI
OA (%) 76.5 74.5 76 74.5 73.5 74

Kappa 0.53 0.52 0.525 0.52 0.51 0.515

CBCI
OA (%) 88.5 87.5 88 87 86.5 86.75

Kappa 0.77 0.73 0.76 0.74 0.73 0.735

BLFAI
OA (%) 85 82.5 83.75 84.5 83 83.75

Kappa 0.7 0.65 0.675 0.69 0.66 0.675

ENDISI
OA (%) 76 75 75.5 69.5 72.5 71

Kappa 0.52 0.5 0.51 0.39 0.45 0.42

BCI
OA (%) 78 77 77.5 77 76.5 76.75

Kappa 0.56 0.55 0.555 0.57 0.57 0.57

The ENDISI, DBI, and BCI indices did not perform well compared to the other indices
in classifying ISA, with an average OA of 75.5%, 76%, and 77.5% and a kappa of 0.51,
0.53, and 0.56, respectively. These indicators were not able to separate the sandy soils
from the buildings in the east of the study area, while the results of the indices BRBI,
BLFAI, and RNUI (with an average OA of 84.5%, 83.75%, 78% and a kappa of 0.7, 0.68,
and 0.60, respectively) were the most effective compared to the indices ENDISI, DBI, and
BCI (Table 5).

4. Discussion

In this paper, we compared and evaluated the performance of VrNIR-BI, RNUI, PISI,
BRBI, DBI, CBCI, BLFAI, ENDISI, and BCI in extracting ISA from Landsat-8 imagery in a
dry area (Buraydah), as well as the effects of relatively wet periods (spring) and dry periods
(summer) on the ISA extraction results. This apart, two impervious surface binary methods
(the manual thresholding method and the ISODATA classification method) were tested
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on multiseasonal Landsat-8 images in the main urban area of Buraydah, Saudi Arabia.
Although ISA index-based methods are quick and easy to implement, their efficiency varies
depending on the characteristics of the climate patterns, and The ISA index is a relatively
sensitive indicator. The results confirmed that when using Landsat 8 OLI-TIRS data for ISA
extraction, some ISA indices performed better than others.

The results of the manual method and the ISODATA classification method are similar,
with the manual method having a relative advantage. A visual inspection of the images
indicates in the histogram that the confusion of bare soil and ISA has increased significantly
with respect to the images obtained in summer, where low plant density is presented. In
fact, this result confirms that built-up indices provide better results for seasons where rain
or humidity is present in the study area, and this is consistent with what was stated in
previous studies, such as Stathakis et al. [50], Sun et al. [32], Valdiviezo-N et al. [51].

Rasul [4] also pointed out that the index of impervious surface performs differently in
humid and dry-arid regions. For example, the DBI index was found to be very accurate in
Erbil (Iraq), but it is an inappropriate indicator for mapping bare surfaces in our test area.
Indeed, the region where the DBI index was applied belongs to the semi-arid climate in
Erbil and not to the arid climate, as is the case in our study area. Moreover, the DBI index
depends on the thermal channel, and the results of this index depend on the acquisition
time of the satellite image during the day. If the image was taken three hours after sunrise,
as is the case in our study area, the thermal differences between the urban and the sandy
arid areas are small, leading to confusion between the urban areas and the sandy areas.

The RNUI method has largely merged urbanized zones with barren land; however,
it has largely separated the vegetative area from the barren class. However, it was found
through this study that this item is not suitable for separating built and dry land in a
dry climate. Chen et al. [41] and Chen et al. [6] indicated that the ENDISI effectively
distinguished impervious surface from the background in subtropical monsoon climate
areas, but it is an inappropriate indicator for ISA mapping in our study area (i.e., dry
climate region). However, ENDISI values overlapped with bare soil and grass on dark
impervious surfaces. We should consider the study area’s climatic conditions, as well as
its effectiveness, when choosing an appropriate ISA index. In addition, surface features
should generally be considered when using spectral indices. The value range of ISA area
and bareness in ENDISI has larger overlapping zones in comparison to other indices in our
study area.

PISI outperforms the other eight indices, especially with the extensive existence of
ISA. Such findings are not surprising, as they are consistent with the results reported by
Tian et al. [34] and Li et al. [37]. Experimental results show that PISI and CBCI are relatively
robust to seasonality when extracting ISA from different images. The strength of CBCI is
that it can distinguish ISA when mixed with vegetation areas but is not quite good with
wet soil areas, fluvial sediments, and aeolian sediments.

The VrNIR-BI, BAEI and BRBI indices are still relatively good, accurate indices, but
they also overestimate ISA, and barren land is not visible between the buildings in some
places, as shown in Figures 6 and 7. In this study, it is found that, unlike the study of
Li et al. [37], there is no clear effect of shadow on the accuracy of the results, which is due
to the average discrimination ability of Landsat-8 images in addition to the low buildings
in the city, which are between 1–3 floors.

Ultimately, some indicators provided good results, such as the PISI and CBCI indi-
cators for determining ISA. Nevertheless, future studies should continue to search for
an index or technique to complete the distinction between ISA and wet bare soil, fluvial
sediments, and aeolian sediment for research in urban, semi-urban, and rural areas in dry
climate areas.
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5. Conclusions

Extracting ISA from satellite images with medium spectral and spatial resolution,
like Landsat 8 is not an easy task. Accurate extraction of ISA is critical for municipal
construction, urban planning, sustainable development, and environmental assessment.
The existing methods, such as mixture analysis methods and classification-based methods,
the former is highly dependent on the quality of the end members, and the process for
capturing the end members is very complicated for some of these methods. For the latter,
they require high-quality training data. Index-based methods, on the other hand, are easy
to implement and have acceptable accuracy.

The availability of free Landsat-8 data opens new opportunities for mapping large-
scale impervious surfaces. This is the first study to compare the performance of different
spectral data for ISA extraction using two seasonal Landsat-8 images in arid climates.
Using two seasonal Landsat-8 images from the urban area of Burydah, Saudi Arabia, nine
index-based methods for detecting impervious surfaces (PISI, BCI, VrNIR-BI, BAEI, BRBI,
DBI, RNUI, ENDISI, and CBCI) and two binary methods for detecting impervious surfaces
(manual thresholding method and ISODATA classification method) were tested. Histogram
overlap method, SDI, J–M distance, TD, OA, and kappa values were used to evaluate the
results. The ISA index is a relatively sensitive indicator. Although index-based methods
are fast and easy to implement, their efficiency varies depending on the characteristics of
the climate patterns.

Four conclusions can be drawn from this study: PISI and CBCI are best at distin-
guishing impervious surfaces from non-impervious surfaces in Landsat-8 imagery in dry
climates compared to the other seven indices, with PISI significantly reducing misclassi-
fication between ISA and bare soil and vegetation features. PISI is a more reliable index.
Second, DBI and ENDISI extracted impervious surfaces in summer and spring in dry
climates worse than the other indices. Although DBI was applied in a semi-arid climate in
Erbil city and proved to be effective, it is not effective in an arid climate, such as that of
our study area. Third, calculating built-up indices from image sets taken in dry months
made it more difficult to distinguish bare ground from urban areas for most index-based
methods. This result confirms that ISA indices provide better results in months when
it is relatively wet in the study area. The ISODATA classification method and manual
thresholding have similar results when generating ISA maps, but the manual method is a
little better than ISODATA at achieving stable ISA mapping. Although the manual method
performs slightly better in the study area, the automated method (ISODATA) remains
effective and accurate and can be used to quickly and automatically select a threshold that
is similar to the optimal threshold.

This paper serves as a reference for selecting spectral indices for ISA extraction from
Landsat-8 imagery based on climatic conditions and for selecting an appropriate binary
processing method. This research contributes to the further study and application of
Landsat-8 data. The study suffers from some possible limitations because the ISA indices
were applied to only one city, and it is necessary to test them in other regions with dry
climates and other land cover characteristics. However, the results of this study can be
further used to identify the impervious urban characteristics of similar geoclimatic and
urban conditions.

In future work, we should keep in mind that the ISA indices were only applied to one
city and that they need to be tested in other regions with dry climates and different land
cover characteristics. For example, in the cities of Mecca and Medina, whose surfaces in
and around the cities consist of basalt, which is very similar to the surfaces of roads and
parking lots. Another point: the authors intend to develop a new specific ISA index for
dry climate.
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