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Abstract: Assessing water quality is crucial for improving global water resource management,
particularly in arid regions. This study aims to assess and monitor the status of groundwater
quality based on hydrochemical parameters and by using artificial intelligence (AI) approaches.
The irrigation water quality index (IWQI) is predicted by using support vector machine (SVM) and
k-nearest neighbors (KNN) classifiers in Matlab’s classification learner toolbox. The classifiers are
fed with the following hydrochemical input parameters: sodium adsorption ratio (SAR), electrical
conductivity (EC), bicarbonate level (HCO3), chloride concentration (Cl), and sodium concentration
(Na). The proposed methods were used to assess the quality of groundwater extracted from the
desertic region of Adrar in Algeria. The collected groundwater samples showed that 9.64% of samples
were of very good quality, 12.05% were of good quality, 21.08% were satisfactory, and 57.23% were
considered unsuitable for irrigation. The IWQI prediction accuracies of the classifiers with the
standardized, normalized, and raw data were 100%, 100%, and 90%, respectively. The cubic SVM
with the normalized data develops the highest prediction accuracy for training and testing samples
(94.2% and 100%, respectively). The findings of this work showed that the multiple regression model
and machine learning could effectively assess water quality in desert zones for sustainable water
management.

Keywords: ground water; water quality; IWQI; artificial intelligence; support vector machine; k-
nearest neighbors; environment

1. Introduction

Groundwater is a crucial resource for many different purposes, including drinking
water, agriculture, and industrial uses [1,2]. Assessing and monitoring the quality of
groundwater, however, has consistently been a major challenge that needs to be overcome
to ensure the long-term sustainability of already depleted water resources. While some
groundwater is a renewable resource that can be replenished through rainwater and
snowmelt, it can be depleted if consumed faster than naturally recharged [3,4]. On the
other hand, non-renewable groundwater resources that have been stored for thousands
of years are finite and can be drained if overexploited. Farmers in arid areas usually
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irrigate their crops with groundwater more than other sources such as surface water.
Therefore, improvements in water resource quality may significantly reduce irrigation
treatment costs and increase agricultural yields [5,6]. However, groundwater quality in arid
areas is a complex and dynamic issue [7]. Groundwater in arid regions is often degraded
due to various factors, including drought, overexploitation, irrigation fertilizers, geology,
wastewater discharge, and climate change. This can lead to declining water quantity and
quality, with severe consequences for people’s health and livelihoods as a result [8,9].

Nevertheless, evaluating water quality involves several challenges, including mas-
sive sample collection, laboratory testing, and data processing. These are typically time-
consuming operations with high costs in terms of equipment, chemical solutions, and
human resources [10]. Monitoring and assessing groundwater quality regularly is crucial to
ensure it remains safe for human consumption and irrigation uses [11]. It should be noted
that laboratories in several countries have suffered from a lack of chemical analysis reactors
due to the COVID-19 pandemic in the last three years [12]. Therefore, it is necessary to find
cost-effective and time-efficient methods to assess water quality precisely and overcome
the circumstances above. To do so, there are various methods, including water quality
sampling and analysis, remote sensing, and modeling. Recently, there has been an increas-
ing interest in artificial intelligence (AI) and its potential applications for water quality
monitoring and management [10,13,14]. AI has been used for various water quality-related
tasks, including data collection, analysis, and decision-making. Many AI technologies can
be used for water quality applications [10,15]. The most common type of AI technology
is machine learning, which can be used for data classification and prediction tasks [16].
Other types of AI technologies that have been applied to water quality include rule-based
systems, evolutionary computation, and artificial neural networks. The use of AI tech-
niques is prevalent in different water-related studies around the world, including random
forests (RF), artificial neural networks (ANN), and support vector machines (SVM) [17–22].
Several studies have focused on assessing and monitoring groundwater quality in arid
regions, particularly in the context of irrigation water quality management. The avail-
ability and suitability of groundwater for irrigation and drinking purposes are critical
factors for enhancing agricultural productivity in arid areas. Researchers have employed
various artificial intelligence (AI) techniques to predict the irrigation water quality index
(IWQI) based on specific input parameters [23,24]. Abdel-Fattah et al. [25] used a neural
network to evaluate the appropriateness of quality of water for irrigation in Egypt. In the
Algerian Illizi region, Mokhtar et al. [26] forecast irrigation water quality indices using
machine learning models and regression analyses. Ahmed et al. [27] predicted the irrigation
water quality index for irrigation purposes in Bangladesh by using ANN and SVR mod-
els. M’nassri et al. [28] estimated IWQI using ANN and multiple linear regression (MLR)
models in Sidi El Hani in Tunisia. Haider et al. [29] proposed a hierarchical-based fuzzy
technique to address the uncertainties associated with the absence of long observations
and inaccurate measurements of groundwater data in Qassim, Saudi Arabia. These studies
demonstrate the potential of AI in water quality assessment, providing valuable tools
for stakeholders and decision-makers to evaluate groundwater suitability for irrigation
and drinking purposes. AI technologies offer several potential benefits for water quality
monitoring and management. First, AI can automate repetitive tasks such as data collection
and analysis. As a result, it can free up staff time for other fieldwork or public outreach
activities. Second, AI can provide decision support by generating recommendations or
alerts based on data analysis. Finally, AI can help to better understand complex water
quality problems by providing insights that would not be possible with traditional methods.
Despite the potential benefits of using AI for water quality applications, some challenges
need to be addressed. First, there is a lack of standardization among AI tools and methods,
which makes it difficult to compare results across studies [16]. Second, using AI requires
access to high-quality datasets, which may not be available in some areas [30].

To address these challenges, this research aims to assess and monitor groundwater
quality in the arid region of Adrar, Algeria, utilizing AI algorithms to predict IWQI based
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on key input parameters and subsequently support effective water resource management
decisions for irrigation and drinking purposes in the study area. This will make it easier to
identify problems early and take steps to protect this vital resource. Artificial intelligence
algorithms are employed to predict the irrigation water quality index (IWQI) of the study
area based on the input parameters of water electrical conduction (EC), sodium concentra-
tion (Na), sodium adsorption ratio (SAR), chloride concentration (Cl), and the percentage of
bicarbonate (HCO3), and the output parameter is IWQI. These parameters were computed
based on the analysis of 166 samples collected from an arid desert. Using the study’s
findings, farmers in arid areas can boost agricultural productivity through enhanced irriga-
tion water quality management, and policymakers and stakeholders can make reasonable
choices on water resource management. The implications of the proposed methods are
two-fold. Firstly, for irrigation purposes, the IWQI provides a valuable tool for stakeholders
and farmers to assess the suitability of groundwater for agricultural uses. By comparing
the predicted IWQI with the recommended standards, decision-makers can determine
whether the groundwater is suitable for irrigation or if additional treatment measures are
necessary. This information is essential for optimizing crop production, minimizing the
negative impact of poor water quality on agricultural yields, and ensuring sustainable
water resource management. Secondly, in terms of drinking water, the predicted IWQI
allows for an evaluation of the groundwater’s suitability for human consumption. By com-
paring the calculated IWQI with the World Health Organization (WHO) drinking water
standards, decision-makers can also assess the potential health risks associated with the
consumption of the groundwater. This information is crucial for ensuring the provision of
safe drinking water to communities, as it helps identify the need for appropriate treatment
measures or the implementation of alternative water sources. By providing stakeholders
and decision-makers with a reliable and efficient tool to evaluate groundwater quality, our
study empowers them to make informed decisions regarding water resource management
and safeguarding the health and well-being of communities reliant on groundwater for
irrigation and drinking purposes.

2. Materials and Methods
2.1. Study Area

The investigated area, located in the southwestern part of Algeria between 5◦38′38′ ′ W
and 2◦6′30′ ′ E latitudes and 24◦53′30′ ′ N and 31◦42′27′ ′ N longitudes, covers a total area of
297,790 km2, which constitutes approximately 18% of the area of Algeria. Figure 1 illustrates
the location of the study area. The study area belongs to the Algerian Sahara, one of the
world’s driest and hottest areas [31]. The summers are long and hot, and the winters are
short and warm. Adrar is characterized by scarce rainfall, where the annual average is about
15 mm yearly, and the evaporation rate is about 4500 mm yearly [32]. Temperatures in the
summer are consistently high and can exceed 45 ◦C [33]. The study area often experiences
a scorching, dusty southerly wind called the Sirocco in the summer [34]. During this time,
the northern part of the country can be soaked for as long as 40 days [21]. Geographically,
Adrar is bounded by Erg Chech in the west, Tadmait in the east, the occidental Erg in
the north, and Tanezrouft in the south. This area comprises four natural Saharan regions:
Gourara, Touat, Tidikelt, and Tanezrouft. In the study region, the hydrographic network is
represented by Wadi Messaoud, which is the continuity of Wadi Saoura towards the north
(the latter drained from the Saharan Atlas), and Oued Tillia and its tributaries, which drain
the plateau of Tademaït towards the southeast at the level of Zaouïet Kounta from Baamer
to Reggane. At the eastern end of the Touat depression, an intense hydrographic network of
small distinct ravines drains the plateau of Tademait. Adrar is mainly an agricultural region
characterized by its traditional irrigation system, named “foggara” [35]. Hydrogeologically,
the study area is part of the transboundary Northern Saharan Aquifer System (SASS) [36].
Many of these deposits are deeply buried, and their thickness can reach at least 2000 m [37].
In addition to siliciclastic sandstone, some parts of the aquifer are karstic and evaporite [36].
Aquifers in this area tend to be highly productive. Over the centuries, foggaras (water
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galleries) have exploited the aquifer of Continental Intercalaire (CI) around its edges in the
Sahara [38].
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Figure 1. Study area.

2.2. Data Collection

For this study, 166 water samples from the research area were provided by the national
water resources agency (ANRH). The samples were provided from boreholes and the fog-
gara system. The data for each sample consisted mainly of chemical elements represented
by pH, cations such as magnesium (Mg), calcium (Ca), sodium (Na), and potassium (K), and
anions such as chloride (Cl), sulfate (SO4), and bicarbonate (HCO3). Pollution indicators
such as nitrate (NO3) and other physical elements are represented by electrical conductivity
(EC) and temperature (◦C). The assessment of the suitability of groundwater in the region
of Adrar for irrigation was established with the international standard provided by the
Food and Agriculture Organization (FAO). Therefore, this database adequately represents
groundwater quality in the study area. A summary of the collected data is given in Table 1.

Table 1. Descriptive statistics of physicochemical parameters of irrigation water.

Parameter Unit Min Max Mean SD

Ca++ mEq/L 1.07 15.10 4.90 2.11
Mg++ mEq/L 0.65 14.63 5.52 2.56
Na+ mEq/L 1.52 38.70 13.03 5.93
K+ mEq/L 0.15 5.26 0.65 0.47
Cl− mEq/L 1.97 35.21 12.37 6.06

SO−2
4 mEq/L 2.08 20.83 8.35 3.59

HCO−3 mEq/L 0.75 4.35 2.60 0.49
NO−3 mEq/L 0.12 3.02 0.74 0.41

EC µδ/cm 620.00 5920.00 2475.75 927.00
pH -- 7.35 8.19 7.71 0.19
T ◦C 21.3 24.8 23.4 2.62
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2.3. Irrigation Water Quality Criteria
2.3.1. Suitability Indices for Irrigation

A great deal of variation exists in irrigation water’s quality depending on the type
and quantity of its salts. Groundwater irrigation waters contain NaCl as their predominant
salt [39]. Consequently, the sodium adsorption ratio (SAR) played an important role in
determining the effects of the application of irrigation water on soil structural behavior in
earlier research [40]. The USDA’s salinity lab defined SAR as [41]:

SAR =
Na+√

(Ca2++Mg2+)
2

(1)

where concentrations of cations (Na+, Ca2+ + Mg2+
)

are expressed in milliequivalents
per liter (mEq/L).

2.3.2. Irrigation Water Quality Index (IWQI)

Depending on the crop pattern, soil type, and climate, irrigation quality requirements
may vary from one field to another [42]. Hence, a spatially distributed assessment of
individual quality parameters is possible through irrigation water quality mapping. GIS can
therefore be used to visualize such maps and make comparative evaluations. Nowadays,
groundwater has been assessed for its suitability for irrigation and drinking purposes using
the Irrigation Water Quality Index (IWQI) in many regions worldwide [27,43]. For this
study, the IWQI model, developed by Meireles et al. [44], was used to analyze the data. First,
it was necessary to identify the most relevant irrigation parameters. Second, aggregation
weights (wi) and quality measurement values (qi) were defined. According to the irrigation
water quality characteristics required by the Food and Agriculture Organization (FAO) for
agricultural uses, proposed by Ayers and Westcot [45], values of (qi) were calculated based
on every chemical parameter, as shown in Table 2. Equation (2) is used in this model to
calculate the irrigation water quality parameter (qi), which is determined by the tolerance
limits of the parameters listed in Table 2:

qi = qimax −

[(
xij− xin f

)
× qiamp

]
Xamp

(2)

where qi is the quality of each parameter, qimax stands for the maximum value of qi for
every class, xij stands for every parameter’s observed value, xin f represents the lower limit
class of the parameter, qiamp is the amplitude of quality measurement class, and Xamp is the
amplitude class. Xamp was evaluated based on the highest value determined in the analysis
of the physicochemical properties of groundwater. According to Table 3, the parameter
weights in the IWQI were calculated, as suggested by Meireles et al. [44]. Finally, the IWQI
is calculated using Equation (3).

IQWI =
n

∑
i=1

qiwi (3)

Table 2. Limiting values for parameters used in quality assessments (qi).

Parameters Limiting Values

qi 0–35 35–60 60–85 85–100
HCO−3 HCO−3 < 1 or HCO−3 ≥ 8.5 4.5 ≤ HCO−3 < 8.5 1.5 ≤ HCO−3 < 4.5 1 ≤ HCO−3 < 1.5

EC
(
uS cm−1 )

EC < 750 or
EC ≥ 3000 1500 ≤ EC < 3000 750 ≤ EC < 1500 200 ≤ EC < 750

SAR SAR < 2 or SAR ≥ 12 6 ≤ SAR < 12 3 ≤ SAR < 6 2 ≤ SAR < 3
Na+ Na < 2 or Na ≥ 12 6 ≤ Na < 12 3 ≤ Na < 6 2 ≤ Na < 3
Cl− Cl < 1 or Cl ≥ 10 7 ≤ Cl < 10 4 ≤ Cl < 7 1 ≤ Cl < 4
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Table 3. Relative weights used to calculate IWQI.

Parameters SAR EC Cl Na HCO3 Total

wi 0.189 0.211 0.194 0.204 0.202 1

2.4. Classification Learner

Using classification and prediction methods of machine learning can minimize time-
consuming efforts by avoiding using many underlying calculations to predict a specific
output [21]. When fed with reliable data, machine learning can predict appropriate cate-
gories (patterns), while an untrusted data source could inversely affect machine learning
results. Therefore, it is vital to prepare the collected data and randomly divide them into
two groups, one for training and the other for testing to assess the data quality. The latter
group is essential to determine the accuracy of the constructed machine learning model. As
soon as the machine learning algorithm is run on the input dataset, the model determines
the outputs, so it is necessary to choose a model that is relevant to the task and the informa-
tion presented and related to it [26,46]. Multiple models are suitable for many tasks, such
as recognizing and processing images. Hence, the classification learner tool in Matlab is
used to predict the irrigation water quality index (IWQI).

The input parameters to the classification learner toolbox in this study are water elec-
trical conduction (EC), sodium concentration (Na), sodium adsorption ratio (SAR), chloride
concentration (Cl), and the percentage of bicarbonate (HCO3), while the output parameter
is IWQI. These parameters were computed based on the analysis of 166 groundwater
samples. The samples were divided into 156 samples for training all classification learner
models, and the remaining samples were used as testing data to identify the accuracy of
the models. The IWQI state was defined based on specified range limits, as illustrated in
Table 4. As shown in Table 5, training and testing data are distributed by water state based
on training and testing processes.

Table 4. The state of irrigation water based on IWQI limits.

Range of IWQI Irrigation Water State

70–100 Very good
55–70 Good
40–55 Satisfactory
0–40 Unsuitable

Table 5. Distribution of the collected data based on the irrigation water state.

Irrigation Water State Very Good Good Satisfactory Unsuitable Total

Training 14 18 32 92 156
Testing 2 2 3 3 10

The classification learner toolbox was used with the trained data to select the best-
performing classifier. Then, the raw, standardized, and normalized data were applied for
all classifiers to investigate the best way to obtain a high-accuracy classifier. Some samples
of the raw data of the five inputs to all classifiers are illustrated in Table 6.

Next, the data are standardized and normalized to enhance the classifiers’ accuracies.
In order to standardize the data, each column was divided by the standard deviation of the
parameter column and then subtracted from the average of the column. The new parameter
values (Xnew) can be determined as follows:

Xnew =
Xi − µ

σ
(4)

where µ refers to the mean and σ is the standard deviation of each variable of the five input
variables of the trained data. The normalization can be developed using the maximum
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value of all data for each parameter. Therefore, the new transformation ratios become
Equation (5):

Xnew =
Xi

Max(Xi)
(5)

Table 6. Computed input parameters and IWQI state of some of the trained data samples.

EC Na HCO3 Cl SAR IWQI IWQI State

83.33 122.25 75.90 92.61 94.96 93.77 Very Good
88.55 119.71 70.00 92.61 94.58 93.08 Very Good
63.33 71.59 47.50 80.54 88.02 69.82 Good
69.67 72.68 43.61 71.39 87.97 68.81 Good
51.17 40.43 50.33 39.58 75.45 51.15 Satisfactory
43.67 30.29 58.00 27.84 77.02 47.07 Satisfactory
40.17 12.17 37.05 27.84 73.36 37.71 Unsuitable
36.67 1.30 62.62 27.84 60.99 37.58 Unsuitable

2.4.1. Support Vector Machine (SVM) Classifier

SVM is a machine learning tool that splits data into two classes via the hyperplane. The
main objective of SVM is to reduce errors by customizing the hyperplane, which increases
the tolerance limit. Since the optimization problem is convex rather than linear, SVM offers
a unique solution compared with ANN models containing many local minima [26,47]. First,
it must satisfy the maximum distance between points for each category. After that, the
exact classification can happen. The hyperplane classifies all points outside its margin as
different. Larger features make it difficult to categorize them. Good classification can occur
with a large margin, as shown in Figure 2 [48,49].
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The hyperplane mathematical representation in SVM is as follows:

WT · x = 0 (6)

where x and W are the vectors. The vector W refers to the weight vector. The training data
can be simulated as:

{(x1, y1), (x2, y2), (x3, y3), . . . .., (xn, yn)} ∈ Rn (7)

This means that ordered pairs can represent our data (xn, yn), where xn refers to
features and yn refers to the label of the xn. The classification function can be expressed as:

y = f (x) : Rn → {1,−1} (8)
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where the f (x) function will learn from the training data we feed it, and it will then be able
to perform the classification process for future data or unseen data outside the original
range of datasets. The training process is carried out to find the maximum amount of
margin (M) that can be obtained. The margin is mathematically represented as follows:

M =
2
‖W‖ (9)

The relationship between M and W is inverse. The main equation for the SVM, which
this work is based on, takes the following form:

min(w, b)
1
2
‖w‖2 subject to yi(w.x + b) ≥ 1 f or any i = 1, . . . .., n (10)

2.4.2. Weighted K-Nearest Neighbors (KNN) Classifier

For classification and regression, the KNN algorithm is used (most commonly) as a
supervised learning algorithm. Datasets can be resampled, and this algorithm can calculate
missing magnitudes. This method uses the k closest neighbors (data points) to predict the
class of a new variable. Unlike model-based algorithms, instance-based learning uses whole
training cases to predict the output of unseen data instead of learning by weights from training
data. Based only on the number of points closest to a new point, the k-nearest neighbors
method neglects much information. The steps of this method are summarized as follows:

1. The value of the variable k, which expresses the number of neighbors, is determined.
2. The distances between a new point and those in the dataset are calculated.
3. After arranging the points according to the minimum distance calculated in the

previous step, the number of adjacent ones is calculated.
4. The class for the neighbors is defined.
5. Finally, the class with the most neighbors is the expected class for this point.

Figure 3 shows an example with the two classes represented in the red hexagon and
the other in the green triangle. The new data point, represented by the question mark in
the small circle, can be classified based on number of the red hexagons and green triangles.
As the red hexagon class is dominant in the inner circle in this example, the new data point
here must be classified to be in the red hexagon class.
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3. Results
3.1. Chemical Composition of the Study Area

The FAO’s standards for agricultural purposes proposed by Ayers and Westcot [45]
are compared with all physicochemical parameters in this study. Groundwater in the
study area shows significant differences in chemical composition. The values of pH ranged
from 7.35 to 8.19, averaging 7.71. For the electrical conductivity (EC), the values varied
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from 620.00 µδ/cm to 5920.00 µδ/cm with an average of 2475.75 µδ/cm, where the accept-
able level of EC is 3000 µδ/cm according to FAO guidelines [45]. Therefore, 80.72% of
Adrar’s electrical conductivity (EC) values are within the acceptable limits for irrigation
purposes. Groundwater in the research area contains calcium concentrations ranging from
1.07 to 15.10 mEq/L. Consequently, all samples are within the permissible range of the FAO
recommendations, which set a maximum value of 20 mEq/L [45]. It was observed that mag-
nesium values varied from 0.65 to 14.63 mEq/L with a mean value of 4.90 mEq/L. So, about
50.6% of samples are within the standards stipulated by the FAO (<5 mEq/L) [45]. Sodium
levels range from 1.52 mg/L to 38.70 mg/L, within FAO standard limits (<40 mEq/L) [45].
About 97.59% of the potassium values of Adrar are within the acceptable limits for ir-
rigation purposes stipulated by the FAO (<2 mEq/L) [45]. Throughout this study, the
sulfate value ranged from 2.08 to 20.83 mEq/L. The FAO guidelines stipulate a maximum
value of 20 mEq/L for samples, which is met by 98.79% of samples. With a mean con-
centration of 0.77 mEq/L, the nitrate concentration in groundwater samples ranges from
0.12 to 3.02 mEq/L. About of 98.19% of chloride values respect the FAO guidelines. The
concentration of bicarbonate ranges from 0.75 to 4.35 mEq/L. Observations show that all
samples are in the permissible range of 10 mEq/L, stipulated by the FAO [45].

3.2. Irrigation Water Quality Results

Calculated SAR values range from 1.01 to 13.71, with a mean and standard deviation
of 5.45 and 1.95, respectively. Generally, every sample whose SAR value ranges between 0
and 18 qualifies as an excellent or good irrigated area, as in our study [50–52]. Results of the
calculated IWQI for the region of Adrar are presented in Table 7 and Figure 4. There was a
wide range of IWQI values, ranging from 3.64 to 93.77, with an average of 41.81. According to
Meireles et al. [44], the IWQI was divided into four categories: (i) excellent or very good, when
IWQI is more than 70; (ii) good, when IWQI is between 55 and 70; (iii) satisfactory, when IWQI
is between 40 and 55; and (iv) inappropriate or unsuitable, when IWQI is below 40. In our study
area, the analysis concluded that 16 samples fell into the very good category, representing 9.64%
of the total sample set. There were approximately 12.05% of samples deemed good, and there
were approximately 21.08% deemed satisfactory. In addition, 95 samples were categorized as
unsuitable, accounting for 57.23% of all samples examined.

Table 7. IWQI results of the study area.

Name IWQI Type Name IWQI Type Name IWQI Type Name IWQI Type

TAA 93.77 VG SAID 52.25 St RH 38.32 Us SALI 30.78 Us
TAZ 93.08 VG KDR 52.00 St BKR 38.12 Us TAAT 29.92 Us
TAB 84.95 VG TAMT 51.15 St HMM 38.00 Us ALF2 29.67 Us
TIN 84.15 VG MNSR 47.07 St BHH 37.90 Us ISSA2 29.42 Us

ASDI 83.41 VG RSL 46.32 St FNL2 37.81 Us RGN 28.82 Us
TIL 81.16 VG AMR 46.18 St TILL 37.71 Us CHM 28.59 Us
TIM 80.21 VG TITAF 45.60 St RBT 37.58 Us FAT 28.49 Us

KSRH 73.22 VG KBL 45.52 St GHRT 37.10 Us ABR2 27.80 Us
TIL 73.05 VG TMT2 45.36 St KSN 36.98 Us CHRW 27.55 Us

ABD 72.27 VG KNN 44.99 St HDJD 36.82 Us DRA 27.55 Us
TIL2 72.13 VG YCF 44.74 St BAAM 36.61 Us AITM 27.12 Us
TIB 71.86 VG ABN 44.35 St TEBN 36.51 Us IGOS 27.01 Us

OUF 71.04 VG FNGL 43.75 St SHL 36.44 Us TIMA 26.66 Us
SNLGZ 70.95 VG RTB 43.63 St BOR 36.40 Us LAGH 26.61 Us
AERO 70.51 VG RCHD 43.28 St WHB 36.12 Us AJIR 26.53 Us
BGM 70.25 VG MHD 42.96 St GBR 35.81 Us GDM 25.43 Us
TIL3 69.82 Gd TIMI2 42.82 St ZGL 35.57 Us NOM 24.77 Us
TAA 68.81 Gd TID 42.27 St SYCF 35.44 Us BKRI 24.36 Us
GUR 68.42 Gd AZO 41.75 St SHL 35.34 Us SML 23.76 Us
MHD 66.80 Gd TIMO 41.68 St ABBO 35.13 Us TKK 23.40 Us
AKBR 65.87 Gd BSL 41.48 St YHIA 34.91 Us HJMH 21.67 Us
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Table 7. Cont.

Name IWQI Type Name IWQI Type Name IWQI Type Name IWQI Type

TZA 65.72 Gd BHH 41.19 St CHTB 34.90 Us BRL 21.23 Us
ATAR 65.70 Gd AIAN 41.18 St FNFL 34.69 Us TWT 21.11 Us
BARB 65.66 Gd ADM 41.09 St FTH 34.61 Us AWM 20.96 Us
MAIZ 65.36 Gd CHRF 40.57 St LHMR 34.37 Us TSFT 20.39 Us
SBAA 65.35 Gd BNZT 40.56 St TGH 34.35 Us NEFS 19.06 Us
SLM 65.06 Gd CHKH 40.53 St ZKNT 34.23 Us ZKKR 18.28 Us
TIL4 64.75 Gd TNRT 40.25 St MSS 34.05 Us AZRF 16.21 Us
TIL5 64.53 Gd TIMI3 40.10 St TLB 34.04 Us AMS 15.77 Us
LAA 64.23 Gd MNC 39.90 Us HFR 33.79 Us CHRW 14.88 Us
TMR 63.96 Gd ZGH 39.84 Us TMR 33.60 Us AWLF 14.65 Us
TYB 60.48 Gd IKKIS 39.84 Us NZA 33.54 Us DGHA 14.65 Us
YAK 57.47 Gd MHD 39.77 Us KID 33.50 Us TLAL 13.26 Us

KORT 57.13 Gd AKR 39.67 Us SMD 33.43 Us ARR 11.94 Us
ISSA 56.55 Gd TKN 39.60 Us TIAF 33.29 Us TSAM 10.34 Us
TIMI 55.89 Gd AWLF 39.59 Us ABB2 32.60 Us HBL 9.68 Us

KABR 54.93 St MSTR 39.47 Us ABLI 32.54 Us TLH 9.68 Us
MRG 54.43 St ALM 39.14 Us MCN 32.36 Us MLK 8.73 Us

ARPT2 53.66 St RKIA 38.91 Us ZGLF 32.33 Us LAAR 7.48 Us
BLKB 52.83 St TRR 38.83 Us SALI 32.04 Us TRR 3.64 Us
BALI 52.78 St MLD 38.63 Us AGHIL 31.19 Us
TIT 52.76 St TDM 38.46 Us BGL 30.90 Us

VG: Very good, Gd: Good, St: Satisfactory, Us: Unsuitable.
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3.3. Artificial Intelligence

In this section, the classification learners’ prediction accuracy results are reported.
First, the input and output data were specified in the workspace in the MATLAB learner
toolbox, and then the command Classification Learner was written in the command box.
The input and output files must be identified from the workspace on a new session page.
The input parameters were determined, and the last column was kept as the output. A
10-fold cross-validation was selected to ensure a good training process leading to a stable
classification model.

When all of the classification learners were used with the raw, standardized, or nor-
malized data, the SVM and KNN developed the highest prediction accuracy for the trained
data, so the results of the SVM and KNN are reported here.

3.3.1. SVM Results for Standardized Data

The standardized data can be obtained using Equation (1). For the standardized data,
the cubic SVM gave the highest prediction accuracy of 92.9%. Figure 5 shows data samples’
distribution with correct and incorrect prediction as a scatter plot of cubic SVM. In this plot,
the name of the trained file appears as input_av with 156 observations. Five parameters
are used as predictors. The incorrectly predicted points are marked with colored crosses
(x). The codes 1, 2, 3, and 4 on the x and y axes in Figure 5 refer to very good, good,
satisfactory, and unsuitable IWQI states, respectively. Figure 6 illustrates the confusion
matrix of the cubic SVM. As can be seen from Figure 6a, 14 observations exhibit very good
IWQI. The cubic SVM classifier correctly predicts thirteen out of fourteen samples; one
sample is incorrect and belongs to the good IWQI state. Correct diagnoses are highlighted in
green, while incorrect diagnoses are highlighted in red. For the good IWQI state, the cubic
SVM correctly predicts 15 of 18 samples, with three incorrect samples, one for satisfactory
and two samples for the very good IWQI state. Therefore, the prediction accuracy of the
good IWQI state is 83% as shown in Figure 6b. The highest prediction accuracy is for the
unsuitable IWQI state where the cubic SVM correctly predicts 91 from 92 samples, with an
accuracy of 99%. The total accuracy of the cubic SVM is 92.9% for all trained data samples.
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A receiver operating characteristic (ROC) is shown in Figure 7. ROC plots show
the current classifier performance with the true positive rate (TPR) on the y-axis and
false positive rate (FPR) on the x-axis. Based on the figure mentioned above, 1% of the
observations were incorrectly assigned to the positive category based on an FPR of 0.01,
while 93% of the observations are correctly classified as positive by the classifier, as indicated
by the TPR of 0.93. It is considered a poor classification result when the ROC curve makes
a 45◦ angle, as opposed to a perfect classification result when it makes an acute angle. A
classifier’s accuracy can be measured by its area under the curve (AUC). Classifier accuracy
increases with increasing AUC. It can be seen from Figure 7 that the AUC is 100%, meaning
that the classifier performed better than expected.
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Finally, the results of all classifiers are presented in Table 8, explaining the accuracy
of all classifiers with the trained (raw, standardized, and normalized) data. The results
of applying all classifiers on the trained data indicated that the best performance for the
raw data is with the linear support vector machine (SVM) where the prediction accuracy
was 92.9%. High accuracy can be obtained through the cubic SVM (92.9%) when applying
all classifiers with the standardized data. In addition, the cubic SVM (94.2%) can develop
high accuracy for the normalized data. The weighted k-nearest neighbors (KNN) classifier
generates the second-best prediction accuracy with raw, standardized, and normalized
data of 92.3%, 92.3%, and 92.9%, respectively. Therefore, the two classifiers SVM and KNN
are presented in the following section since they develop higher prediction accuracy for the
trained data.

Table 8. Accuracies of all classifiers.

Training Data

Classifier Raw Data Standardized Normalized

Cubic KNN 84.6 85.9 85.3
Fine KNN 89.1 89.1 91

Medium KNN 86.5 85.9 87.2
Cosine KNN 82.7 84 83.3
Corase KNN 59 59 59

Weighted KNN 92.3 92.3 92.9
Corase tree 89.1 86.5 89.1

Medium tree 86.5 84 87.2
Quadratic discriminant 88.5 85.3 88.5

Linear discriminant 88.5 88.5 89.7
Ensemble bagged trees 87.8 89.7 90.4
Ensemble boosted trees 59 59 59

Ensemble subspace KNN 86.5 85.3 88.5
Ensemble subspace discriminant 87.8 87.2 87.2

Linear SVM 92.9 91 92.3
Ensemble RUSBoosted trees 88.5 87.8 89.7

Fine Gaussian SVM 76.3 75.6 75.6
Cubic SVM 92.3 92.9 94.2

Medium Gaussian SVM 92.3 90.4 92.9
Quadratic SVM 92.3 89.1 91.7

Coarse Gaussian SVM 83.3 82.1 82.1

3.3.2. SVM Results for Normalized Data

The normalized data can be obtained using Equation (2). For the normalized data, the
cubic SVM gave the highest prediction accuracy of 94.2%. Figure 8 shows the confusion ma-
trix of the cubic SVM with a prediction accuracy of 94.2%. Figure 8a shows that the number
of observations expressing very good IWQI is 14 samples, which are correctly predicted.
For good IWQI, 15 of 18 samples were correctly predicted, two incorrect samples were
predicted as very good, and one sample was satisfactory. The prediction accuracy for good
IWQI was 83% as presented in Figure 8b. For the satisfactory state, the prediction accuracy
was 88%, where 28 of 32 samples were correctly predicted and the other four incorrect
samples were unsuitable. A total of 90 out of 92 samples were correctly predicted in the
case of unsuitable IWQI, and two samples were incorrectly predicted as the satisfactory
IWQI state.

An FPR of 0.01, which indicates that 1% of the observations were classified incorrectly,
can be seen in Figure 9. The TPR is 1.0, indicating that the classifier correctly assigns 100%
of the observations to the positive class. This figure shows a classifier that performs better
due to the 100% AUC.
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3.3.3. SVM Results for Raw Data

When applying all classifiers on the raw data of the inputs (EC, Na, SAR, Cl, HCO3),
the linear SVM developed the highest prediction accuracy of 92.9%. Figure 10 shows the
distribution of the correct and incorrect samples with linear SVM. The incorrectly predicted
samples appear as colored crosses. Figure 11 shows the confusion matrix of the linear
SVM. The prediction accuracies for IWQI state were 79% (11/14), 83% (15/18), 91% (29/32),
and 98% (90/92) for very good, good, satisfactory, and unsuitable IWQI, respectively. The
inaccurate predictions were 21% (3/14), 17% (3/18), 9% (3/32), and 2% (2/92) for very good,
good, satisfactory, and unsuitable IWQI, respectively. For example, for the satisfactory
IWQI state, the linear SVM predicts 29 samples as the satisfactory IWQI state, one as the
good IWQI state, and two as the unsuitable IWQI state.
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and incorrect prediction, respectively.

3.3.4. KNN Results for Normalized Data

The KNN classifier developed 94.2% prediction accuracy with the normalized data as
in Equation (2). Figure 12 shows the results of the KNN classifier with 94.2% prediction
accuracy. Figure 12 illustrates that the prediction accuracies were 100% (14/14), 83% (15/18),
81% (26/32), and 100% (92/92) for the very good, good, satisfactory, and unsuitable IWQI
states, respectively. As seen in Figure 13, both positive and negative predictive values are
shown. Based on Figure 13, we can determine the positive and negative predictive values.
According to the figure, the predicted class 3 for satisfactory appears 29 times; 26 of these
are correct, with an accuracy of 90% for the satisfactory IWQI state (class 3), with a 10%
error rate for the good IWQI state (class 2).
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colored cells represent the correct prediction while the red-colored cells represent incorrect prediction.

The constructed SVM with standardized, normalized, and raw data was tested with
ten samples to verify the accuracy of the constructed model. Table 9 shows the results of
applying the classifiers with different data. The prediction accuracies of the classifiers with
the standardized, normalized, and raw data were 100%, 100%, and 90%, respectively. The
cubic SVM with the normalized data develops the highest prediction accuracy for training
and testing samples (94.2% for training, 100% for testing).
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Table 9. Prediction of the SVM classifier with standardized, normalized, and raw data.

EC Na HCO3 Cl SAR IWQI Actual Water Type 1* 2* 3*

69.33 67.61 61.15 78.43 85.43 72.13 Very Good Very Good Very Good Very Good
72.33 59.28 65.50 86.80 76.37 71.86 Very Good Very Good Very Good Very Good
60.67 57.46 49.00 80.31 81.21 65.35 Good Good Good Good
70.00 52.03 48.85 83.12 72.39 65.06 Good Good Good Good
53.00 26.67 64.00 51.31 70.52 52.83 Satisfactory Satisfactory Satisfactory Satisfactory
56.33 28.48 89.67 27.84 61.23 52.78 Satisfactory Satisfactory Satisfactory Satisfactory
52.67 41.16 58.69 33.71 78.58 52.76 Satisfactory Satisfactory Satisfactory Satisfactory
48.33 19.42 34.10 27.84 67.16 39.14 Unsuitable Unsuitable Unsuitable Unsuitable
40.00 −13.19 70.00 27.84 72.07 38.91 Unsuitable Unsuitable Unsuitable satisfactory
44.67 12.17 42.95 27.84 67.98 38.83 Unsuitable Unsuitable Unsuitable Unsuitable

1* Cubic SVM with standardized data, 2* Cubic SVM with normalized data, 3* Linear SVM with raw data.

4. Conclusions

Groundwater is an essential resource for drinking and irrigation in many parts of the
world, particularly in arid regions. However, in many areas of the world, groundwater is
unsafe to drink and can negatively affect crop production due to high concentrations of
contaminants such as industrial chemicals or agricultural pesticides. This study aimed to
assess the water quality for irrigation purposes in the region of Adrar and to develop a
classification model to predict the irrigation water quality index (IWQI) class. Additionally,
the sodium adsorption ratio (SAR) was assessed to determine the effects of water on
soil structural behavior. Analyzing irrigation water quality can improve agricultural
productivity and prevent plant damage. The calculation of SAR for the groundwater
samples in the study area showed that they belong to the “very good” and “good” classes.
Based on available data, it can be observed that most physicochemical parameters are
within the Food and Agriculture Organization (FAO) criterion for agricultural purposes.
Results for the calculated IWQI in the study area ranged from 3.64 to 93.77, with an average
of 41.81. Based on the IWQI results, over 57.23% of the study area falls within the unsuitable
category, mainly in the south and northeast parts of the study area. On the other hand,
approximately 12.05% of samples were deemed good, and about 21.08% were considered
satisfactory. The rest of the study area, about 9.64%, falls within the “high restriction”
category, which is dominant in the western parts of the study area.

Artificial intelligence was used to predict groundwater quality for irrigation in the
study area. SVM with the normalized data emerged as the optimal model for predicting
the IWQI, where the accuracy for training and testing samples was 94.2% and 100%,
respectively. This study has successfully developed an accurate SVM model for IWQI in arid
areas. By combining physicochemical data, SAR, IWQI, and GIS, we can comprehensively
understand water quality and its governing mechanisms in the study area. In this study, the
methodology used to summarize the monitoring data could be an efficient and valuable tool
for reporting the data to decision-makers. According to our findings, artificial intelligence
techniques can enhance groundwater quality management plans in Adrar. By predicting
the irrigation water quality index (IWQI) using hydrochemical parameters and machine
learning techniques, the study provides a means to evaluate the suitability of groundwater
for irrigation and potentially drinking purposes. Furthermore, the model may be adopted
in other desert regions where the costs of estimating several water quality variables are
high and might be restrictive. Further improvements may also be achieved by including
more hydrochemical parameters and applications in different climate regimes.
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