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Abstract: The characteristics of electric buses make it difficult to estimate the energy consumption
and mean that they are prone to battery loss; as such, fuel bus scheduling methods are no longer fully
applicable. In current studies, the influence of these factors is ignored. This paper proposes an electric
bus scheduling optimization model based on energy consumption and battery loss. Firstly, the LSTM
(long short-term memory) is used to estimate trip energy consumption. Subsequently, these results
are combined with the optimization objectives of minimizing the fleet size and battery loss amount.
Limitations on the buses’ number, travel time, battery safety thresholds, remaining charge, and total
charge are also considered. By controlling the different battery charge and discharge thresholds to
minimize battery losses, the goal of sustainability is achieved. NSGA-II (non-dominated sorting
genetic algorithm-II) is used to solve the model. The corresponding scheduling and charging scheme
are determined. Electric bus route A is taken to validate the predictions. The results show that the
annual fleet battery loss value decreases as the fleet size increases. The company has the lowest annual
operating cost when the battery charge and discharge thresholds are set to [25%, 85%]. Optimizing
the scheduling and charging scheme for electric bus can effectively reduce the operating cost.

Keywords: electric bus (EB); scheduling optimization; battery loss; energy consumption estimation;
NSGA-II

1. Introduction

The development of the electric bus (EB) can effectively reduce vehicle emission
pollution and ensure the sustainable development of society. A company’s improper use
of batteries for EBs will accelerate its loss, indirectly causing irreversible effects on the
environment. The high cost of battery purchase is also not beneficial to the company’s
sustainability. In the era of fuel buses, companies do not need to consider the impact of
batteries, so scheduling solutions are not fully applicable to electric buses. In the era of EBs,
it is necessary to pay attention to the impact of driving range and charging lines.

EB scheduling problem can be described as follows: constrained by the mileage of
the battery, the manager reasonably schedules all the EBs to complete the charging and
operation work. The ultimate objective is to develop a well-designed scheduling scheme.
With the recent promotion and development of EB, scholars have widely studied the
problem of energy consumption estimation and battery loss of EB.

In terms of the impact of energy consumption estimates on EB scheduling, based
on the fuel bus scheduling method, Lee et al. [1] considered the influence of random
power consumption in energy consumption estimation and established a scheduling model.
Yao et al. [2] considered the differences in energy consumption between different EB
types. They developed a heuristic procedure for solving the problem and found the
best solution considering the relationship between energy consumption and EB types.
Liu et al. [3] established a scheduling model based on energy consumption with the
goal of minimizing EB energy consumption and passenger waiting time. Teng et al. [4]
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estimated energy consumption to achieve the goal of minimizing the number of vehicles
and total charging costs. Based on these results, a comprehensive optimization of the
EB scheduling was performed. Bie et al. [5] considered the random fluctuation of travel
time and energy consumption. They established a scheduling method that coordinates the
scheduling scheme and charging scheme. Gkiotsalitis et al. [6] proposed a mixed integer
nonlinear model for multi-depot vehicle scheduling problem of EB with a time window
considering energy consumption estimation results. Bie et al. [7] used an accurate estimate
of energy consumption. They proposed a scheduling strategy of combined daytime and
nighttime charging for the problem of mixed scheduling of interval and full buses on EB
lines. Chen et al. [8] proposed a data-driven model using an artificial neural network
(ANN) to estimate a bus energy consumption and combined the energy consumption
estimation results with the scheduling model. Basma et al. [9] proposed a battery selection
framework based on a comprehensive energy demand assessment of EB. A reasonable
battery type was equipped for each bus to ensure the completion of operational operations.
Yang et al. [10] considered the association between the type of vehicle, the waiting time
of passengers, and the energy consumption of the vehicle. Based on this relationship, a
machine model was proposed for energy consumption estimation. Meanwhile, a multi-
objective EB energy saving scheduling optimization model was designed with the aim of
minimizing the passenger’s waiting time and the vehicle’s energy consumption.

In terms of the impact of battery loss on EB scheduling, Chen et al. [11] established
a battery loss model based on economic factors, as well as a scheduling model with the
objective of minimum operating cost for the company. Zhou et al. [12] considered the
nonlinear charging curve of the battery and the battery degradation effect. Based on
the above characteristics, they proposed a method of charging by using the residence
time between continuous work. Zhang et al. [13] also considered these factors. They
determined scheduling and charging strategies to minimize the total operating cost of the
system. Xing et al. [14] proposed a new method for estimating the energy consumption of
electric buses based on a data-driven model with a deep learning approach. They provided
more accurate data for battery loss estimation and energy consumption estimation. Zhang
et al. [15] considered battery losses to develop a hierarchical dispatch model between electric
vehicles and the grid for energy efficiency and economic optimization. Tang et al. [16]
established a single-leader multi-follower model based on game theory to minimize the loss
cost of EB and the total cost of microgrid operators. Sung et al. [17] considered the battery
charging of EB, the compatibility of battery and charger, and the scheduling and charging
strategy. In order to reduce the total cost, a simulation model and a heuristic algorithm
were proposed to deal with complex scheduling problems. Jiang et al. [18] studied the
large-scale multi-station EB scheduling problem. They considered the impact of the depot
constraints and a partial charging strategy for battery loss. A mixed integer programming
model and an efficient branch pricing (BP) algorithm were proposed to solve the problem.
Zhou et al. [19] optimized the deployment of the charger and the battery configuration in
route in order to achieve a reduction in battery losses. They developed a robust plan for EB
systems. Guschinsky et al. [20] studied the fleet of EBs and their charging infrastructure in
order to maximize their social and ecological value. Ji et al. [21] proposed a charging facility
sharing strategy that allows eelectric cars to pay for the use of EB charging posts during
use of the electric buses scheduling scheme. The results showed that the charging facility
sharing strategy can increase the revenue of public transport companies and promote the
charging of EB without affecting the EC schedule.

Existing studies have optimized fuel bus scheduling models and combined them with
the characteristics of EB. These studies focus on energy consumption, battery loss, time
fluctuations, operating costs, charging strategies, etc. Most of the models are built from the
perspective of the characteristics of EB themselves or the company’s operating costs [22].
However, it is difficult to develop a reasonable solution by focusing on one characteristic or
one aspect of the EB in the scheduling process. An EB has unique characteristics, such as
batteries which are prone to loss and difficulty in accurately estimating energy consumption.
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Existing studies are missing the combination of energy consumption estimation results and
battery losses to study the impact of both together on bus scheduling. Moreover, most of the
studies on battery loss focus on the battery itself, ignoring the effect on vehicle scheduling
when reducing the loss. In addition, the energy consumption of the previous trip can
largely affect the battery status of the next trip, which in turn affects the scheduling scheme.
Both will have a negative impact on the remaining power and the scheduling scheme, and
then affect the operating cost. The charge and discharge behavior of the battery pack of the
EB will directly affect the battery attenuation during the operation task. When it decays to
a certain value, the power provided by the battery pack will no longer be able to support
the daily operation of EB. At the same time, the purchase cost of the battery pack usually
accounts for more than 60% of the cost of the EB, and waste batteries can cause damage to
the environment.

Therefore, we focused on the impact of energy consumption estimation and battery
loss on scheduling. An accurate estimate of the energy consumption result is required.
The scheduling scheme and charging scheme are optimized by the result, and battery
loss estimation is also inseparable from the results. We control the value of charge to
minimize battery loss while ensuring the bus can fulfill the scheduling tasks. A more
reliable scheduling scheme and charging scheme can be developed. In this way, the
company and the environment can achieve sustainable development.

We first used the LSTM (long short-term memory) model to predict the energy con-
sumption values for all single trips and each trip of the EB. Subsequently, based on these
data, a multi-objective scheduling optimization model is developed for the EB with the
optimization objective of minimizing fleet size and battery losses. The NSGA-II (non-
dominated sorting genetic algorithm with an elitist strategy) algorithm is used to solve the
model to ensure the best scheduling effect. Finally, we select EB route A in a certain city for
validation. The framework of the research is shown in Figure 1.
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2. Construction of a Multi-Objective Scheduling Optimization Model for EBs
2.1. Energy Consumption Estimation Method

The energy consumption estimation process is achieved through adapting the structure
and size of the classical LSTM infrastructure. We estimate energy consumption based on
the actual EB trip data collected. The results include an estimate of the energy consumption
for all single trips on the future day Ei ( i = 1, 2, 3 . . . . . . Tn) and the energy consumption
needed to complete all trips throughout the day Eall = ∑ Ei. These data support the bus
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power above the safety threshold and the search for the minimum charge. The LSTM
structure is shown in Figure 2.
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Figure 2. The structure of the LSTM model for energy consumption estimation of electric buses.

The results of the correlation analysis of electric bus travel data by Pearson correlation
coefficient method shows that the energy consumption of EBs is closely related to many
factors, including average speed, travel time, air conditioning usage time, etc. At the same
time, as the battery SOC decreases, the energy consumption rate of the EB per kilometer
gradually increases.

The EB operation data contains several factors related to energy consumption. In
order to solve the problem of low accuracy of the existing energy consumption esti-
mation methods, we firstly identify the influencing factors with strong correlation to
energy consumption.

Meanwhile, 2 LSTM layers (both layers are 100 neurons) and 1 fully connected layer
are designed in the model. The output value of the model is the energy consumption
estimation value, the activation function uses the Relu function, the loss function uses MSE
(mean squared error), and the optimizer uses the RMSprop method. On this basis, the
LSTM model is used for time series prediction, and the time step is set to seven days, i.e.,
the data for each trip in seven days is used to predict the energy consumption value of each
trip on the eighth day. The energy consumption estimation process is shown in Figure 3.
The RMSE (root mean squared error) method was used to evaluate the effectiveness of the
training model.
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Yd
i is the estimated energy consumption of the i-th trip on the d-th day. Xd

i is the data
of the i-th trip on the d-th day, as shown in the following Equation (1):

Xd
i =

[
v, T, SOCinitial , tAC, Ttrip

]
(1)

where v is the average speed of the EB, km/h; T is the average temperature of the weather,
◦C; SOCinitial is the initial power, %; tAC is the air conditioning time, min; Ttrip is the trip
time, min.

2.2. Model Assumptions

In the actual operation of EB, there are many factors influencing bus scheduling.
In order to improve the applicability of the model, we simplify the actual situation by
formulating assumptions, which are as follows:

1. There are no traffic accidents or other accidents on the line, and the traffic environment
is normal;

2. The EBs are all the same model;
3. The bus company formulates the bus line departure schedule in advance and fixes the

departure interval;
4. We ignore the natural aging loss of the EB power battery.
5. All electric buses are charged at night and can be charged from a battery deficit to a

full charge in one night.

2.3. Multi-Objective Scheduling Optimization Model Construction

Fleet size directly affects a company’s operating costs, while overcharging and discharging
can increase battery loss and indirectly increase costs. Therefore, we establish a multi-objective
scheduling optimization model for EBs based on energy consumption estimation.

Based on the results of the energy consumption estimation, we take the two objec-
tives of minimizing fleet size and battery losses, while also considering the constraint of
the number of buses, trip time, SOC safety threshold, remaining charge, and minimum
total charge.

2.3.1. Objective Function

The battery life of EBs will be shortened due to battery degradation during charging
and discharging. The value of degradation is closely related to the charge amount, discharge
amount, and the battery degradation coefficient [6].

Lam and Bauer established an empirical model of battery degradation as follows [23]:

ξk = γ1SOCk
dev × eγ2SOCk

avg + γ3eγ4SOCk
dev (2)

SOCk
avg =

(
SOCk

init + SOCk
end

)
/2 (3)

SOCk
dev = SOCk

init − SOCk
avg (4)

where SOCk
avg is the average SOC during the charging or discharging of the EB; SOCk

init is
the battery percentage of EB before charging; SOCk

end is the battery percentage of EB after
charging; SOCk

dev is the deviation during the charging or discharging of the EB; γ1, γ2, γ3,
and γ4 are model constants.

Objective function 1: Battery loss directly affects the service life of EB. Frequent deep
charging and discharging of batteries will accelerate the loss. According to the energy
consumption estimation results, Objective function 1 minimizes the loss from charging and
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discharging by selecting the appropriate charging moment and charging amount, as shown
in the following Formula (5):

minL = ξ
charge
k ∑

k
Echarge

k + ξ
discharge
k ∑

k
Edischarge

k (5)

where k is the number of the EB participating in the operation; ξ
charge
k is the battery loss

rate during battery charging; ξ
discharge
k is the battery loss rate during battery discharge;

EB-k needs to charge Echarge
k after completing the operation of the day, kWh; the discharge

capacity of EB k after completing the operation task of the day is Edischarge
k , kWh.

Objective function 2: The minimum fleet size W is selected as the objective function
2. That is, under the condition of ensuring the minimum battery loss, it is the minimum
number of EBs required to complete all operations, as shown in Formula (6).

minW = K = ∑
(

1−max{1−
Tn

∑
i=1

xi
k, 0}

)
(6)

where K is the number of EBs participating in the operation, vehicles; i is the trip number;
Tn is the total number of bus trips throughout the day, times; xi

k is the EBs k that complete
the trip i, then xi

k = 1; otherwise xi
k= 0.

2.3.2. Constraints

The number of EBs constraint: The minimum number of buses Nmin required to
complete all operational tasks, regardless of other restrictions, is the lower limit, vehicles.
The number of EBs currently owned by the bus company is the upper limit, vehicles, as
shown in the following Formula (7):

Nmin ≤ K ≤ Nmax (7)

Trip constraint: The bus company needs to ensure that each trip is completed when
scheduling, and one trip can only be performed by one EB, as shown in the following
Formula (8):

∑
k

xi
k = 1 (8)

Trip time interval constraint: During operation, the time interval Tb
k − Ta

k between
the two operating trip a and trip b of the EB-k should be greater than the trip time for
completing trip a Ta

trip, as shown in the following Formula (9):

Tb
k − Ta

k ≥ Ta
trip (9)

SOC safety threshold constraint: Jiang et al. [24] studied the long-term cycle perfor-
mance of batteries in different SOC ranges. They found that batteries cycled in the middle
SOC range had better cycle stability and lower battery degradation than batteries cycled
at both ends of the SOC (0–100%). In order to reduce the loss of the battery caused by
overcharging and discharging, the upper and lower constraint of the battery SOCk safety
threshold [λmin, λmax] of the EB-k are set. This range ensures that the battery SOC remains
within the safe threshold range, as shown in the following Formula (10):

λmin ≤ SOCk ≤ λmax (10)

Remaining SOC constraint: Based on the specific value of the estimated energy con-
sumption for a single trip, managers need to ensure that the remaining SOC of the EB-k after
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completing trip i is not lower than the safety threshold, otherwise no work is scheduled, as
shown in Formula (11).

SOCi now
k − Ei

CB
≥ λmin (11)

SOCi now
k is the battery SOC of the EB-k before the trip i, %; CB is the rated capacity of

the EB battery, kWh.
Minimum total charge constraint: The fleet will charge after completing all the trips

of the day. The total charge is the total estimated power for the next day’s operation task
minus the remaining power of the fleet for that day. At the same time, managers need to
ensure that the remaining power of the EB after operation is above the safety threshold.

The charging strategy is as follows. Managers evenly distribute electricity to each bus
and consider the upper constraint of the battery SOC safety threshold. When the threshold
is reached, the unfinished power is evenly distributed again until the SOC reaches the
requirement. When charging, the manager tries to keep the power of each EB in the medium
SOC range as much as possible After the cycle is complete, the EBs will recharge to the
upper threshold, as shown in the following Formula (12):

minEcharge
k =

(
Eall + K× CB × λmin −∑

k
Erest

k

)/
K (12)

where Erest
k is the remaining battery power of the EB-i after completing the full day of

operations, kWh.

2.3.3. Multi-Objective Scheduling Optimization Model

To sum up, we establish a multi-objective scheduling optimization model for EBs
based on an energy consumption estimation, as shown in the following Formulas (13)–(15):

minL = ξ
charge
k ∑

k
Echarge

k + ξ
discharge
k ∑

k
Edischarge

k (13)

minW = ∑
(

1−max{1−
Tn

∑
i=1

xi
k, 0}

)
(14)

s.t.



Nmin ≤ K ≤ Nmax

∑
k

xi
k = 1 i = 1, 2, 3 . . . . . . Tn

Tb
k − Ta

k ≥ Ttrip−a

λmin ≤ SOCk ≤ λmax

SOCi now
k − Ei

CB
≥ λmin

minEcharge
k =

(
Eall + K× CB × λmin −∑

k
Erest

k

)/
K

xi
k 0, 1 variable

(15)

2.4. Algorithm Design

The two objective functions in the model are mutually restrictive. Specifically, in order
to obtain better battery loss, it is necessary to select more EBs to reduce the average charge.
This leads to an increase in the size of the EB fleet and poor economics. It is difficult to
achieve the optimum of the two objectives at the same time, but there is a set of Pareto
optimal solutions to make the two achieve the optimal balance.

Based on the complexity of the model, the NSGA algorithm was chosen to solve it.
The algorithm has a strong global search capability and robustness, especially in finding
Pareto frontiers quickly and maintaining population diversity, and it has been widely used
to solve multi-objective problems. The NSGA-II algorithm flow is shown in Figure 4.
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1. Coding scheme design

The NSGA-II algorithm used for solving the model is designed as a coding scheme,
as shown in Figure 5. The first code is a real number code, which indicates the number of
EBs used for operation; the subsequent code is a 0 or 1 code, which corresponds to the trip
number operated by the EB.
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The 0 or 1-code segment has a total of K segments, indicating the trip number operated
by EB 1 to EB-K; each segment code is a total of 132 trips, corresponding to 0/1 on the
position [0, 132], meaning that the EB is not operating/operating the trip. For example, if
the code in position 7 of the 5th segment is 0, it means that EB 5 is not operating for trip 7;
if it is 1, it means that trip 7 is operating.

2. Algorithm selection operation

The selection was carried out by a binary tournament method, in which two indi-
viduals in the population were randomly selected. Firstly, non-dominance ranking and
crowding degree were calculated for two individuals. Secondly, we selected the best indi-
vidual in the mating pool according to the non-dominance rank and crowding degree of
the individuals. Finally, the mating pool size was the population size.
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3. Algorithm cross operation

A single-point crossover was used for two random individuals (Individual 1 and
Individual 2) in the mating pool. The crossover intercepts part of the length of each of the
two individuals to form a new individual 0 or 1 variable coded segment of length K′ × 132,
as shown in Figure 6.
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As shown in Figure 5 for a new individual after the crossover trip, there will be
duplicate trip codes for segments from different individuals in the 0 or 1 variable code
segment (segments 1, 2, and 3 and 4, 5, 6, and 7), so it is necessary to set the duplicate trip
code from 1 to 0, and at the same time set the trip code from 0 to 1 for the location where a
trip is missing in a segment.

4. Algorithm mutation operation

Mutation processing is mainly aimed at the 0 or 1 variable coding segment. The rule
is to randomly transform 0/1 at a certain position on a certain segment. For example, the
12th position in the 4th segment is randomly selected; if it is 0 at this time, it is converted to
1, and at the same time, the 12th position in the coding segment whose 12th position is 1 is
converted to 0. The mutation operation is shown in Figure 7.
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2.5. Evaluation System

The annual cost of an EB loss for a bus company P includes the purchase cost of the
EB Pbus, the charging cost of the EB Pele, and the battery loss cost of the EB Pbat; these three
parts are shown in Formula (16). The evaluation cycle is one year, yuan.

P = Pbus + Pele + Pbat (16)
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Annual procurement cost of EBs is the ratio of the purchase cost to the operation life
of the EBs, as shown in the following Formula (17):

Pbus = Pbus-all × k/A (17)

where Pbus-all is the purchase cost of all EBs required to complete the scheme, yuan; A is the
mandatory scrapping period of EBs, year.

Annual charging cost of EBs is the product of the charging power of all EBs and the
electricity price within one year, as shown in the following Formula (18):

Pele = Pele-mhk ×∑ Echarge
k × 365/T (18)

where Pele-mhk is the local electricity price, yuan.
Annual battery loss cost of EBs is the product of the battery loss of all EBs operating

within a year and the battery unit price per kilowatt hour, as shown in the following
Formula (19):

Pbat = ∑ L× 365
T
× Pele−ZK6850

CB
(19)

where T is the operating cycle, day; Pele−ZK6850 is the battery price of EB, yuan.

3. Validation Analysis of Model

EB route A in a certain city is taken as an example to validate the proposed model.
The operating data of the route is used to test the model. The solution results are analyzed
under different charging and discharging thresholds. All calculations are carried out on a
general-purpose computer with am Intel Core i5-9400F CPU@2.90 GHz and 8 GB RAM.
Python is used to compile the LSTM network and NSGA-II genetic algorithm programs.

3.1. Basic Data and Parameter Determination

The driving length of route A is 7.9 km in each direction and consists of twenty-four
stations. The EBs are equipped with LiFePO4 batteries (manufactured by Yutong Power
Supply Company Limited, Shenzhen, China) and have a capacity of sixty passengers. The
basic parameters of the bus are shown in Table 1.

Table 1. Operational data of a certain EB.

EB Date Value

Type ZK6850BEVG53
Total weight (kg): 14,000

Driving mileage (km): 345
Ekg energy consumption per unit load

(Wh/km·kg): 0.149

Energy density of battery system (Wh/kg): 140.70, 140.40
Types of energy storage devices: LiFePO4 storage battery

Total storage capacity of energy storage device
(kWh): 162.30

Vehicle price (yuan) 358,400
Battery price (yuan) 250,000

Retirement period (year) 13
Industrial electricity price (yuan/kWh) 1

The start time of route A is 6:30, and the end time is 17:20. The departure interval is
10 min. The total number of all EBs per day is 66 operations and 132 trips. We field-collected
a total of 23,760 driving data from May to August, including certain data, such as departure
time, average speed, end time, energy consumption, initial power consumption, and air
conditioning start time.

Consider the impact of different battery safety threshold ranges on battery loss, charg-
ing capacity, and fleet size. A total of nine groups of upper and lower constraints of
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charge and discharge are set [20%, 90%], [20%, 85%], [20%, 80%], [25%, 90%], [25%, 85%],
[30%, 90%], [30%, 85%], and [30%, 80%] to form a control group. At the same time, taking
three days as a scheduling cycle, the EB scheduling scheme and charging scheme under
different threshold conditions are analyzed.

3.2. Results of the Optimal Scheme

According to the NSGA-II algorithm solution, we derived a total of 27 scheduling
and charging schemes for 9 different charging threshold cases in a single scheduling cycle.
Taking the battery safety threshold interval [25%, 85%] as an example, seven buses are
required at this time, and the specific scheduling scheme for the first day is shown in
Figure 8.
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Figure 8. Threshold range [25%, 85%] of the first day’s scheduling scheme.

After completing all operation work on the first day, the remaining power of all EBs
is 391.199 kWh. It is necessary to make a charging scheme. According to the energy
consumption estimation method, all EBs need to be recharged with 502.991 kWh to ensure
the completion of the next day’s operation work.

Before charging, the SOC of each EB battery is 35%, 28%, 36%, 30%, 33%, 45% and
36%, respectively, and the charging value is 73.1 kWh, 73.1 kWh, 64.4 kWh, and 73.1 kWh.
After charging, the SOC of the battery is 80%,73%,81%,75%,78%,85%, and 81%, respectively.
The charging scheme is shown in Figure 9.
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The next day, seven EBs need to continue to complete the operation. The specific
scheduling scheme for the first day is shown in Figure 10.
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Figure 10. Threshold range [25%, 85%] of the second day’s scheduling scheme.

After completing all operation work on the second day, the battery SOC of each electric
bus is 32%, 27%, 25%, 26%, 36%, 34%, 27%, and the charging value is 85.5 kWh, 87.0 kWh,
87.0 kWh, 87.0 kWh, 87.0 kWh, 82.3 kWh, and 87.0 kWh, respectively. After charging, the
SOC of the battery is 85%, 84%, 79%, 80%, 80%, 85%, and 81%, respectively. The charging
scheme is shown in Figure 11.
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On the last day of a scheduling cycle, the specific scheduling scheme for the seven EBs
is shown in Figure 12.

According to the charging strategy, all electric buses need to be charged to the upper
threshold on the last day of the cycle. The charging value is 83.5 kWh, 89.6 kWh, 89.0 kWh,
93.3 kWh, 93.3 kWh, 96.3 kWh, and 84.9 kWh, respectively. The SOC of the rechargeable
battery is 85%. The charging scheme is shown in Figure 13.
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3.3. Results Discussion and Evaluation

After the energy consumption estimation model is trained, all the data were substituted
to compare with the real value, as shown in Figure 14. The results showed that all predicted
values were basically consistent with the actual values, and the RMSE accuracy evaluation
index reached 91.56%.

We selected the multiple nonlinear regression mode of the convolutional neural net-
work time series prediction for comparison with the LSTM time series prediction. The
RMSE results for the multiple nonlinear regression and convolutional neural network
are calculated as 89.97% and 90.52%, respectively. The LSTM model prediction accuracy
increased by 1.77% and 1.14%, as shown in Figure 15.

We designed different battery safety threshold ranges and used the NSGA-II algo-
rithm to solve the corresponding scheduling schemes and charging values. The constants
γ1, γ2, γ3 and γ4 of the LiFePO4 battery loss model are equal to −4.09 × 10−4, −2.167,
1.408 × 10−5, and 6.13, respectively. Based on these data, Formulas (2)–(4) and objec-
tive function (1) are used to calculate the battery loss value in this cycle and the annual
loss value.

Under different conditions of charging and discharging thresholds, different fleet sizes
of electric buses are needed to complete the operation work. The comparison between the
number of EBs and the annual batteries loss value shows that the overall loss of the battery
caused by the charging and discharging process shows a negative relationship with the
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number of EBs. In other words, the larger the fleet size, the less battery charging per EB
and the lower battery loss, as shown in Figure 16.
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According to the Formulas (16)–(19), the operating cost of the route A EB is estimated,
as shown in Table 2.

Table 2. Statistics of annual loss cost of EBs.

SOC Threshold (%) Number of EBs Annual Loss
Value (kWh)

Annual Average
EBs Purchase

Cost (Yuan/Year)

EBs Battery Loss
Cost (Yuan/Year)

EB Charging
Cost (Yuan/Year)

Operating Cost
(Yuan/Year)

[20, 80] 7 15.30 192,985 118,056 31,857 342,897
[20, 85] 6 19.09 165,415 147,276 34,901 347,592
[20, 90] 6 19.16 165,415 147,835 35,125 348,376
[25, 85] 7 15.05 192,985 116,156 29,821 338,961
[25, 90] 6 19.13 165,415 147,603 35,012 348,031
[30, 85] 9 10.93 248,123 84,339 22,259 354,721
[30, 90] 7 15.40 192,985 118,855 31,610 343,450

Different charging and discharging thresholds lead to different dispatching schemes,
which in turn make a difference in terms of fleet size and battery loss. Due to the higher
purchase cost of EBs, compared with using nine buses, the annual average EB purchase
cost is reduced by 82,708 yuan when only six buses are used. However, a too small fleet
size will lead to an average increase of 8.19 kWh in annual battery loss. As the purchase
cost of the power battery is close to 70% of the vehicle cost, it cannot be ignored.

Overall, the company obtains the minimum annual operating cost of 338,961 when
the battery safety threshold is set to [25%, 85%]. In this case, the fleet size is seven EBs,
one bus more than the minimum fleet size number; the annual battery loss is 15.05 kWh,
4.12 kWh more than the minimum annual battery loss value, and there is an average annual
operating cost saving of 9039.

4. Conclusions

The operation problems of EBs need specific scheduling methods. To solve this
problem, a multi-objective scheduling model is proposed. Firstly, the single-trip energy
consumption estimation results are obtained based on LSTM. A good performance of LSTM
is shown with a prediction accuracy of 91.56%. It is increased by 1.77% and 1.14% compared
to multiple nonlinear regression and the convolutional neural network, respectively. Based
on these results with constraints, such as the number of buses, trip interval, battery safety
threshold, remaining power, and minimum total charge, the objectives of minimizing fleet
size and battery loss are formulated. Finally, a multi-objective scheduling optimization
model for EB is developed. The NSGA-II algorithm solves the multi-objective scheduling
optimization model, i.e., working out the EBs scheduling and charging scheme under dif-
ferent battery safety thresholds, and determining the scheme combined with the operating
cost. The NSGA-II algorithm solves in 41.7706 s and obtains a better Pareto solution.
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The results show that the optimal charge and discharge threshold of EB route A is
[25%, 85%]. In this time, the average annual battery loss of EBs decreased by an average of
4.12 kWh, and the company’s operating costs reduced by an average of 9039. In this way, a
new theoretical basis for reasonable scheduling of EBs is proposed.

We assume only one line and the differences between different EB types are not con-
sidered. As such, there is a lot of space to improve the accuracy of energy consumption
estimation using LSTM. In the future we will study the synergistic optimization between
multiple lines. With the increase in lines, the NSGA-II algorithm may not find the best
solution. Moreover, we will consider using non-working hours for charging operations
to improve efficiency. This requires a higher accuracy of energy consumption estima-
tion. A more reliable energy consumption estimation method and solution algorithm will
be investigated.
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