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Abstract: Heavy metal ion pollution poses severe health risks. In this study, a kappa-carrageenan/
cellulose (κ-CG/CL) hydrogel was prepared using a facile one-step method to remove Pb2+ ions from
aqueous solutions. The functional groups and crystallinity nature of κ-CG/CL hydrogel have been
identified via Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). In contrast,
the porous morphology and size distribution on the surface of κ-CG/CL hydrogel with a pore size of
1–10 µm were identified using scanning electron microscope (SEM) and Brunauer–Emmett–Teller
(BET) surface area analysis. The as-prepared κ-CG/CL hydrogel effectively removed Pb2+ ions,
primary environmental pollutants. The effects of pH and contact time on Pb2+ adsorption were
studied along with the adsorption isotherms and kinetics of Pb2+ adsorption onto the hydrogels
from aqueous solutions. Notably, the aqueous solutions were effectively treated with the prepared
κ-CG/CL hydrogels to remove Pb2+ ions. The adsorption results fit well with pseudo-first- and
second-order kinetic, Elovich, intra-particle diffusion, and Langmuir and Freundlich isotherm models.
Based on the fitting results, the maximum adsorption capacity was obtained with the Freundlich
isotherm model of κ-CG/CL hydrogel found to be 486 ± 28.5 mg/g (79%). Reusability studies
revealed that the κ-CG/CL hydrogel could remove Pb2+ ions with more than 79% removal efficiency
after eight adsorption–desorption cycles. In addition, its mechanism for efficiently adsorbing and
removal of Pb2+ ions was analyzed. These findings imply that the κ-CG/CL hydrogel has substantial
potential for application in removing and recycling heavy metal ions from aqueous solutions.

Keywords: adsorption; Pb2+; hydrogels; kinetics; isotherm

1. Introduction

Water pollution due to heavy metals is a critical concern [1]. A small amount of
heavy metal in wastewater poses a serious threat to natural ecosystems and human health
because heavy metal ions can remain in water bodies for a long time and be enriched
by the food chain [2–4]. Heavy metals in contaminated water can be removed using
various techniques. Adsorption is an attractive alternative to conventional treatments,
such as precipitation, ion exchange, and coagulation–flocculation [5,6]. Research has
focused on developing high-performance, easy-to-prepare, and low-cost adsorbents in
recent years [7–11]. There has been a great deal of attention in recent years focused on
removing heavy metals from water systems. Specific metal ions present in the environment,
including Cd2+, Ni2+, Pb2+, and Hg2+, which have carcinogenic and toxic properties even
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at extremely low concentrations, pose a severe threat to human health [12]. The use of
polymeric materials has become increasingly popular to remove and separate heavy metal
ions due to environmental pollutants resulting from industries’ waste products. Pb2+

ions are prevalent in nature but are considered dangerous because of their carcinogenic
properties [13]. Several recent studies on Pb toxicity indicate that Pb exposure affects the
nervous and reproductive systems and the kidneys, liver, and brain [14]. Owing to their
potential risks, Pb2+ ions have been confirmed as a leading cause of public health anxiety
by the World Health Organization (WHO) [12]. Environmental regulations have increased
the importance of treating Pb2+-contaminated water. In addition to offering operational
flexibility, convenience, and economic benefits, adsorption is a promising method for
removing Pb2+ from water [15].

Three-dimensional hydrogels contain large amounts of water. Biopolymers are fre-
quently cross-linked chemically or physically to form network gels. In recent years, poly-
meric hydrogels have been considered adsorbents for removing toxic metal ions [16]. In
addition to the ability to incorporate chelating groups into polymeric networks, the poly-
mers exhibit a large surface area, high adsorption capacity, and chemical stability [17].
Various natural polymers are currently used in low-cost water purification technologies
to remove metal ions from water. These polymers include cellulose (CL), starch, dextran,
kappa-carrageenan (κ-CG), and chitosan [18]. Hydrogels absorb water according to their
functional group, state of water, and cross-linking network density. Furthermore, they
exhibit osmotic pressure and possess hydrophilic hydroxyl (-OH), amide (-NH2), carboxyl
(-COOH), and sulfonic acid (-SO3H) groups in their polymer networks [19]. For the removal
of toxic metal ions, these functional groups can be utilized in hydrogel networks. Cellulose
(CL) is one of the most abundant, environmentally friendly, renewable, and biodegrad-
able polymers on earth, suggesting its potential as a green adsorbent resource [20]. The
inherent crystallinity of CL gives it low density, high strength, and high stiffness. It is a
biocompatible, biodegradable, renewable, mechanically strong, eco-friendly, and non-toxic
material [21]. Environmentally friendly and biocompatible products are in high demand,
and it is regarded as an almost inexhaustible source of raw materials. CL is a polysaccharide
comprising linear chains of linked D-glucose units and an essential source of food and
energy [22]. Hydrogels with various structures and properties can be prepared using CL
because it contains abundant hydroxyl groups [23]. One advantage of such hydrogels is
that they can serve as platforms.

Recently, nanomaterials have been widely used as adsorbents because of their highly
specific surfaces and active sites. Owing to their high adsorption capacities, they are effec-
tive in removing pollutants. Kappa-carrageenan (κ-CG) is a non-toxic sulfated polysaccha-
ride with a structure made up of α(1→4) D-galactose-4-sulphate and β(1→3) 3,6-anhydro-
D-galactose, which is extracted from specific species of red seaweed [24]. Gel formation is
mainly achieved using iota (ι)- and κ-CG. In the structure of κ-CG, hydroxyls and sulfate
groups make it hydrophilic. The chemical structure of κ-CG is slightly acidic or neutral
in accordance with its natural abundance. κ-CG hydrogel can reduce or eliminate toxicity
in biomedical applications. Moreover, κ-CG serves as a backbone for the synthesis of a
hydrogel with CL likely to improve the capacity of the newly developed adsorbents, which
was used to remove Pb2+ ions from an aqueous solution [25–27].

In the past decade, CL and modified CL has been reported to be effective in removing
heavy metal ions, such as Pb2+, Hg2+, Cu2+, Ni2+, Zn2+, Fe3+, Cd2+, and Cs+ from aqueous
solutions [28–33]. Zhou et al. used modified CL for the removal of Cd2+, Hg2+, and
acid fuchsin from aqueous solution [28]. Cho et al. prepared microcrystalline CL-based
porous material for heavy metal removal from an aqueous solution [29]. Liu et al. used
amide-functionalized CL-based adsorbents for the heavy metal ions and anionic dyes from
aqueous solutions [30]. Moreover, pure CL-based hydrogels used the adsorption behavior
of heavy metal ions from aqueous solutions [31–33]. Therefore, experiments show CL is
a practical material for modifying κ-CG, which improves the adsorption capacity of Pb2+

ions from aqueous solutions. Hence, based on the survey of the literature, this work aims to
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evaluate κ-CG and CL in the form of κ-CG/CL hydrogels for the removal of Pb2+ ions from
aqueous solutions. To the best of the author’s knowledge, there is no analysis reported in
the literature on the removal of Pb2+ ions by using κ-CG/CL hydrogel.

The objective of the present work was to investigate a κ-CG/CL hydrogel based
on kappa-carrageenan (κ-CG) and cellulose (CL) as a sorbent for the removal of Pb2+

ions from aqueous solutions. The novelty of this work is that it identifies various sig-
nificant parameters for the removal of Pb2+ metal ions from its aqueous solution using
κ-CG hydrogels. The structures of κ-CG, CL, and freeze-dried κ-CG/CL hydrogel were
characterized using FTIR and XRD analysis. The surface morphology and surface area of
κ-CG/CL hydrogels samples were performed by SEM and BET analysis. The influence
of pH, dosage, time, concentration, and regeneration properties was also investigated.
Furthermore, we analyzed the kinetics and adsorption mechanism of Pb2+ ions using
pseudo-first- and second-order kinetic, Elovich, and intra-particle diffusion models. We
evaluated the equilibrium adsorption data using Langmuir and Freundlich isotherms.
Eight successive adsorption–desorption cycles were used to assess the desorption efficiency
of the adsorbents and their reusability.

2. Materials and Methods
2.1. Materials

Kappa-carrageenan (κ-CG) and microcrystalline cellulose (CL) were purchased from
Merck (Seoul, Republic of Korea). Lead nitrate (Pb(NO3)2) and calcium carbonate (CaCO3)
were obtained from TCI Chemical Company, Seoul, Republic of Korea. All chemicals used
in the experiments were of analytical grade, and MilliQ Biocel A10, Millipore, Burlington,
MA, USA, deionized water was used. Metal salts were weighed and transferred into a
volumetric flask of 100 mL and prepared as stock solutions. A solution of deionized water
was added to dissolve the metals completely. To achieve analytical accuracy and precision,
it is crucial to use reagents and standards of the highest purity when calibrating the atomic
absorption spectrometry (AAS) instrument.

2.2. Preparation of Hydrogels

κ-CG/CL-based hydrogels were formulated using around 70:30 κ-CG: CL ratio with
1.0% CaCO3. Briefly, for a typical hydrogel synthesis, 0.50 g of κ-CG and 0.20 g CL were
dissolved in 15 mL of distilled water at 70 ◦C before mixing with 0.20 g CaCO3 dissolved in
20 mL of distilled water. A transparent, viscous, and homogeneous solution was obtained
after stirring for 1 h. We poured the mixed solution into a glass mold made in the laboratory
and incubated it for two days at 5 ◦C to produce sheet-shaped gels. κ-CG/CL hydrogel
samples were at equilibrium with room temperature for 24 h before drying at 37 ◦C in an
oven which was left overnight.

2.3. Characterizations

The FTIR spectra of pure molecules and κ-CG/CL hydrogel were measured using
a spectrophotometer (Perkin Elmer) ranging from 4000 to 400 cm−1. The powder XRD
analysis of pure molecules and κ-CG/CL was carried out using a Philips/PANalytical
X’Pert MRD in a 2θ from 10 to 80◦ using Cu Kα (λ = 0.1540 nm). The SEM images of the
κ-CG/CL hydrogel were obtained using a scanning electron microscope (Leo Supra 50VP,
Jena, Germany) at 2 keV. The BET-specific surface area of the κ-CG/CL hydrogel was
measured using a (BEL, Japan Inc., Osaka, Japan) Belsorp II-mini.

2.4. Adsorption Experiments

Adsorption experiments of Pb2+ ions on the κ-CG/CL hydrogel were performed at
27 ◦C by introducing 30 mg dry κ-CG/CL hydrogel to 100 mL conical flasks containing
50 mL Pb2+ ions in an aqueous solution. A constant-temperature oscillator was used to
agitate the conical flasks at 300 RPM. Suitable amounts of NaOH and HCl were added
to the above solution to adjust the pH. We investigated the effect of pH values ranging



Sustainability 2023, 15, 9534 4 of 15

from 1.0 to 6.0 on metal adsorption. During the adsorption kinetics experiments, the
contact time varied from 30 to 48 min. The adsorption isotherm experiments used metal ion
concentrations of 50–600 mg/L. Pb2+ residual concentrations in bottles after adsorption
were determined using atomic absorption spectroscopy (AAS). The following equations
were calculated to compute the adsorption capacity equilibrium (Qm, mg/g) and the
quantity of Pb2+ ions adsorbed time t (Qt, mg/g):

Qt =
(C0 −Ct)V

W
(1)

Qm =
(C0 −Ce)V

W
(2)

In the above equations, Qt (mg.g−1) denotes the quantity adsorbed at a specific time,
Qm (mg/g−1) represents the quantity adsorbed at equilibrium, Co represents the initial
concentration, Ce denotes the concentration of equilibrium, Ct denotes the Pb2+ ions
concentration at a specific time (h), V (mL) represents the volume of the Pb2+ ion, and W
(mg) represents the mass of the dried κ-CG/CL hydrogel.

2.5. Desorption Experiments

The reusability of the κ-CG/CL hydrogel was examined through sequential adsorption–
desorption cycles. To conduct desorption tests, known quantities of the κ-CG/CL hydrogel
loaded with Pb2+ ions were submerged in 30 mL of 0.1 N HNO3 for 2 h at room temperature.
The hydrogel was collected, washed, and reused, and the experiment was repeated. During
the adsorption–desorption tests, no important loss in the removal efficiency was detected
after eight cycles. After each adsorption cycle, AAS was used to determine the Pb2+ ions
concentration in the aqueous phase.

2.6. Adsorption Kinetics

When evaluating the adsorption efficiency of adsorbents, adsorption kinetics demon-
stration is a significant part of determining the equilibration and contact times. It is
desirable to start measuring adsorption kinetics within one minute and to end measure-
ments when the adsorption process has reached equilibrium. Therefore, the κ-CG/CL
hydrogel adsorption capacities are investigated at an initial time of 30 s–1500 min under
the baseline operating conditions. To investigate the kinetic behavior of the κ-CG/CL
hydrogel in the removal of Pb2+ ions from aqueous solutions, pseudo-first and second-
order (Equations (3) and (4)) [34,35], Elovich (Equation (5)) [36], and intra-particle diffusion
(Equation (6)) [37] models were fitted to the experimental data.

Qt = Qe

(
1− e−k1t

)
(3)

Qt =
Qe2k2t

1 + k2Qet
(4)

where the rate constants for the pseudo-first- and second-order equations are k1 (min−1)
and k2 (g·(mg min)−1), respectively. The equilibrium of adsorption capacity is Qe (mg/g),
while the adsorption capacity at any time t (min) is Qt (mg/g).

Qt =
1
β

ln(1 + αβt) (5)

where Qt (mg/g) is the initial rate constant, α (mg(g min)−1) is the adsorption capacity at
any given time, and β (mg/g) is the desorption constant during each trial.

Qt = kt,1t0.5 + C1 (6)
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where kt,1 (g (mg min−0.5)−1) is the rate constant of the intra-particle diffusion model and
C1 (mg/g) is a constant relating to the boundary layer thickness, where a greater value of
Ci correlates to a more significant effect on the constraining boundary layer.

2.7. Adsorption Isotherms

Adsorption isotherms are necessary to establish adsorption studies and understand
the relationship between the adsorbent (κ-CG/CL hydrogel) and the adsorbate content
in aqueous media (Pb2+ ion solutions). In addition to using a single starting adsorbate
concentration, researchers should be able to use several different Pb2+ concentrations
and temperatures, such as 298, 308, and 318 K, instead of a single starting concentration
and temperature. The Langmuir model (Equation (7)), as well as the Freundlich model
(Equation (8)), have been used as models for adsorption isotherms in the literature [38,39].
We utilized these two isotherm models to investigate the adsorption isotherms. Because
of their practicability, simplicity, and ease of interpretation, the model parameters are
readily applicable.

RL =
1

1 + KLCe
(7)

where KL is the Langmuir equilibrium constant, and Ce (mg/L) is the initial adsorbate
content. In addition, RL = 0 signifies irreversible adsorption, and RL > 1 denotes unfavor-
able adsorption.

Qm = KFCe
n (8)

The equilibrium adsorbate composition is denoted by Ce (mg/L), the equilibrium
adsorption capacity is represented by Qm (mg/g), the equilibrium Freundlich component is
represented by KF (mg/g)/(mg/L) n, and the equilibrium Freundlich intensity component
is represented by n (dimensionless), which indicates the strength of the adsorption driving
force or the surface heterogeneity.

2.8. Statistical Analysis

All statistical analyses were performed by using Origin 9.0 software. The results
are expressed as the means ± standard deviations and analyzed by one-way analysis of
variance. The statistical significance was determined by p < 0.05.

3. Results and Discussion
3.1. FTIR Spectra of κ-CG/CL Hydrogel

FTIR spectra of the kappa-carrageenan (κ-CG), cellulose (CL), and κ -CG/CL hydrogels
are shown in Figure 1. As shown in Figure 1a,b, both κ-CG and CL exhibit common
characteristic absorption broad peaks between 3500 and 3200 cm−1, which can be attributed
to the stretching vibration of –OH [40,41]. A peak between 2917 and 2903 cm−1 was also
observed. These substances consisted of -CH3 and -CH2 groups stretched in the -CH
mode. In the κ-CG/CL hydrogel, the stretching vibration peak of -OH was constricted
and relocated to a lower wavenumber at 3315 cm−1, suggesting that κ-CG and CL may
form hydrogen bonds. Moreover, in pure κ-CG and CL, distinctive peaks associated with
the C-O and the band of a carboxyl group (−C=O) stretching vibration were detected at
1054/1023 cm−1 and 1635 cm−1, respectively. However, in the κ-CG/CL hydrogel, such
a peak appeared at 1045 cm−1. The peaks of -OH and C-O were narrower, shifted, and
more intense than those of pure κ-CG and CL, as shown in Figure 1c, proving that the
modification of κ-CG and CL was successful.
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Figure 1. FTIR spectra of (a) kappa-carrageenan (κ-CG), (b) cellulose (CL), and (c) κ-CG/CL hydrogel.

3.2. XRD Pattern of κ-CG/CL Hydrogel

XRD patterns of the kappa-carrageenan (κ-CG), cellulose (CL), and κ-CG/CL hy-
drogels are shown in Figure 2. As shown in Figure 2a, the XRD pattern of κ-CG with a
broad hump in the range from 10◦ to 25◦ reveals its semi-crystalline nature. The (111),
(002), and (310) planes were represented by three notable peaks at 2θ = 15.2◦, 22.6◦, and
34.4◦, respectively [42]. The CL crystalline structure was revealed by the peak with the
maximum angle at 2θ = 22.6◦ [43]. The diffractogram of the κ-CG/CL hydrogel exhibited
a modest displacement and disappearance of the CL peaks and the XRD spectrum, as
shown in Figure 2c. In this instance, the cross-linking of κ-CG with CL by shattering the
semi-crystalline structure into an amorphous structure was confirmed by the small shift of
the peaks at 2θ = 15.9◦ and 22.2◦ in the XRD pattern of the κ-CG/CL hydrogel. This reveals
the active sites, enabling Pb2+ ions to bind to the κ-CG/CL hydrogel.
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3.3. Morphology of κ-CG/CL Hydrogel

Figure 3 shows the SEM images of the κ-CG/CL hydrogel under different magnifica-
tions. The developed κ-CG/CL hydrogel is ideal for metal ion adsorption because of its
heterogeneous surface and porous network structure with varying pore sizes, as observed
for the κ-CG/CL hydrogel [44]. The hydrogel’s high porosity allowed water to permeate
and absorb easily. Figure 3 shows the largest and smallest pores in the κ-CG/CL hydrogel.
Figure S1 shows a SEM image of the κ-CG/CL hydrogel with an open porous structure and
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pore size of 1–10 µm. The pores of the κ-CG/CL hydrogel were found to be micro-sized.
Therefore, electrostatic forces generated by the carboxylate anions (COO−) in the gel have
expanded the space of the cross-linked κ-CG/CL hydrogel matrix. The hydrogel’s high
porosity would allow for rapid mass permeability, benefiting superabsorbent applications.
Moreover, the κ-CG/CL hydrogel features characteristics that encourage swelling, which
could aid the diffusion of heavy metal ions. In addition, nitrogen physisorption analysis
of κ-CG/CL hydrogel shows a combination of type II adsorption–desorption isotherms
and the plot of pore distribution as shown in Figure S2. The BET’s large specific surface
area, total pore volume, and average pore diameter were 419.3 m2/g, 0.513 cm/g, and
269 nm, respectively.
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3.4. Adsorption Optimization of the κ-CG/CL Hydrogel

The adsorption capacity of Pb2+ ions was studied as a function of pH. Metal hydroxides
can precipitate from a solution when the pH is greater than 6, affecting the precision of the
outcomes [45]. As the pH increases, the adsorption capacity for Pb2+ ions increases, causing
them to bind at high hydrogen-ion concentrations, as shown in Figure 4a. Meanwhile, the
adsorbent surface was positively charged, and most major adsorption sites were protonated
at low pH. Furthermore, this could result in a reduction of the stability and number of
electrostatic interactions between the κ-CG/CS hydrogel and Pb2+ ions [46]. A low pH
resulted in reduced swelling of the adsorbent, decreasing the number of metal ions entering
the κ-CG/CL hydrogel. A comprehensive assessment showed that pH 5.0 was the most
suitable value [47]. Figure 4b illustrates the adsorption capacity of Pb2+ ions by κ-CG/CS
hydrogels at different contact times. The adsorption capacity of Pb2+ ions gradually
increased as the contact time increased after 5 min (Figure 4b) [48].

The k-CG/CL hydrogel has a three-dimensional loose and porous structure that allows
Pb2+ ions to get to the sites for adsorption [49] easily. In the absence of empty sites, the
adsorbent was saturated with Pb2+ ions in the binding sites. Additionally, the Pb2+ ions
reached adsorption equilibrium within 18 min, owing to a reduction in the adsorption rate.
Figure 4c shows the influence of the primary amount of Pb2+ ions adsorption on κ-CG/CL
hydrogel. To determine the adsorption capacity after exposing the κ-CG/CL hydrogel
(53–483 mg/L) to the Pb2+ solution, the influence of adsorbent concentration on the weight
of the κ-CG/CL hydrogel (i.e., 50–600 mg) was investigated (10 mL, pH 5.0). The maximum
adsorption increased with increasing concentrations of Pb2+ ions and reached a value of
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483 ± 24.1 mg/L [50]. As the concentration of Pb2+ ions increases, the accumulation of Pb2+

ions on the adsorbent also increases. A high adsorption capacity was achieved because the
mass transfer rate increased due to increased ion-driving forces. Thereafter, with a further
increase in initial concentration, the adsorption capacity remained unchanged or decreased,
and the κ-CG/CS hydrogel for the high concentration of Pb2+ ions solution decreased the
specific surface area and adsorption sites.
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3.5. Reusability of κ-CG/CL Hydrogel

A proper evaluation of the economy and application of the used adsorbent requires
the recovery of metal ions from the adsorbing agent, as well as the regeneration of the used
adsorbent. An overview of the reusability studies for Pb2+ ions removal from κ-CG/CL
hydrogel is presented in Scheme S1. The reusability experiment was conducted for eight
subsequent cyclic runs. Figure 4d shows the percentages of the metal ions recovered from
the κ-CG/CL hydrogel. In the first cycle, the removal efficiency was 96.1± 4.8%, and by the
end of the eighth cycle, the adsorption efficiency of Pb2+ ions was 79.2 ± 3.3%. Thus, even
after eight cycles, the removal efficiency exceeded 79% [51]. These findings demonstrated
that the κ-CG/CL hydrogel exhibited excellent reversibility and reusability, although some
functional groups were partially removed after treatment. Because of its outstanding
reusability, the produced κ-CG/CL hydrogel is a viable, affordable, and effective adsorbent
to remove Pb2+ ions.

3.6. Adsorption Kinetics of κ-CG/CL Hydrogel

The most significant aspect of understanding adsorption is predicting the adsorption
kinetics and their potential rate-limiting steps associated with mass transfer and reaction
processes. To examine the controlling mechanism of the adsorption process, the most
commonly used kinetic models, including the pseudo-first and second-order (PFO and
PSO) (Equations (3) and (4)), were Elovich (E) (Equation (5)), and intra-particle diffusion
(IPD) (Equation (6)) models to determine the underlying adsorption mechanism [52].
Figure 5 shows the kinetic fitting curve for Pb2+ adsorption by the κ-CG/CL hydrogel,
and Table S1 lists the relevant fitting parameters. A PFO kinetic model is commonly used
to calculate liquid-phase adsorption kinetics, and in this model, the adsorption rate is
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affected by diffusion and mass transfer. Using a PSO kinetic model, the reaction rate is
linearly related to the two reactants’ concentrations. In this case, it is assumed that chemical
adsorption controls the rate of heavy metal ion adsorption. The adsorbent and adsorbate
often share electrons during chemisorption. Figure 5a,b show the PFO and PSO fitting
curves and parameters, respectively. Notably, the curves are nonlinear [53]. Table S1 shows
that while the Qt values for the PSO model matched the experimental data closely, the
computed Qt values for the PFO did not match the experimental results. The results of the
PFO and PSO error functions of Pb2+ were compared. The correlation coefficient for the
PSO (R2 = 0.9959) was greater than that for the PFO (R2 = 0.9863) [54]. Additionally, it was
discovered that the PFO represented the data more accurately than the PSO, which had
higher chi-squared (χ2) values (402.27) [55]. These findings demonstrate that chemisorption
predominates metal ion adsorption by the κ-CG/CL hydrogel and is consistent with the
PSO equation.
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Furthermore, the PSO revealed a proportional correlation between the chemisorption
rate and the square of the number of open adsorption sites. By the earlier analysis of the
adsorption isotherm, the results were completely consistent. At primary concentrations of
50 and 500 mg/g, the PFO and PSO predict the adsorption outcomes more accurately than
the E model (Figure 5c) [56]. Elovich (E) equations are empirical formulas that describe a
process involving a series of reaction mechanisms. They include solutes in the solution
phase, surface activation/deactivation, diffusion, etc. They are particularly useful for
reactions in which the activation energy changes during the process. The E model may
better fit the observed measurements at the primary concentration of 421.3 ± 19.3 mg/g
because the adsorption process takes longer for large heavy-metal-ion doses. It is assumed
that mass transfer processes and the effectiveness of the adsorption center have a significant
impact on adsorption kinetics in the intraparticle diffusion (IPD) model. Figure 5d shows
the three phases and multilinearity in the intra-particle diffusion plot obtained in this
study. First, a considerably pronounced step resulted from Pb2+ ion diffusion from the
solution to the surface of the κ-CG/CL hydrogel and from the boundary layer to the surface.
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Second, when the final equilibrium was reached, the low Pb2+ ion concentration slowed
intra-particle diffusion. Finally, the Pb2+ ions in the solution slowed the intra-particle
diffusion during the final equilibrium because of the low Pb2+ ions content [57]. In general,
diffusion rates decreased with increasing contact time because the Pb2+ ions diffused into
the inner structure of the κ-CG/CL hydrogel [58]. According to Table S1, the intercepts of
the straight lines provide estimates of rate parameters, such as kinetics 1, 2, and 3, and the
correlation coefficients. When the temperature and concentration of the Pb2+ ions increased,
the rate constants increased slightly. Therefore, diffusion and sorption occurred because
of the higher concentration gradient. The correlation coefficient (R2) associated with the
PSO was much greater than those related to the PFO, E, and IPD models. Thus, the PSO
describes the adsorption mechanism more accurately because it infers that the adsorption
of Pb2+ ions by the κ-CG/CL hydrogel is attributed to chemical adsorption [59].

3.7. Adsorption Isotherms of κ-CG/CL Hydrogel

The physicochemical adsorption of metal ions on adsorbent surfaces is described
by adsorption isotherms, which illustrate the interfaces between the metal ions and the
surfaces of the hydrogels [60]. Two major isotherm equations were used to determine
the isotherm constants: the Langmuir and Freundlich equations. Based on the Langmuir
isotherm, adsorption occurs on a homogeneous surface that has the same adsorption
capacity for each adsorption site. Adsorption on a reversible heterogeneous surface is
described by the Freundlich model based on interactions between adsorbed molecules [61].
The relationship between the initial Pb2+ ion concentration and adsorption capacity in the
process of Pb2+ adsorption on κ-CG/CL hydrogels is shown in Figure 6a,b, and Table S2.
The Pb2+ adsorption capacity was low at low Pb2+ concentrations and then increased
slowly with an increase in the concentration of Pb2+ [62]. The constant adsorption capacity
indicates that the adsorption process has reached saturation. This phenomenon can be
explained by two factors: (i) the gradual decrease in the mobility of Pb2+ ions due to
a gradual increase in the Pb2+ ion concentration; (ii) the limited adsorbent dosage with
inadequate binding sites [63]. As shown in Figure 6a,b, the relatively high R2 values of
the Langmuir and Freundlich isotherm models at 298, 308, and 318 K indicate that the
models closely fit the Pb2+ adsorption data of the κ-CG/CL hydrogel [64]. Particularly, the
Langmuir isotherm model for Pb2+ ions indicated high removal capacities of 454 ± 18.1,
418 ± 21.9, and 373 ± 11.4 mg/g at 298, 308, and 318 K, respectively. Similarly, in the case
of the Freundlich isotherm model for Pb2+ ions, the maximum removal capacities were
486 ± 28.5, 440 ± 23.3, and 388 ± 48.7 mg/g at three temperatures [65]. Consequently, the
Freundlich isotherm model provided a more accurate description of adsorption at all three
temperatures than the Langmuir isotherm model.
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The adsorbate and binding sites may interact differently, such as through ion ex-
change, complexation, electrostatic interactions, and chelation, and complicate the entire
process [66]. These hydrogels exhibited a high affinity for Pb2+ ions because of the large
number of functional groups on their surfaces. The chelation of Pb2+ ions with these
functional groups is also possible [67]. The κ-CG/CL hydrogel adsorption mechanism
was investigated. The peak of O−H stretching vibration was at 3315 cm−1, and the band
of a carboxyl group (−C=O) stretching vibration was at 1645 cm−1, as seen in the FTIR
spectra (Figure S3). Both bands moved to 3309 and 1677 cm−1 after Pb2+ ions adsorption,
respectively. Meanwhile, two new peaks related to Pb2+ ions species emerged at 923 and
841 cm−1. A significant change in wavenumbers was found in the spectra of κ-CG/CL
hydrogel before and after the adsorption of Pb2+ ions. The -OH and -COOH groups are
broken by Pb2+ ions. After that, O provides an electron pair to the unoccupied orbital of
Pb2+ ionS, thereby forming O-Pb or CO-Pb interactions. The FTIR study results verified
the adsorption of Pb2+ ions on the functional groups of the κ-CG/CL hydrogel surface. To
examine the adsorption kinetics of Pb2+ ions on the κ-CG/CL hydrogel using adsorption
kinetics and to explain the basic adsorption process, we fitted the experimental data to PFO,
PSO, E, and IPD models. Moreover, the adsorption isotherm of the κ-CG/CL hydrogel
also fits the Langmuir and Freundlich models well, suggesting the adsorption rate on the
hydrogel surface [68].

3.8. Comparison with Other Adsorbents

The adsorption capacity of the κ-CG/CL hydrogel for Pb2+ ions was compared with
those of other adsorbents, as summarized in Table S3. The adsorption of heavy metal
ions using other adsorbents has been widely reported. Based on the Freundlich isotherm
model, the maximum adsorption capacity of the κ-CG/CL hydrogel is estimated to be
486 ± 28.5 mg/g. The data presented here support that our adsorbent has a higher max-
imum adsorption capacity than the previously reported adsorbents [69–72]. The results
show that the active functional group -OH, which can obtain metal ions by exchange,
simple chelation, or adsorption owing to the opening of the polymer matrix, provides the
κ-CG/CL hydrogel with a high adsorption capacity. The κ-CG/CL hydrogel is evaluated
in performance during the adsorption process using robust parameter optimization. A
potential application of these new κ-CG/CL hydrogels is the removal of heavy metal ions
from wastewater and aqueous effluents.

4. Conclusions

In summary, a κ-CG/CL hydrogel was successfully prepared using CaCO3 to adsorb
Pb2+ ions from aqueous solutions. FTIR analysis of the hydrogel revealed that it comprises
a physically cross-linked network. The XRD results showed numerous binding sites for
heavy-metal ions in the structure of the κ-CG/CL hydrogel. The surface of the k-CG/CL
hydrogel was porous. The BET’s large specific surface area, total pore volume, and average
pore diameter were 419.3 m2/g, 0.513 cm/g, and 269 nm, respectively. This study examined
the pH, contact time, and initial metal concentration as factors affecting adsorption. Pb2+

ions must be adsorbed at pH 5.0 or higher to maximize the effectiveness of this material.
The -OH groups attached to Pb2+ ions, as indicated by the isotherms, and the adsorption
kinetics resulted in a chelate compound. The adsorption process of κ-CG/CL hydrogel can
be explained by pseudo-first/second-order kinetic, Elovich, and intra-particle diffusion
models. Additionally, our kinetics study indicated that the adsorption process is regulated
by two processes, namely surface diffusion and pore diffusion. The Langmuir isotherm
model exhibited the best fit with the experimental data, and the Pb2+ adsorption process
was considerably effective. Based on the fitting results, the maximum adsorption capacity
was obtained with the Freundlich isotherm model of κ-CG/CL hydrogel found to be
486 ± 28.5 mg/g1. Reusability studies revealed that the κ-CG/CL hydrogel could remove
Pb2+ ions with more than 79% efficiency after eight adsorption–desorption cycles. Therefore,
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κ-CG/CL hydrogels are eco-friendly, efficient, and reusable adsorbents for removing heavy
metals from aqueous solutions.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/su15129534/s1. Figure S1: Pore size measurements of κ-CG/CL hydrogel.
Figure S2: (a) BET analysis and (b) pore size distribution of the κ-CG/CL hydrogel. Figure S3: FTIR
spectra of κ-CG/CL hydrogel before and after Pb2+ ions adsorption. Scheme S1: An overview of the
reusability studies for Pb2+ ions removal from κ-CG/CL hydrogel. Table S1: Adsorption kinetics
model parameters for Pb2+ ions removal by κ-CG/CL hydrogel. Table S2: Adsorption isotherm
model parameters for Pb2+ ions removal by κ-CG/CL hydrogel. Table S3: Comparison of maximum
Pb2+ ions adsorption capacity of other reported adsorbents. References [73–82] are cited in the
supplementary materials.
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