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Abstract: The metro station ridership features are associated significantly with the built environment
factors of the pedestrian catchment area surrounding metro stations. The existing studies have
focused on the impact on total ridership at metro stations, ignoring the impact on varying patterns
of metro station ridership. Therefore, the reasonable identification of metro station categories and
built environment factors affecting the varying patterns of ridership in different categories of stations
is very important for metro construction. In this study, we developed a data-driven framework to
examine the relationship between varying patterns of metro station ridership and built environment
factors in these areas. By leveraging smart card data, we extracted the dynamic characteristics of
ridership and utilized hierarchical clustering and K-means clustering to identify diverse patterns of
metro station ridership, and we finally identified six main ridership patterns. We then developed
a newly built environment measurement framework and adopted multinomial logistic regression
analysis to explore the association between ridership patterns and built environment factors. (1) The
clustering analysis results revealed that six station types were classified based on varying patterns of
passenger flow, representing distinct functional characteristics. (2) The regression analysis indicated
that diversity, density, and location factors were significantly associated with most station function
types, while destination accessibility was only positively associated with employment-oriented type
stations, and centrality was only associated with employment-oriented hybrid type station. The
research results could inform the spatial planning and design around metro stations and the planning
and design of metro systems. The built environment of pedestrian catchment areas surrounding
metro stations can be enhanced through rational land use planning and the appropriate allocation of
urban infrastructure and public service facilities.

Keywords: metro station; varying pattern of ridership; pedestrian catchment area; built environment;
multinomial logistic regression analysis

1. Introduction

As a crucial component of the urban public transportation system, the metro system
boasts the advantages of superior efficiency, eco-friendliness and exceptional capacity. Pri-
oritizing the development of metro systems as the primary mode of public transportation
can effectively solve “big city problems” such as environmental pollution, carbon emissions,
and traffic congestion. This approach promotes sustainable and healthy travel for residents
while achieving sustainable urban development [1–3]. In recent decades, Transit-oriented
development (TOD) has gradually become a cutting-edge model for urban community
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planning and a new direction for urban sustainable development. TOD could establish effi-
cient linkages with public transportation and land use, enhance the operational efficiency
of public transportation, and facilitate sustainable and coordinated development of urban
transport and urban spatial layout [4]. However, there still exists the phenomenon of the
uncoordinated degree of integration between urban rail transit hubs and urban functional
areas in the process of urban development, causing a series of problems such as excessive
flow during peak periods, unbalanced ridership at incoming and outgoing stations, and an
unbalanced distribution of ridership [5,6]. The varying patterns of metro station ridership
have a strong correlation with the built environment factors of the pedestrian catchment
area surrounding metro stations [7,8], and the different types of metro stations with varying
patterns of ridership are spatially heterogeneous due to the driving effect of built envi-
ronment factors. In this context, this study classifies the stations based on the varying
patterns of metro station ridership and clarifies the supply and demand situation and
functional features of different types of metro stations. We further investigate the influence
of built environment factors on different types of metro stations and identify the strategies
for optimizing the built environment of different types of metro stations. This research
investigated the impact of built environment features on passenger travel patterns and
proposed an integrated urban renewal strategy that coordinates urban planning with metro
system planning. This was aimed at improving the spatial vitality of pedestrian catchment
areas around these stations and enhancing the operational efficiency of the metro system,
ultimately contributing to sustainable development of urban public transportation [9].

The intricate relationship between metro station ridership and built environment
factors has garnered significant attention from scholars in recent years. The advent of smart
card data and open-source databases has facilitated the examination of this relationship
through big data analysis. However, most studies have focused on the total ridership of
metro stations [10,11], overlooking the different ridership patterns of stations. Additionally,
some important factors, such as station centrality and location value have been ignored
when evaluating the relationship between metro station ridership and built environment
factors. In this context, this study aimed to bridge research gaps by investigating the
relationship between the varying patterns of metro station ridership and built environment
factors based on smart card data in Tianjin, China. There are two crucial questions in
the present study: (1) What are the types of metro stations based on varying patterns of
ridership and what are their distinctive characteristics? (2) What is the association between
the varying patterns of metro station ridership and built environment factors? The answers
to these questions can offer valuable insights for rail transit planning and urban renewal.

The remaining sections are structured as follows. Section 2 provides a review of the
related literature, including identifying the varying patterns of metro station ridership, the
evaluation dimensions of built environment factors, and the relationship between metro
station ridership and built environment. In Section 3, the methodology and smart card data
used in this study are presented. The results of the study are analyzed in Section 4. Finally,
Section 5 provides discussions based on these findings.

2. Literature Review
2.1. Identification of the Varying Patterns of Metro Station Ridership

The role of mobility in shaping urban morphology and function partition has been
recognized by urban scholars [12]. Smart card data, containing detailed information on
passenger trip transactions, has been utilized to investigate resident trip characteristics
and to describe transportation supply and demand [13], providing strategies for public
transportation system operation and management [14]. The dynamic features of ridership
in smart card data have been analyzed using clustering methods to identify the varying
patterns of metro station ridership [15,16]. For example, researchers have adopted methods
such as K-means clustering, two-stage clustering, and self-organizing maps (SOM) to clas-
sify metro stations [17–19]. Among these methods, K-means clustering was one of the most
widely used clustering methods due to its high computational efficiency and interpretabil-
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ity [17]. However, the K-means method cannot effectively choose the initial K value. To
address this issue, we developed a new method that combines hierarchical clustering with
K-means clustering to classify the different patterns of metro station passengers.

2.2. Measurements of Built Environment Factors

Studies have shown that built environment factors have a significantly heterogeneous
impact on metro station ridership [20]. The ‘3Ds’ framework developed by Cervero and
Kockelman was widely used to describe built environment factors, namely diversity,
density, and design [21]. Among them, diversity includes indicators such as land-use mix
entropy, percentage of land use type, and POI functional mix; density usually includes
indicators such as population density, employment density, and floor area ratio; and
design usually includes road network density and intersection density. Ewing and Cervero
later expanded the framework to include distance to transit and destination accessibility,
forming the “5Ds” framework [22], which has been widely used for its effectiveness in TOD
studies [23,24]. Moreover, new indicators have been gradually introduced into the “5Ds”
framework as the research deepens, including fine-scale land use types [25], architectural
features [26], and street tree inventory [27].

In terms of evaluating the built environment of metro station areas, some researchers
also utilized complex networks theory and location theory to investigate the spatial charac-
teristics of metro networks [28,29], and the commonly adopted indicators include network
betweenness centrality, network closeness centrality, and location value. In order to provide
a comprehensive evaluation of the built environment’s impact on the varying patterns of
metro station ridership, this study introduced the centrality and location factors to form
the “5D + C + L” framework.

2.3. Association between Metro Station Ridership and Built Environment

In recent years, several studies have analyzed built environment factors affecting
metro station ridership [30–33]. Most studies focused on investigating the association
between built environment factors and the total ridership of metro stations. For example,
the dependent variables in previous studies usually contained average daily inbound and
outbound ridership [30], morning-peak and evening-peak ridership on weekdays [31], av-
erage weekday boardings [32], and station-to-station ridership [33]. These studies usually
adopted global or local regression models to analyze the multiple linear regression relation-
ship between built environment factors and total ridership of metro stations [34–39]. For
example, in terms of global regression model applications, Loo [34] utilized the Ordinary
least squares (OLS) model to investigate the influencing factors of rail transit ridership
in New York City and Hong Kong, and Sohn [35] utilized the Structural equation model
(SEM) to investigate the influencing factors of rail transit ridership in the Seoul metropolitan
area. In terms of local regression model applications, Zhou [38] utilized the Multiscale
geographically weighted regression (MGWR) model to investigate the spatial heterogeneity
of built environment factors on “bike-subway scenario” usage, while Fu [37] and Liu [39]
utilized the Geographically and temporally weighted regression (GTWR) model to explore
the spatiotemporal heterogeneity of metro ridership by built environment factors.

Overall, existing studies mainly investigated metro station ridership as a continuous
variable, lacking investigation of the relationship between the varying patterns of ridership
and built environment factors. To fill this gap, we adopted multinomial logistic regression
analysis in this study to explore the association between the varying patterns of metro
station ridership and built environment factors.

3. Materials and Methods
3.1. Study Area

The study area for this research is Tianjin, one of the four municipalities directly under
the Central Government of China, covering a total area of 1100 km2 and having a resident
population of more than 13 million. Tianjin’s metro system was established in 1970, making
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it the second Chinese city to build a metro system after Beijing. As of December 2020, the
Tianjin metro system had six lines and 143 operational stations.

In previous studies, researchers usually utilized an 800 m buffer zone as the pedestrian
catchment area (PCA) of metro stations [32]. However, the 800 m distance could result in
overlapping catchment areas, especially in the central urban area. To resolve this issue,
the Thiessen polygon method was adopted [31], as illustrated in Figure 1, to define the
pedestrian catchment areas (PCA) of metro stations without any overlap. The study area’s
relevant built environment factors were assessed within this range.
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Figure 1. Research areas.

3.2. Research Framework

Figure 2 presents the methodological framework of this study, which includes four
primary steps: (1) extracting dynamic features of metro ridership, (2) classifying the varying
patterns of metro ridership using K-means clustering and hierarchical clustering methods,
(3) selecting multidimensional built environment factors, and (4) estimating the relationship
between built environment factors and varying patterns of metro station ridership based
on multinomial logistic regression analysis.
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3.2.1. The Measurement of Dynamic Features of Metro Ridership

The smart card data used in this study were obtained from the Tianjin Metro Group and
spanned from 12 to 16 December 2020. We employed Python to segregate and consolidate
the unprocessed data on metro station ridership. The ridership data for five days, with
hourly intervals, were extracted, consolidated and averaged. During the operational
hours of 6 a.m. to 24 p.m., the raw ridership data was bifurcated into two datasets—
inflows and outflows. To ensure comparability among various stations, we standardized
the average hourly inflows and outflows using the z-score method [40]. The dynamic
feature index of metro ridership was derived from the datasets, encompassing a time
series feature and a ridership intensity feature. This research employed a set of metrics
previously proposed, including the number of peaks (K1), skewness (K2), kurtosis (K3),
peak hour factor (K4), morning peak hour factor (K5), evening peak hour factor (K6),
and the equilibrium coefficient of ridership (K7) [41]. Table 1 outlines the corresponding
calculation formulas and detailed explanations for each indicator.
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Table 1. Dynamic ridership features indicators explanation.

Indicator Explanation Calculation Formula Formula Description

Number of peaks (K1)
The peak is the vertex on a

certain segment of the
ridership time series.

—— ——

Skewness
(K2)

Describe the symmetry of the
overall distribution of the

ridership time series.
K2 = 1

n−1

n
∑

i=1
(xi − µ)3/σ3 xi is the time series; µ is the

sample mean; σ is the
standard deviation.

Kurtosis
(K3)

Describe the steepness of the
overall value distribution
pattern of the ridership

time series.

K3 = 1
n−1

n
∑

i=1
(xi − µ)4/σ4 − 3

Peak hour factor (K4) Ratio of peak hour ridership
to full day ridership K4 = Qi

Qd
Qi is the peak hour ridership;

Qm and Qe are the average
hourly ridership at the

morning peak or evening
peak, respectively; Qd is the

full day ridership.

Morning peak hour
factor (K5)

Ratio of the average hourly
ridership at the morning peak

to the full day ridership
K5 = Qm

Qd

Evening peak hour factor (K6)
Ratio of the average hourly

ridership at the evening peak
to the full day ridership

K6 = Qe
Qd

Equilibrium coefficient
of ridership

(K7)

Ratio of the average morning
peak and evening peak hour
factor to the average hourly

ridership at the flat peak

K7 = K5 + K6/2Q f
Qf is the average hourly

ridership at the flat peak.

Note: The morning peak is between 7:00 and 9:00; the evening peak is between 17:00 and 19:00; the flat peak is
between10:00 and 16:00.

The smart card data comprised two datasets of inflows and outflows, from which we
derived a total of 14 indicators (K1–K7 for each dataset), with the standardized values rep-
resented as X1 to X14. To mitigate the issue of high correlation amongst these indicators, we
executed a principal component analysis for dimensionality reduction. The principal com-
ponent analysis results show that there were four latent roots greater than one in the model
(λ1 = 4.667, λ2 = 4.271, λ3 = 1.712, λ4 = 1.039). The cumulative contribution rate of the four
principal components was 83.492% (w1 = 33.34%, w2 = 30.51%, w3 = 12.23%, w4 = 7.42%).
The composite score of the ith principal component can be calculated as follows:

Yi = wi(a1iX1 + a2iX2 + · · ·+ a14iX14) (1)

where Yi refers to the composite score of the ith principal component, wi denotes the
contribution rate of the ith principal component, and ani is the score coefficient of the nth
index of the ith principal component. The principal component score coefficient matrix is
shown in Supplementary Table S1.

3.2.2. The Hierarchical Clustering Method and K-Means Clustering Method

The composite score of the extracted principal components was used to classify the
varying patterns of metro station ridership using a combination of hierarchical clustering
and K-means clustering. Firstly, hierarchical clustering was employed to assess the differ-
ences in the varying patterns of station ridership, and the appropriate number of clusters
was determined. Next, the initially determined number of clusters was set as the K value of
K-means clustering. Finally, the final classification results of the stations were determined
using K-means clustering.

Hierarchical clustering is a method that involves sorting and grading nodes by mea-
suring their correlation and creating a tree hierarchy of network nodes using single or
complete link clustering [42]. In this study, the inter-group association method was used
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for hierarchical clustering, and the square Euclidean distance was used as the metric. The
square Euclidean distance can be calculated using the following formula:

d(x, y) = ∑k
i=1(xk − yk)

2, (2)

where d(x, y) refers to the distance between the two cluster of x(x1, x2, . . . , xn) and y(y1, y2,
. . . , yn). xk and yk are the kth index of x and y, respectively.

K-means clustering is an iterative clustering analysis algorithm that involves randomly
selecting k objects as the initial clustering center, calculating the distance between each
object and each initial clustering center, and assigning each object to the nearest clustering
center [43]. In this study, the square of the error was used as the standard measure function,
and the Euclidean distance was used as the metric standard. The calculation formulas for
the error and Euclidean distance are shown as follows:

SSE = ∑k
i=1 ∑p∈Di

|x− xi|2, (3)

d(x, y) =
√

∑n
k=1(xk − yk)

2, (4)

where SSE represents the error squared sum of all objects in the set and the center of its
subset, x is a point in the object, xi is the mean of cluster Di. d(x, y) donates the distance
between the two cluster of x(x1, x2, . . . , xn) and y(y1, y2, . . . , yn), xk and yk are the kth index
of x and y, respectively.

3.2.3. The Measurement of Built Environment Factors

In this study, the diversity dimension was evaluated using the entropy score of the
land-use mix [44] and the proportion of land-use type [45]. The land use data were obtained
from the third land use survey in Tianjin, where eight land-use categories were identified,
including residential, commercial services facilities, public services facilities, industrial
and logistics warehouse, green space, transport facilities, other construction land, and
unsuitable construction land.

We adopted population density, employment density, building coverage ratio, and
floor area ratio as proxies for density in this study [46–48]. Population distribution data of
Tianjin were sourced from WorldPop Project.

Two indicators of road density and intersection density, which were retrieved from
OpenStreetMap, were adopted as design dimensionality [49]. The destination accessibility
dimension was evaluated using the density of bus stops and the number of entrances and
exits of metro stations. The distance to transit was assessed using the average distance
from bus stops [23,50]. The data on bus stops were obtained through Baidu Map (http:
//map.baidu.com, accessed on 1 December 2020), and metro station data were sourced from
the Tianjin rail transit website (http://www.tjgdjt.com, accessed on 30 December 2020).

Additionally, this study introduced three external influencing factors, namely network
betweenness centrality, network closeness centrality, and location value. Some scholars
have utilized topological structural characteristics of metro networks to evaluate the cen-
trality features of stations [28,29]. Betweenness centrality quantifies the number of shortest
paths traversing a node within a network, thereby denoting its role as an intermediary.
Closeness centrality denotes the proximity of a node to all others in a network, with elevated
values suggesting enhanced accessibility to other nodes [9]. According to the previous
literature, location is considered a main determinant to estimate housing prices [51]. In
this study, we adopted the average house price to measure the location value. The house
pricing data were crawled through https://tj.lianjia.com/, accessed on 15 October 2020.
We utilized the regular expression matching method in Python to crawl second-hand house
information, and extracted all types that met the criteria of room size, orientation, and floor.
The scraped data were subjected to an initial cleaning process to eliminate null values and
duplicate entries. Subsequently, we converted the unit price of each house offering into a

http://map.baidu.com
http://map.baidu.com
http://www.tjgdjt.com
https://tj.lianjia.com/
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numeric format. Based on the names of residential communities, we employed Python to
fetch the corresponding spatial coordinate information, which was then associated with
the house price data. These data were first aggregated to the station catchment areas and
then calculated as indicators. Table 2 summarizes the built environment indicators used in
this study. Table 3 presents the descriptive statistics of the built environment indicators.

Table 2. Built environment indicators explanation.

Dimension Indicator Explanation

Diversity

Land-use mix entropy
E = −∑n

i=1 Piln Pi
ln(n) , where Pi is the proportion of

the land use type i, n is the number of land
types, n = 8.

Proportion of residential area Ratio of residential area to PCA

Proportion of commercial services facilities area Ratio of commercial services facilities area
to PCA

Proportion of public services facilities area Ratio of public services facilities area to PCA

Proportion of industrial and
logistics-warehouse area

Ratio of industrial and logistics-warehouse
area to PCA

Density

Population density Ratio of persons to PCA

Building coverage ratio Ratio of building footprint to PCA

Floor area ratio Ratio of total gross floor area to PCA

Design
Road density Ratio of road length to PCA

Intersection density Ratio of intersection number to PCA

Destination accessibility
Bus stops density Ratio of bus stops number to PCA

Number of entrances and exits The number of entrances and exits in each
metro station

Distance to transit Average route distance from the metro station to
bus stops

Average walking route distance from metro
station to bus stops

Centrality

Network betweenness centrality

Bi = ∑i 6=s 6=t∈V
di

min,st
dmin,st

, Bi is the ratio between

the number di
min,st of shortest paths that run

through node i and the total number dmin,st of
the shortest paths between two nodes.

Network closeness centrality
Ci =

N−1
∑N

j=1,i 6=j dij
, N is the total number of nodes;

dij is the distance between node i and j.

Location Location value Average price of all housing within PCA

Note: PCA means the pedestrian catchment areas of rail stations.

The study conducted a multicollinearity test on all the independent variables before
the regression analysis to ensure that the variance inflation factor (VIF) of the independent
variables was less than five [20,49]. As a result, indicators such as floor area ratio and road
density were eliminated from the analysis. The test results of VIF values of independent
variables are presented in Table 4.



Sustainability 2023, 15, 9533 9 of 18

Table 3. Descriptive statistics of the built environment indicators.

Indicator Minimum Maximum Mean Std. Deviation

Land-use mix entropy 0.22 0.95 0.67 0.12
Proportion of residential area (%) 0.00 70.00 32.32 15.87

Proportion of commercial services facilities area (%) 0.00 63.00 10.06 9.33
Proportion of public services facilities area (%) 0.00 44.00 9.21 9.25

Proportion of industrial and logistics-warehouse area (%) 0.00 78.00 7.91 12.89
Population density (10k person/km2) 0.02 7.84 1.95 1.89

Building coverage ratio 0.00 0.47 0.20 0.10
Floor area ratio 0.00 3.66 1.12 0.73

Road density (km/km2) 0.44 15.09 6.52 2.59
Intersection density (n/km2) 2.15 88.46 21.33 14.69

Bus stops density (n/km2) 0.00 13.67 4.49 3.12
Number of entrances and exits (n) 1.00 10.00 2.99 1.42

Average route distance from the metro station to bus stops (m) 30.61 800.00 494.13 150.33
Network betweenness centrality 0.00 0.41 0.08 0.07

Network closeness centrality 0.04 0.13 0.09 0.02
Location value (10k RMB/m2) 0.00 6.24 2.52 1.15

Note: n represents the number of objects.

Table 4. Test results of VIF values of independent variables.

Indicator VIF-Initial Value VIF

Land-use mix entropy 1.81 1.63
Proportion of residential area 2.46 2.33

Proportion of commercial services facilities area 1.66 1.54
Proportion of public services facilities area 1.57 1.51

Proportion of industrial and logistics-warehouse area 1.82 1.80
Population density 2.24 2.21

Floor area ratio 6.70 -
Building coverage ratio 3.92 3.22

Road density 12.42 -
Intersection density 9.89 1.87

Bus stops density 2.67 2.40
Number of entrances and exits 1.39 1.38

Average route distance from the metro station to bus stops 1.17 1.17
Network betweenness centrality 2.40 2.27

Network closeness centrality 4.52 4.06
Location value 3.90 2.93

3.2.4. Multinomial Logistic Regression Model

To measure the correlation between the built environment and different ridership
patterns at metro stations, we utilized a multinomial logistic regression (MLR) model. The
model had built environment factors as independent variables and metro station cluster
results as the dependent variable. Prior research has established that the MLR model is a re-
liable approach for analyzing multi-category issues concerning public transportation [52,53].
The MLR model requires one basic category to be identified among all categories to enable
comparisons with the other categories. The parameters of each independent variable are
relative to the basic category. The probability (P) of a metro station being classified into a
particular ridership pattern is expressed as follows:

P(yi = j|Xi) =
eXi β j|b

∑j eXi β j|b
, (5)

where yi = j indicates the metro station i being classified into category j in comparison
with the basic category b, X is the independent variables, and β is the maximum likelihood
coefficient.
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4. Results
4.1. The Clustering Result of Varying Patterns of Metro Station Ridership

The hierarchical clustering analysis produced a clustering diagram as shown in
Figure 3a. It is evident that the frequency variation in the number of clusters slowed
down when the number of clusters reached seven, with an increase in Euclidean square
distance. The curve flattened out when the number of clusters reached five or three. How-
ever, when the clustering coefficient was three, the classification of groups was not detailed
enough. Therefore, the number of clusters was preliminarily selected as five, six, and
seven in sequence. The K value of K-means clustering analysis was set to the preliminarily
selected cluster number. The clustering result was better when the cluster number was
six, and the feature difference between different patterns was obvious. The details of the
metro station classification are presented in Supplementary Table S2, and the clustering
results of varying patterns of metro station ridership are shown in Figure 3b. Cluster 1
contains the highest number of stations, accounting for 33% (47), followed by Cluster 3 and
Cluster 5, both with a share of 20% (28). This is attributed to the primary function of metro
systems in addressing residents’ commuting needs, which necessitates their proximity
to residential areas. Additionally, residential land typically accounts for the highest pro-
portion of urban construction land at approximately 30%, surpassing commercial service
facilities, administrative offices, and industrial warehouses. Although the metro system
can enhance accessibility to areas of employment concentration, there are still relatively
few such locations. Cluster 6 contains only four stations because of their special function as
the external transportation hub of the city.
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Figure 3. (a) Number of hierarchical clusters at different squared Euclidean distances; (b) Clustering
results of metro stations. This reflects that the maximum number of stations are residential-oriented
type stations, providing direct evidence for the backbone effect played by TOD in terms of resi-
dent activities.

The study presented the characteristics of six varying patterns of metro station rider-
ship corresponding to six station function types, as shown in Figure 4. Cluster 1 displayed
a unimodal distribution, with inbound and outbound ridership manifesting pronounced
tidal attributes in temporal distribution. These metro stations witnessed an elevated in-
bound ridership during the morning peak, and a reduced outbound ridership during the
evening peak, yielding a peak difference of approximately 2.5 units. Given these tidal
characteristics, we labeled Cluster 1 as the residence-oriented type (ROT). Cluster 2 also
exhibited a unimodal distribution but with a different peak distribution compared to Clus-
ter 1. The morning peak primarily comprised outbound ridership, while the evening peak
consisted largely of inbound ridership. These metro stations observed high outbound
ridership during the morning peak and elevated inbound ridership during the evening
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peak, juxtaposed with a relatively lower inbound ridership during the morning peak and
outbound ridership during the evening peak. The differential between these peaks can
amount to three units. We classify Cluster 2 as the employment-oriented type (EOT).
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Figure 4. The varying patterns of metro ridership. (a) The variation of inbound and outbound
passengers of residence-oriented type (ROT) station. (b) The variation of inbound and outbound
passengers of employment-oriented type (EOT) station. (c) The variation of inbound and outbound
passengers of residence-oriented hybrid type (ROHT) station. (d) The variation of inbound and
outbound passengers of employment-oriented hybrid type (EOHT) station. (e) The variation of
inbound and outbound passengers of residence-employment mixed type (REMT) station. (f) The
variation of inbound and outbound passengers of special functional type station. Using standard
deviation metric to quantitative the intensity of metro station ridership.

Both Cluster 3 and Cluster 4 display a bimodal distribution, distinguished by one
prominent peak and a less noticeable peak, with the maximal variation between peaks
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spanning between one and two units. Specifically, Cluster 3 registered a considerably
higher inbound ridership during the morning peak compared to the evening peak, while
recording a lower outbound ridership during the morning peak compared to the evening
peak. Conversely, for Cluster 4, the inbound ridership during the morning peak was
significantly less than that during the evening peak, while its outbound ridership during
the morning peak was significantly greater than that during the evening peak. It was
evident that Cluster 3 exhibited certain similarities to the characteristics of Cluster 1, while
Cluster 4 showed certain resemblances to the traits of Cluster 2. Accordingly, we have
categorized Cluster 3 and Cluster 4 as the residence-oriented hybrid type (ROHT) and the
employment-oriented hybrid type (EOHT), respectively.

Cluster 5 also showed a bimodal distribution but with less distinct disparities between
the two peaks as compared to Clusters 3 and 4. The inbound ridership during the morning
peak nearly mirrored that of the evening peak, whereas the disparity in outbound ridership
between these two periods was approximately one unit. Hence, Cluster 5 was classified as
the residence-employment mixed type (REMT). The diverse ridership patterns in Cluster
6 displayed irregular and ongoing multiband characteristics. On closer examination, this
cluster was found to comprise Tianjin Station, Tianjin West Station, Tianjin South Station,
and Binhai International Airport. These stations primarily function as urban transportation
hubs, leading us to classify Cluster 6 as the special function type (SFT).

As illustrated in Figure 5, the stations classified under Cluster 1 and 3 were predomi-
nantly located in the urban periphery, indicating a spatial relationship between the ROT
station and the suburbanization process. In contrast, the stations in Cluster 2 were primarily
situated in the urban core, which reflected the concentration of EOT stations in the central
business district. Furthermore, the stations in Cluster 4 and 5 were dispersed throughout
the main urban area, which was consistent with the EOHT station and REMT station,
respectively.
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4.2. The Result of Multinomial Logistic Regression

The MLR analysis set cluster 1 (i.e., ROT) as the reference cluster. The MLR results
showed that the Pseudo R2 is 0.78, indicating the model had excellent goodness-of-fit
(Table 5) and strong explanatory ability.
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Table 5. The result of multinomial logistic regression model.

Variable
EOT ROHT EOHT REMT SFT

B Wald B Wald B Wald B Wald B Wald

Constant term −15.40 4.57 −11.46 5.50 −17.91 7.57 4.27 1.51 1.54 0.00
Land-use mix entropy 4.40 0.57 5.71 1.88 −2.40 0.34 −8.83 * 5.14 −21.68 0.00

Proportion of residential area −0.20 *** 6.65 0.05 1.83 −0.03 0.46 −0.06 * 2.29 −1.00 0.00
Proportion of commercial services

facilities area 0.44 *** 15.81 0.31 *** 11.19 0.44 *** 17.57 0.39 *** 17.09 1.00 0.00

Proportion of public services
facilities area 0.10 2.15 0.11 *** 5.96 0.12 ** 4.40 0.04 0.67 −1.45 0.00

Proportion of industrial and
logistics-warehouse area 0.18 *** 8.10 0.18 *** 12.04 0.20 *** 12.84 0.13 *** 6.94 −0.56 0.00

Population density 0.78 * 2.94 0.62 * 3.55 1.18 *** 9.48 1.00 *** 8.51 −2.50 0.00
Building coverage ratio −29.64 ** 5.10 −27.89 *** 13.00 −40.01 *** 13.87 −14.78 * 3.35 161.77 0.00

Intersections density −0.02 0.28 −0.04 1.11 −0.06 1.46 −0.06 1.98 −0.72 0.00
Bus stops density 0.46 * 2.38 −0.01 0.00 0.02 0.01 −0.18 0.88 3.61 0.00

Number of entrances and exits 0.55 * 1.29 −0.04 0.01 0.43 1.25 −0.51 1.69 5.17 0.00
Average route distance from the

metro station to bus stops 0.00 1.07 0.00 0.84 0.01 6.34 0.00 0.34 −0.02 0.00

Network betweenness centrality −22.84 2.57 −7.67 1.05 −22.24 * 3.33 4.01 0.33 86.17 0.00
Network closeness centrality 35.20 0.50 23.70 0.53 93.69 ** 4.10 −5.21 0.03 −140.89

Average housing prices 3.34 *** 11.25 1.39 *** 6.57 2.37 *** 9.38 1.53 *** 6.57 −8.35 0.00

Pseudo R2: 0.78
ln L(0) : 464.94
ln L

(
β̂
)

: 247.96
LR : −433.96

Note: * Significant at 0.1 level; ** Significant at 0.05 level; *** Significant at 0.01 level; B is the regression coefficient;
Wald is the chi-square value.

Table 5 presents the MLR outcomes for multiple metro stations, showing substantial
correlations between built environment characteristics and various station clusters, aside
from the special functional station clusters. The SFT stations, functioning as the city’s exter-
nal transportation hubs, are primarily encompassed by transportation-oriented land, with
no immediate presence of residential populations or other functional structures. The study
results were assessed using ROT as the benchmark. With respect to diversity, the composi-
tion of land-use exhibited a negative correlation with the REMT station. Contrasted with
the ROT station, the REMT station resided nearer to the central urban region, illustrating
an even distribution of employment and residential functionalities. The predominant land
use in the immediate vicinity was commercial and residential, offering minimal variety
in other land categories. The share of residential areas held a negative association with
both EOT and REMT stations. Conversely, the proportion attributed to commercial service
facilities was positively linked with four additional station types, with the most substantial
regression coefficients observed at EOT and EOHT stations. The fraction of public service
facilities was also positively related to ROHT and EOHT stations. To conclude, the portion
of land designated for industrial and logistics-warehouse functions had a positive rela-
tionship with EOT and REMT stations. This finding suggests a connection between the
functional category of land use and the corresponding metro station’s functional type.

In relation to density, population density showed a positive correlation with four
other types of stations in comparison to ROT station. EOHT station yielded the highest
regression coefficients, followed by REMT, EOT, and ROHT stations. This is likely because
these stations were closer to urban centers and therefore had higher population densities
than the ROT stations. Conversely, the building coverage ratio was negatively linked to the
four aforementioned stations, with the lowest regression coefficients observed at EOT and
EOHT stations. Interestingly, no substantial correlation was found between intersection
density and station types. Additionally, both the density of bus stops and the count of
entrances and exits were positively associated with the EOT station. This may be attributed
to the high concentration of workers around the EOT stations, necessitating more public
transportation.

In terms of centrality, network betweenness centrality showed a negative correlation
with the EOHT station when compared to the ROT station. However, network closeness
centrality demonstrated a positive correlation. This may be due to the fact that most EOHT
stations were not hubs but were situated closer to the center than ROT stations. Further,
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location value exhibited a positive correlation with the four other station types relative to
ROT stations. Regression coefficients were found in descending order for the EOT station,
EOHT station, REMT station, and ROHT station. This trend indicates that proximity to the
city center tends to increase the location’s value.

5. Discussion
5.1. Classification of Urban Rail Transit Stations

Previous research has predominantly examined the correlation between the built
environment and the overall ridership of metro stations [32,52], limited studies have been
conducted on the association between the built environment and the diverse patterns of
ridership. In this study, we established a data-driven analysis framework that integrated
smart card data and built environment data to investigate the relationship between the
built environment and varying patterns of metro station ridership.

The present study employed a combination method of hierarchical clustering and
K-means clustering to identify different clusters according to the ridership of metro stations.
All stations were divided into six clusters, i.e., residence-oriented type (ROT), employment-
oriented type (EOT), residence-oriented hybrid type (ROHT), employment-oriented hybrid
type (EOHT), residence-employment mixed type (REMT), and special functional type (SFT).
The findings were in line with earlier research conducted by Zhang [17] and Li [41], which
indicated that the thematic functional categories of metro stations can be evaluated not
only by analyzing the environmental factors around them, such as land use types [54],
POI types [53], and pedestrian accessibility [43], but also by considering the different
ridership patterns.

5.2. Differences in Impact of Built Environment Factors

Furthermore, the study revealed that stations of the same cluster exhibited similar
features in geospatial distribution, while stations in different clusters display heteroge-
neous features, which is consistent with the findings of previous studies [19,53]. These
findings have implications for shaping the thematic patterns of urban functions, such as
creating commercial and financial centers in the core of the city through the distribution of
EOT stations [24,55], and evacuating the population to the peripheral areas through the
distribution of ROT and ROHT stations [56].

To further investigate the relationship between built environment factors and the
varying patterns of station ridership, this study employed multinomial logistic regression
analysis. The findings suggested that built environments can partially explain the het-
erogeneous features of varying patterns of ridership, with a more significant relationship
observed between most station clusters and built environment factors [19]. Specifically,
(1) the proportion of land-use types was closely related to the thematic function of the
station. Research by Woo [43] and Liu [54] supported this finding. For instance, commercial
service facilities, and industrial and logistics storage land were found to be positively
associated with EOT stations, EOHT stations, and REMT stations when compared to ROT
stations [53]. (2) Population density was positively associated with most station types,
mainly because most ROT stations are distributed in the suburbs. Residents usually pri-
oritized factors such as residence location, surrounding services and facilities, and house
price when choosing dwellings, as these factors were directly related to commuting time,
medical facilities services, and income level [57]. (3) The factors of the destination accessi-
bility were only positively associated with EOT stations, primarily because such stations
were located in areas that provide numerous commercial, financial, and office jobs. These
areas required more transportation services to improve accessibility and walkability [24,55].
(4) The location value was positively associated with most station types, and the regression
coefficient magnitude was related to the geographic distribution of stations, which was a
common phenomenon in large cities [58], i.e., house prices showed a significant decreasing
trend with distance from the CBD. (5) Network betweenness centrality was only nega-
tively associated with EOHT stations, and network closeness centrality was only positively
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associated with such stations, primarily because these stations were mostly distributed
at the periphery of the core and were closer to other stations. Moreover, these stations
were rarely located on network shortcuts where metro stations were interconnected [53].
Overall, compared to other dimensions of built environment factors, the factors of diversity,
density, and location had a more significant association with the varying patterns of metro
station ridership.

5.3. Policy Implications

Urban rail transit stations serve as the pivotal nodes of urban public transportation
systems, and the pedestrian catchment areas around metro stations are high-density zones
of urban socioeconomic activities where residents and workplaces congregate [31,32]. Our
study in Tianjin, China, reveals that distinct patterns of ridership can be linked to different
station thematic functions, and there are variations in land use structure, population density,
and accessibility among various station types. Investigating the connection between
ridership patterns and built environment factors can provide valuable insights for urban
renewal and transit planning. For instance, in the peripheral regions of major cities, ROT
and ROHT stations typically have a relatively single land-use function, which impedes
the formation of comprehensive regional centers or town centers. In this regard, these
stations should focus on developing integrated communities and compound commerce
at the station core, which can enhance the livability of the areas by creating a regional
center. This strategy could attract more residents from the city center to migrate to the
suburbs [56], thereby mitigating issues related to residential and traffic congestion in
urban centers, optimizing the layout and spatial structure of urban land use, promoting
integration between urban and rural areas, and facilitating sustainable development across
both regions.

5.4. Limitations

Future studies should address the limitations of this study. Firstly, the lack of smart
card data for weekends prevented the analysis of varying patterns of ridership at metro
stations during weekends. Metro stations with a higher volume of weekend passengers
tend to be situated in city areas densely populated with commercial and entertainment
facilities, which attract a substantial number of residents [53]. As a result, metro stations in
these zones witness a higher frequency of leisure trips during weekends. On the contrary,
when metro stations are surrounded by businesses, companies, or primary and secondary
schools, they may experience a significantly lower weekend morning peak outgoing volume
and evening peak inbound volume. This is due to the decreased demand from individuals
who refrain from working or attending school over the weekend. Hence, future studies
incorporating weekend smart card data could facilitate a more comprehensive classification
of station types, such as commercial entertainment stations or office-centric stations, among
others. Secondly, the absence of longitudinal data acquisition limited existing studies
to cross-sectional data analysis, which can only show the correlation between the built
environment and varying patterns of metro station ridership. Future research should collect
longitudinal data to better understand the cause-and-effect relationship. Thirdly, due to
limited conditions, we lack data on public bike-sharing, employment data in industrial
concentration areas and other built environment factors. Future studies should aim to
collect these built environment data in order to enhance and refine measures of built
environment characteristics [59].

6. Conclusions

This study identifies six types of metro stations based on their ridership patterns, each
with unique functional characteristics. Various built environment factors have different
associations with these ridership patterns. Residential-oriented (ROT) stations were used
as the reference point for comparison. The proportion of commercial service facilities,
industrial and logistics-warehouse areas, population density, and location value have
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significant positive effects on employment-oriented type (EOT) stations, residence-oriented
hybrid type (ROHT) stations, employment-oriented hybrid type (EOHT) stations, and
residence-employment mixed type (REMT) stations. However, the building coverage ratio
has a significant negative effect on these stations. Notably, different built environment
indicators have varying degrees of effect on different types of stations. The density of bus
stations and the number of station entrances and exits have a significant positive effect
only on employment-oriented type stations. Network betweenness centrality and network
closeness centrality have a significant effect only on employment-oriented hybrid type
(EOHT) stations. According to different types of metro stations, the operational efficiency
of the metro can be improved and sustainable and coordinated development of public
transportation and land use can be achieved through reasonable land use planning and
rational allocation of urban infrastructure and public service facilities.

Supplementary Materials: The following supporting information can be downloaded at: https:
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