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Abstract: The development of hybrid technology can effectively solve the problems of the high pollu-
tion and energy consumption levels of automobiles. Therefore, an energy consumption prediction
and control algorithm for hybrid vehicles based on a minimum equivalent fuel consumption model
is proposed. The model’s battery power consumption is equivalent to the fuel consumption, and the
sum of the engine fuel consumption and the battery equivalent fuel consumption is established as the
objective function. By utilizing these factors, an innovative minimum equivalent fuel consumption
model was constructed that could be used to measure the energy efficiency of hybrid vehicles. The
longitudinal force result of braking force distribution control was obtained, as well as the energy
consumption prediction structure of a hybrid electric vehicle. The rolling resistance, air resistance,
and climbing resistance of the hybrid electric vehicles were calculated, and the energy consumption
control algorithm for hybrid electric vehicles was constructed according to the calculation results. The
experimental results indicated that under this research algorithm, the driving energy consumption
of hybrid electric vehicles was relatively low and the energy consumption and energy efficiency
measurements effectively met the actual demand, and the energy consumption prediction and control
results were good.

Keywords: minimum equivalent fuel consumption model; hybrid electric vehicle; energy consumption
forecast; control algorithm; longitudinal force

1. Introduction

The energy crisis and environmental pollution are becoming more and more serious,
and hybrid electric vehicles have gradually become a key topic in the field of automobile
research because of their low energy consumption and low emissions [1,2]. Hybrid electric
vehicles refer to vehicles whose driving systems are composed of two or more single driving
systems that can run at the same time, and the driving power of these vehicles is provided
by a single driving system, alone or jointly, according to the actual driving state of such a
vehicle [3]. Hybrid electric vehicles, as described, generally refer to vehicles that combine
electric motors with traditional internal combustion engines (diesel engines or gasoline
engines) and motors that are used as power sources, with some engines being modified
to use alternative fuels, such as compressed natural gas, propane, or ethanol. In order to
improve the energy consumption predictions for, as well as the control of, hybrid electric
vehicles, a minimum equivalent fuel consumption model has been used to replace that of a
traditional energy storage system, and energy consumption prediction and control have
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become the research focus of the authors; the current research achievements in this field are
shown in Table 1.

Table 1. Discussion and analysis results from the references.

Reference Research Findings Research Limitations

[4]

Based on Lagrangian theory, a
mathematical model for the

electromechanical coupling vibration of
the internal combustion engine and
generator for a series hybrid electric

vehicle was established.

The actual control effect of the model is
inconsistent with the predicted results,
and the energy control efficiency is low.
The comprehensiveness of the model

needs to be improved.

[5]

A global optimization method based on
an energy allocation strategy is

proposed that effectively solves the
optimization problem of the cost and

weight of the energy control.

The weight of the system equipment is
large, the cost of operation and

maintenance is high, and the output
efficiency of the entire energy storage

system is reduced.

[6]

A neural fuzzy system with real-time
offline optimization results was

constructed using K-cross allocation,
which effectively improves the

comprehensiveness of energy control
by evaluating vehicle energy efficiency
and setting penalty terms for battery

energy use.

A large amount of resources need to be
used to achieve offline optimization,

and the offline optimization results are
greatly limited by data and

environment, which cannot fully reflect
the actual situation, resulting in a poor

control effect.

[7]

Joint control of the entire vehicle system
avoids additional energy consumption
in unexpected situations and improves

energy efficiency and battery life.

In practical applications, there are
significant limitations regarding

computing resources and time that
cannot guarantee the real-time running

status of vehicles, resulting in poor
practical application results.

[8]

This study proposes a vehicle baseline
control and vehicle energy optimization

management strategy based on the
Pontryagin minimum principle that

effectively controls the vehicle’s
baseline driving and optimizes the

vehicle’s energy control performance.

Without considering whether the
equivalent fuel consumption is the
minimum value for calculating the
real-time energy consumption of

vehicles, the optimization effect of
vehicle energy configuration and

management is not significant.

[9]

Propose an energy management
strategy for supercapacitor hybrid

power systems to address the issue of
battery aging in hybrid electric vehicles.

By developing a hierarchical energy
optimization management framework,

we can effectively improve the
operational efficiency of automobiles

and reduce battery aging costs.

Focusing solely on reducing economic
costs without calculating the weight of
vehicle energy consumption factors, it
is impossible to monitor and predict

vehicle energy consumption in
real time.

[10]

This study proposes a fuzzy control
strategy to control the load change rate

of automotive battery systems.
Effectively improving the durability of

fuel cells and reducing vehicle
operating costs.

The lack of actual simulation of car
energy consumption resulted in control
strategies being unable to adjust energy
allocation and configuration strategies

under different driving conditions,
resulting in low energy

utilization efficiency.
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Table 1. Cont.

Reference Research Findings Research Limitations

[11]

A physical network system based on an
energy management strategy is
proposed to address the issue of

intelligent and electrified upgrades in
hybrid electric vehicles. The deep

reinforcement learning algorithm was
applied to visualize and analyze the
energy consumption parameters in

dynamic vehicle systems, thus
effectively improving the

energy efficiency.

In the process of training network data,
factors such as road conditions, driving

speed, starting and acceleration, and
the vehicle’s own energy supply and

consumption were not
comprehensively considered, making it

impossible to control the energy
consumption of hybrid vehicles

in real-time.

[12]

In order to achieve the electrification of
vehicle energy drive systems, a hybrid

electric vehicle energy management
system design is proposed to reduce the
energy consumption levels and extend

the service life of energy storage.

Unable to predict the future energy
consumption of the vehicle before its
operation, without controlling and

optimizing the conversion and
distribution of different energy sources

during vehicle operation, energy
utilization efficiency needs to

be improved.

[13]

This study applies the open-circuit
voltage method to estimate the power

output of lithium-ion batteries in
electric vehicles. The particle swarm

energy management algorithm is
applied to control the battery output
power, allocate battery energy fuzzy
quantities, effectively reduce energy
consumption rate, and improve the

real-time performance of vehicle
energy management.

Without combining actual driving data
to optimize the energy consumption

structure of automobiles, only
optimizing and adjusting the electric

vehicles cannot achieve the
synchronous development of
automobile energy prediction

and control.

Although the above research produced some results, certain problems still remain.
From an analysis of the content in Table 1, a hybrid electric vehicle energy consumption
prediction and control algorithm was proposed to improve the current situation. Taking
the sum of the engine fuel consumption and battery equivalent fuel consumption as the
objective function, a minimum equivalent fuel consumption model for hybrid electric
vehicles was established to predict the energy efficiency of a vehicle, establish an energy
consumption prediction structure for hybrid electric vehicles, and improve the compre-
hensiveness of energy consumption control results and energy utilization efficiency. By
calculating the rolling resistance, air resistance, and climbing resistance of hybrid electric
vehicles, we could establish an energy consumption control algorithm for hybrid electric
vehicles, improve the energy control efficiency, and reduce the energy consumption and
emissions of vehicles. Based on this, the innovative application of hybrid electric vehicle
energy consumption prediction algorithms and hybrid electric vehicle energy consumption
control algorithms can be used to predict the future operation of a vehicle, adjust the
vehicle’s energy management system in real time, achieve optimized energy management,
and achieve the best energy utilization efficiency and performance.
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2. Energy Consumption of a Hybrid Electric Vehicle under a Minimum Equivalent
Fuel Consumption Model
2.1. Building a Minimum Equivalent Fuel Consumption Model

The minimum equivalent fuel consumption model uses an instantaneous optimization
strategy. Its main idea is to equate battery power consumption with fuel consumption,
establish the sum of the engine fuel consumption and the battery equivalent fuel consump-
tion as the objective function, determine the equivalent factor coefficient, and distribute
the engine and battery power reasonably at every moment to minimize fuel consumption.
For an HEV with energy maintenance, the difference between the initial state of charge
and the terminal state of charge of the battery needs to be very small [14], and the energy
consumed by the battery can be ignored relative to the total energy. As an auxiliary energy
storage element, a battery acts as an energy buffer where all energy comes from the engine’s
fuel consumption. Any electric energy consumed in a battery’s discharge stage must be
supplemented by engine fuel at a later stage. In the future, the amount of electric energy
increased by a battery in a charging stage can be used to drive a vehicle through a pure
electric working mode, which is equivalent to saving fuel consumption by using a hybrid
controller [15,16]. Therefore, the equivalent fuel consumption of a minimum equivalent
fuel consumption model can be expressed as follows:

AA = AB + AC (1)

where AA represents the equivalent fuel consumption of the engine and battery, AB repre-
sents the engine’s fuel consumption, and AC represents the fuel consumption converted
from the battery’s energy consumption [17].

The fuel consumption of the engine and the fuel consumption converted by the battery
can be obtained by Formulas (2) and (3):

AB = DF × DH (2)

AC =
GH
GJ
× λ (3)

where DF represents the fuel consumption rate of the engine, %; DH is the expression of
the engine’s power, kW; GH is the expression of the battery’s power, kW; GJ represents the
low calorific value of the fuel; and λ stands for an equivalent factor.

For hybrid electric vehicles, energy management can be regarded as an optimal control
problem, and its optimization goal is to minimize fuel consumption [18]. The performance
index function can be expressed by the following formula:

DS =
∫
(AB + AC)× E(t)dt (4)

where E(t) represents the system control variable, taking the battery power as the system
control variable and the battery state of charge as the state variable, namely,

E(t) = PDG(t)× DS
X(t) = SCV(t)× DS

(5)

where PDG(t) represents the peak power of the engine, %, and SCV(t) represents the initial
value of the battery’s SoC. According to the minimum principle, if the control variable E(t)
is the global optimal solution of the optimal control problem, then Ê(t) must be satisfied so
that the Hamiltonian function takes the minimum value, that is:

Ê(t) = argminH(E(t), F(t), t) (6)
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where H(E(t), F(t), t) stands for the Hamiltonian, and its formula is:

H(E(t), F(t), t) = AA + ζE(t) (7)

In Formula (7), ζ represents a covariant. By comparing the equivalent fuel consump-
tion expression of this minimum equivalent fuel consumption model [19], the relationship
between ζ and the equivalent factor λ can be obtained as follows:

ζ =
−λGH

GJ
(8)

where ζ can be regarded as the equivalent factor after conversion. Then, the minimum
equivalent fuel consumption model can be constructed, and its expression is as follows:

MX = ζ × λ× H(E(t), F(t), t) (9)

The model regards a hybrid electric vehicle as a multi-input and multi-output system.
By modeling and analyzing the power flow of each energy component in a hybrid electric
system, the energy flow of a hybrid electric system can be controlled and optimized. An
energy management strategy is responsible for controlling and optimizing the hybrid
power system to achieve the goal of minimizing the equivalent fuel consumption [20].
In practice, this equivalent minimum fuel consumption model, combined with real-time
vehicle data, can dynamically control and optimize the energy flow of a hybrid power
system, which can realize optimal control.

2.2. Energy Efficiency Measurement of a Hybrid Electric Vehicle

The elements of each level were compared to obtain a comparative judgment matrix
between every two elements, and, finally, the consistency of this matrix was checked and
the energy efficiency measurement results of hybrid electric vehicles were measured.

Firstly, the element comparison matrix was constructed. On the basis of the minimum
equivalent fuel consumption model, it was assumed that the relative importance between
the energy-consuming node i and node j in a hybrid electric vehicle network is Mij. In the
minimum equivalent fuel consumption model, the calculation formula of Mij is as follows:

Mij =
1

Mji
×MX (10)

In Formula (10), Mij has seven criteria, namely, 1, 3, 5, 7, 9, 2468, and reciprocal values.
These standards were set based on the above algorithms, combined with models and
practical application scenarios, by analyzing the energy consumption of different nodes,
the functional requirements undertaken by each node in the network, the location of the
central node in the network, and the comprehensive security requirements. Here, 1 holds
the same importance for both node i and node j, 3 indicates that node i is slightly more
important than node j, 5 indicates that node i is more important than node j, 7 indicates that
node i is much more important than node j, 9 indicates that node i is much more important
than node j, and 2468 indicates the middle value near the standard. The reciprocal values
indicate that the ratio of the importance between node i and node j is inversely proportional
to that between node j and node i.

The formula for calculating the weight M̃i of each index is as follows:

M̃i =
n

∑
i=1,j=1

Mij (11)
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When calculating the weight, a consistency check is needed to maintain the consistency
of the overall thinking. The calculation expression for this consistency check is as follows:

CI =
λmax − n

n− 1
(12)

where CI represents the weight consistency index and λmax represents the eigenvalue of
the judgment matrix.

When the consistency index CI is less than or equal to 0.1, the judgment matrix meets
the consistency requirements; otherwise, it needs to be corrected. With the help of the
minimum equivalent fuel consumption model, the energy efficiency levels of the energy-
consuming nodes of hybrid electric vehicles are measured, and the calculation formula for
the i power system characteristic ratio under the j index is as follows:

Nij =
nij

n
∑

i=1,j=1
nij

(13)

where Nij represents the characteristic matrix and nij represents the i-th hybrid vehicle
network characteristic under j indexes.

Based on the above analysis, the energy efficiency measurement formula for hybrid
electric vehicles is as follows:

F(x) =
l

∑
i=1

pi

[
n

∑
z=1

(qz1 + qz2)

]
× Nij (14)

In Formula (13), l represents the number of motors in a hybrid vehicle, pi represents
the weight vector of the energy-consuming nodes in a hybrid vehicle, and qz1 and qz2
represent the weight vectors of the secondary indicators of the nodes.

2.3. Energy Consumption Prediction Algorithm for Hybrid Electric Vehicles

The energy consumption control algorithm for hybrid electric vehicles monitors the
energy management system of a vehicle in real time, adjusts the energy distribution and
deployment strategy according to different driving conditions, and achieves the best energy
utilization efficiency. The energy consumption prediction algorithm for hybrid electric
vehicles refers to an algorithm that simulates and predicts the energy consumption of a
hybrid electric vehicle to achieve the best energy utilization efficiency. The algorithm is
mainly based on vehicle performance parameters, road conditions, driving conditions, etc.,
and through predicting the future operation of a vehicle, optimized energy management
and maximized economic benefits are realized [21,22]. The core element of the energy
consumption prediction algorithm for hybrid electric vehicles is the energy consumption
model. The model can predict a vehicle’s energy consumption with high accuracy by con-
sidering many factors such as vehicle dynamics, the energy flow equation, and the battery’s
chemical reactions. At the same time, on the basis of a large amount of actual driving
data, the energy consumption model has been optimized and trained, which improves its
prediction accuracy and precision. The energy consumption prediction algorithm flow of
hybrid electric vehicles is shown in Figure 1:
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Through the minimum equivalent fuel consumption model, the stress on the plane
during the driving of a hybrid electric vehicle can be obtained, and the lateral forces and
longitudinal forces of a hybrid electric vehicle’s wheels can be obtained by analyzing the
stress in detail. The lateral and longitudinal forces of car wheels refer to the two different
directions of force that the wheels are subjected to during driving. Lateral force refers to
the force acting on the side of the wheel, also known as lateral force or lateral friction. It
is the main force generated when a vehicle turns, with its direction perpendicular to the
direction the vehicle is travelling and pointing towards the center of where the vehicle
turns. The magnitude of lateral force depends on factors such as vehicle speed, contact
angle between wheels and road surface, road roughness, and the height of the vehicle’s
center of gravity. Longitudinal force refers to the force acting in the front and rear directions
of the wheel, also known as longitudinal friction. It is the main force generated by vehicles
during acceleration, braking, and climbing, with its direction parallel to the direction of
the vehicle movement. The magnitude of longitudinal force depends on factors such as
road friction coefficient, contact pressure between the wheels and road surface, and wheel
grip. According to the results of the lateral and longitudinal forces of the wheels, feedback
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control is then adopted to reduce the control error caused by the change in the lateral force
of wheels on the braking force distribution. The longitudinal force calculation formula for
the braking force prediction distribution of a hybrid electric vehicle is as follows:

Fud = Fb f × Fc f × F(x) (15)

In Formula (15), Fud represents the longitudinal force of the predicted distribution
of the automobile’s braking force, Fb f represents the matrix parameter for the braking
force control efficiency, and Fc f represents the initial longitudinal force of the
automobile’s wheels.

The system obtains the longitudinal force results for the braking force distribution
control through calculations, and on this basis, the longitudinal force results of the distribu-
tion control to reduce the following error of the braking force’s expected target are relaxed.
The feasible region of the longitudinal force distribution of the automobile’s wheels is set,
and the brake actuator in the system is constrained by the wheel friction circle to ensure
the stability of the feasible region of the longitudinal force distribution of the automobile’s
wheels. According to the calculation results, the energy consumption prediction structure
of a hybrid electric vehicle can obtained, as shown in Figure 2.
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According to the structure shown in Figure 2, through the energy consumption pre-
diction of a hybrid electric vehicle, the future energy consumption of a vehicle can be
predicted before it is run so as to formulate the best energy management strategy, and
thus the best energy utilization efficiency and fuel economy are achieved. In the process of
realizing the energy consumption prediction for a hybrid electric vehicle, many factors need
to be considered, such as road conditions, driving speed, starting and acceleration, and the
energy supply and consumption of the vehicle itself. At the same time, the algorithm also
needs to control the energy consumption of a hybrid electric vehicle in real time and adjust
the energy control strategy according to different driving conditions to achieve the best
energy utilization efficiency.

2.4. Energy Consumption Control Algorithm for a Hybrid Electric Vehicle

The energy consumption prediction algorithm of a hybrid electric vehicle realizes
optimized energy management by predicting the future operation of a vehicle. The energy
consumption control algorithm of a hybrid electric vehicle refers to an algorithm that
achieves the best energy consumption and fuel consumption by optimizing and regulating
the energy management system of a hybrid electric vehicle. The algorithm mainly controls
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and optimizes the conversion and allocation of different energy sources during a vehicle’s
operation so as to achieve the highest utilization efficiency of the vehicle’s energy. The core
element of the energy consumption control algorithm of a hybrid electric vehicle is the
energy management strategy. This strategy aims to achieve the best energy distribution
and deployment by monitoring and adjusting the power flow of the internal combustion
engine, battery, motor, and other energy components in real time, so as to achieve the goal
of minimizing the equivalent fuel consumption of a vehicle. At present, the model-based
predictive control algorithm is mainly used for the energy management of hybrid electric
vehicles. By modeling and predicting vehicle dynamics and energy flow and combining
them with the real-time data from on-board sensors, the algorithm can control and adjust
vehicle energy management in real time to achieve the best energy control. The energy
consumption control algorithm flow of hybrid electric vehicles is shown in Figure 3.
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The driving process of a hybrid electric vehicle is affected by complex road conditions
and the surrounding environment. In order to reasonably distribute driving power, realize
the smooth driving of hybrid electric vehicles, and enhance the reliability of the braking
energy recovery control system, the identification and power control of an automobile’s
brake pedal are adopted. Considering the characteristics of the brake pedal energy recovery
control signal of a hybrid electric vehicle, the relevant parameters of the power system
are calculated according to a real driving situation for the vehicle, and the input signals
generated by each parameter are identified. The basic operation theorem of hybrid electric
vehicle power systems can be described using mathematical formulas. The vehicle’s
resistance, traction, and speed are explained below.
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We calculated the running resistance of a hybrid electric vehicle, including its tire
rolling resistance, air resistance, and climbing resistance. When a vehicle is driving on soft
road, the deformation of the road surface is large and the friction loss between the tire and
the ground is low. The calculation process of the rolling resistance Fr is recorded as follows:

Zr = P× fr × Fud (16)

In Formula (16), P represents the vertical load at the center of the wheel and fr
represents the rolling resistance index. When the vehicle is on a slope, the rolling resistance
is as follows:

Zr
′ = P× fr cos α (17)

In Formula (17), α represents the inclination angle of the road’s surface.
The air resistance is influenced by many factors, with shape resistance having the

greatest impact, followed by the interference resistance, internal circulation resistance,
induced resistance, and friction resistance caused by the surface protrusions. The derivation
process of the air resistance Kw is described as follows:

Kw = ρ× A f × CD(v + vw)
2 × Zr

′ (18)

In Formula (18), ρ represents the air density, A f represents the windward area value,
CD represents the air resistance index, v represents the vehicle speed, and vw represents the
wind speed variable of the vehicle’s movement.

When moving uphill, the gravity of a vehicle will move along the slope, resulting in
the climbing resistance Fg, which is recorded as follows:

Fg = m× sin α× Kw (19)

In Formula (19), m represents the volume of the sloped surface. Accounting for the
tire rolling resistance, air resistance, and climbing resistance, and thus building the energy
consumption control, the calculation formula is as follows:

GK =

(
Zr + Kw + Fg

)
Nw

(20)

In Formula (20), Nw represents the driving tire speed, and according to the control
result, the energy consumption control structure of a hybrid electric vehicle is obtained, as
shown in Figure 4.
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The energy consumption control structure of a hybrid electric vehicle can adjust the
working state of a motor and engine in real time according to the driving conditions
and road conditions of the vehicle so as to achieve the best energy utilization efficiency.
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To summarize, there is an interdependence between the energy consumption prediction
algorithm and the energy consumption control algorithm for hybrid electric vehicles. The
forecasting algorithm provides key forecasting information and a decision-making basis for
the control algorithm, and the control algorithm adjusts the vehicle’s energy management
system in real time according to the results of the forecasting algorithm to achieve the best
energy utilization efficiency and performance. Real-time monitoring and adjusting the
energy management system of a hybrid electric vehicle achieves the goal of optimizing
energy consumption and fuel consumption. The algorithm has the advantages of high
efficiency, accuracy, and adaptability, and it has wide application prospects and market
demand in the performance index, energy savings, and environmental protection of hybrid
electric vehicles.

3. Simulation Experiment and Results

In order to verify the effectiveness of the energy consumption prediction and control
algorithm for hybrid electric vehicles using the minimum equivalent fuel consumption
model, a simulation experiment was carried out, and the simulation test was carried out
by combining CarSim 2020 software and MATLAB 2019b software. The selected hybrid
vehicle turned out to be a series−parallel hybrid vehicle with a P1 + P3 structure, as shown
in Figure 5.
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Figure 5. Series−parallel hybrid electric vehicle with a P1 + P3 structure.

A series−parallel hybrid electric vehicle with a P1 + P3 structure (as shown in Figure 5)
was used as the simulation experimental object. In CarSim, the constant speed was set to
80 km/h, and the road adhesion index was set to 0.75. The configuration of simulation
experiment parameters is shown in Table 2.

The parameter components or corresponding functions built into the experimental
test were as shown in Table 2. Vehicle mass (kg) refers to the weight of the vehicle itself,
including the body, engine, chassis, tires, etc. The setting of vehicle mass usually takes into
account factors such as the vehicle’s load-bearing capacity and safety performance. Height
of centroid (m) refers to the height of the vehicle’s center of gravity, which usually affects
the stability, handling, and other aspects of the vehicle. A lower height of the center of mass
usually helps improve the stability and handling of the vehicle. Wheelbase (mm) refers to
the distance between the centerline of the wheels, which usually affects the smoothness
and comfort of the vehicle. A longer wheelbase usually helps to improve the smoothness
and riding comfort of the vehicle. Maximum power (kW) refers to the maximum power
output of the engine, which usually affects the vehicle’s acceleration performance, climbing
ability, and other aspects. Higher maximum power usually helps to improve the vehicle’s
power performance. Maximum speed (r/min) refers to the maximum speed that a vehicle
can reach, which usually affects the driving efficiency, fuel consumption, and other aspects
of the vehicle. A higher top speed usually helps to improve the driving efficiency of the
vehicle. Other parameters used were 16 independent 12-bit resolution double-buffered
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D/A converters with an output range of 0~+10 V and a digital input and output capacity
of 12 channels.

Table 2. Parameter configuration table for the simulated experimental objects.

Serial Number Parameter Configuration Value or Function

1 Vehicle mass (kg) 1100

2 Height of centroid (m) 0.8

3 Wheelbase (mm) 2640

4 Maximum power (kW) 14

5 Maximum speed (r/min) 4620

6 Pressure transducer Real-time measurement of the pressure of the
automobile wheel brake disc

7 Electronic brake pedal
position sensor

Collect the position of the brake pedal and use it
as an output

8 Engine−generator 22/61

9 Engine−(clutch)−differential 50/61

10 Driving
motor−differential 58/21

Before completing the simulation experiment, this study selected 100 sets of training
sample data for the simulation platform to simulate the energy consumption of 100 km
driven by ordinary cars and hybrid cars, respectively, as shown in Figure 6.
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Figure 6. Test results of the different automobiles’ driving energy consumption.

According to Figure 6, this experiment was mainly based on the simulation of 100 km,
and the energy consumption of the two models could be basically restored. The energy
consumption of the ordinary cars was large, and the more mileage, the higher the power
consumption, while the driving energy consumption of the hybrid electric vehicles was
small. After the mileage exceeded 60 km, the power loss was reduced to less than 1 kW,
and the stable power loss was maintained, which could provide a stable driving force for
the vehicle.

In the above experimental environment, the fluctuations in the energy consumption
and energy efficiency for the different time periods were measured by using the proposed
algorithm, and it was compared with the actual fluctuations in the energy consumption
and energy efficiency to determine whether the fluctuations in the measurement results
obtained by the proposed algorithm were consistent with those of the actual situation. The
comparison results for the energy consumption and energy efficiency measurements are
shown in Figure 7.
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Figure 7. (a) Measurement results of the actual energy consumption and energy efficiency. (b) Energy
efficiency measurement results for the proposed algorithm.

According to Figure 7, the energy consumption and energy efficiency measurement
results obtained by the proposed algorithm were largely consistent with the actual results,
which shows that the energy consumption and energy efficiency measurement results
of the proposed algorithm met the actual needs. The reasons for this are that the pro-
posed algorithm used the minimum equivalent fuel consumption model to assign weights
to the energy efficiency of the nodes, constructed a hierarchical structure of the energy
consumption of hybrid electric vehicles, compared the elements at each level, obtained
a comparative judgment matrix between every two elements, and, finally, verified the
consistency of the matrix and measured the energy efficiency measurement results of the
hybrid electric vehicles.

In order to show the applicability of the proposed algorithm, through simulation
experiments, it was compared with the [6] transferable representation control algorithm
and the [7] collaborative control algorithm. We set the experimental time to 30 s and the
initial speed to 10 m/s, stepped on the vehicle’s accelerator pedal to accelerate to 40 m/s,
gave the front wheel a 10-degree angle, and maintained the 10-degree angle until the end of
the simulation. Taking the energy management efficiency of hybrid electric vehicles as an
example, we analyzed the practical application effects of three algorithms. The comparison
results for management efficiency are shown in Figure 8:

Sustainability 2023, 15, x FOR PEER REVIEW 14 of 17 
 

In order to show the applicability of the proposed algorithm, through simulation ex-
periments, it was compared with the [6] transferable representation control algorithm and 
the [7] collaborative control algorithm. We set the experimental time to 30 s and the initial 
speed to 10 m/s, stepped on the vehicle’s accelerator pedal to accelerate to 40 m/s, gave 
the front wheel a 10-degree angle, and maintained the 10-degree angle until the end of the 
simulation. Taking the energy management efficiency of hybrid electric vehicles as an ex-
ample, we analyzed the practical application effects of three algorithms. The comparison 
results for management efficiency are shown in Figure 8: 

 
Figure 8. Comparison results of energy management efficiency of different algorithms [6,7]. 

From Figure 8, it can be seen that after applying the algorithm in this article, the en-
ergy management efficiency of automobiles increased with time, and the management 
efficiency was above 60%, with the highest value reaching 97%. As the authors of [6] show, 
as the transferable representation control algorithm increases over time, management ef-
ficiency gradually decreases, with a minimum value of 40%. The energy management ef-
ficiency of the [7] collaborative control algorithm showed irregular changes over time, 
ranging from 30% to 55%. From this, it can be seen that the energy management efficiency 
of the method in this article is high and the practical application effect is good. This is 
because the proposed algorithm adopts an equivalent minimum fuel consumption model 
for optimization, which can effectively consider the energy flow and loss between differ-
ent components of hybrid electric vehicles, thereby improving energy utilization effi-
ciency. The model-based predictive control method is adopted to achieve optimal alloca-
tion and control of energy by predicting the vehicle’s status for a period of time in the 
future. This method can better adapt to different driving conditions and changes in road 
conditions, and can be adjusted online based on real-time data, thereby improving energy 
efficiency. However, the transferable representation control algorithm [6] and the collab-
orative control algorithm [7] did not fully consider the energy flow and loss between dif-
ferent components of hybrid electric vehicles, resulting in a low energy management effi-
ciency. 

The above test conditions remained unchanged; taking the energy consumption of 
hybrid electric vehicles as an example, the prediction and control results for the three al-
gorithms are shown in Figures 9 and 10, respectively. 

Figure 8. Comparison results of energy management efficiency of different algorithms [6,7].



Sustainability 2023, 15, 9394 14 of 17

From Figure 8, it can be seen that after applying the algorithm in this article, the
energy management efficiency of automobiles increased with time, and the management
efficiency was above 60%, with the highest value reaching 97%. As the authors of [6]
show, as the transferable representation control algorithm increases over time, management
efficiency gradually decreases, with a minimum value of 40%. The energy management
efficiency of the [7] collaborative control algorithm showed irregular changes over time,
ranging from 30% to 55%. From this, it can be seen that the energy management efficiency
of the method in this article is high and the practical application effect is good. This is
because the proposed algorithm adopts an equivalent minimum fuel consumption model
for optimization, which can effectively consider the energy flow and loss between different
components of hybrid electric vehicles, thereby improving energy utilization efficiency.
The model-based predictive control method is adopted to achieve optimal allocation and
control of energy by predicting the vehicle’s status for a period of time in the future. This
method can better adapt to different driving conditions and changes in road conditions,
and can be adjusted online based on real-time data, thereby improving energy efficiency.
However, the transferable representation control algorithm [6] and the collaborative control
algorithm [7] did not fully consider the energy flow and loss between different components
of hybrid electric vehicles, resulting in a low energy management efficiency.

The above test conditions remained unchanged; taking the energy consumption of
hybrid electric vehicles as an example, the prediction and control results for the three
algorithms are shown in Figures 9 and 10, respectively.
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As can be seen in Figures 9 and 10, the energy consumption prediction results and
control results for the proposed algorithm are good, and could quickly restore stability after
short-term oscillation. Reference [6] had a higher peak value for transferable representation
control algorithms and reference [7] for collaborative control algorithms, and the oscillation
process consumed a lot of time, which increased the probability of vehicle turning failure.
The proposed algorithm could achieve the best fuel consumption and energy utilization
efficiency, and it reduced vehicle energy consumption and exhaust emissions. At the same
time, the energy consumption and fuel consumption were minimized and the use cost
was significantly reduced. This is because the algorithms of both [6,7] were based on
traditional control theory and modeling methods, which make it difficult to fully consider
the nonlinear characteristics and complexity of the vehicle’s driving process, resulting
in low accuracy and stability for the energy consumption prediction and control results.
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The proposed algorithm adopts a model predictive control method that can be adjusted
and optimized in real time based on the predicted results, making energy consumption
control more accurate and stable. At the same time, the algorithm also considers the
optimization of energy management strategies and power allocation strategies, which can
enable the vehicle to achieve the best fuel consumption and energy utilization efficiency,
while ensuring performance.
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4. Conclusions and Prospects
4.1. Conclusions

In this paper, the energy consumption prediction and control algorithm for hybrid
electric vehicles based on the minimum equivalent fuel consumption model was proposed,
and the following conclusions were obtained through our research:

(1) The driving energy consumption of a hybrid electric vehicle is small, and after the
mileage exceeds 60 km, the power consumption is reduced to less than 1 kW. When
stable power consumption is maintained, stable driving power for a vehicle can
be provided.

(2) The measurement results of the energy consumption and efficiency are largely consis-
tent with the actual results, which shows that the measurement effect of the energy
consumption and efficiency of the proposed algorithm meets the actual needs.

(3) The prediction and control results for energy consumption are good, and the algorithm
can quickly restore stability after short-term shocks, with good results.

4.2. Prospects

Regarding the problem of energy consumption predictions and control for hybrid
electric vehicles, we will continue our research, the specific contents of which are as follows:

(1) The research should analyze the dynamics of the core component—the dual planetary
hybrid transmission—and establish a dynamic model of the transmission; integrate it
with other component models, including the engine, power battery, dual motors, and
vehicle longitudinal dynamic model; and establish a forward simulation model for a
power split hybrid mining dump truck.

(2) It is necessary to carry out bench tests and real vehicle tests to verify the control effect
of the algorithm. At the same time, whether the model is in the loop or the hardware
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is in the loop, there is still a certain gap between the added noise signal and the real
signal, and this needs further verification for the control strategy and control effect.

(3) To design the energy management control strategy, it is necessary to fully consider
factors such as battery aging and battery peak power, and it is necessary to optimize
the design from multiple dimensions in combination with the power battery.
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