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Abstract: Manufacturing agglomeration is an important manifestation for cities to enhance their com-
petitiveness, and the resource and environmental effects caused by agglomeration have become a hot
topic. Based on the relevant data of prefecture-level cities in the Yellow River Basin from 2006 to 2019,
this study used a Markov transition matrix to study the characteristics of carbon emission transfer
and constructed an SDM model to analyze the effect of manufacturing agglomeration on carbon
emissions and spatial spillover; the study drew the following conclusions: carbon emissions and the
concentrations of manufacturing industries in the Yellow River Basin are on the rise, with carbon
emissions showing a distribution pattern of “downstream > midstream > upstream”. Manufacturing
agglomeration has a significant positive influence on carbon emissions, reflecting the necessity for
the green transformation of manufacturing agglomeration. Manufacturing agglomeration has a
spatial spillover effect on carbon emissions. The direct effect is positive, and the indirect effect is
negative. The polarization effect caused by agglomeration weakens the development degree of neigh-
boring areas, which may reflect the technological spillover effect of manufacturing agglomeration on
neighboring areas. Manufacturing agglomeration has regional heterogeneity in carbon emissions.
Compared with the middle and lower reaches of the Yellow River Basin, the effect is more obvious in
the upper reaches. The study proposes countermeasures in terms of optimizing the spatial pattern of
the manufacturing industry and other aspects to provide references for promoting the transformation
development of the manufacturing industry in the Yellow River Basin.

Keywords: manufacturing agglomeration; carbon emission; influential effect; spatial spillover;
Yellow River basin

1. Introduction

In recent years, global warming has attracted a lot of attention from many scholars.
Carbon emissions from the massive consumption of fossil energy are considered to be a
major cause of global warming [1]. Statistical Review of World Energy (71st edition), which
was published by BP, shows that global energy consumption grew by 5.8% in 2021 due to
accelerating economic activity. Therefore, a global consensus has been reached regarding
vigorously promoting clean energy, improving energy efficiency, and reducing carbon emis-
sions [2]. As a major emitter of carbon, China has fulfilled its obligations under the Paris
Agreement and assumed its responsibilities as a major country. It has set a clearly defined
goal, which is to reach its carbon peak in 2030 and carbon neutrality in 2060 [3]. As a
significant ecological security barrier and economic development region [4], the low-carbon
economic development of the Yellow River Basin is of vital importance to the achievement
of China’s dual carbon goal. The low development level, high proportion of high energy-
consuming industries and unreasonable spatial layout constrain high-quality regional
development [5]. The Yellow River Basin consumed 35.1% of the country’s fossil energy in
2019 and produced 40.5% of the country’s total carbon emissions. As an important energy
base and industrial agglomeration area in China, it has a good manufacturing foundation
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and a well-developed system. The manufacturing industry occupies a dominant position in
driving the regional development of basin, but the arbitrary structure of the manufacturing
industry, insufficient innovation and R&D capabilities, and insufficient attention to technol-
ogy introduction and transformation have constrained the low carbon development of the
manufacturing industry [6]. Relevant studies suggest that manufacturing agglomeration
characterized by technological innovation can promote the collaborative innovation of
enterprises, strengthen resource utilization, and thus reduce carbon emissions. However,
resource and energy endowments attract the spatial agglomeration of polluting industries,
with no technological progress, knowledge spillover or optimization of resource allocation,
which may intensify the competition for resources and factors in the agglomeration area
and expand energy consumption to some extent. Therefore, it is important to study the
effect of manufacturing agglomeration on carbon emissions in the Yellow River Basin to
clarify the connection between manufacturing agglomeration and carbon emissions, and to
promote the low-carbon transformation of the manufacturing industry.

The carbon dioxide content generated by energy consumption is the highest in green-
house gas emissions, so carbon dioxide emissions are used as an index to measure green-
house gas emissions and are referred to as carbon emissions. In addition to the total carbon
emissions in the standard sense, for convenience, indicators such as carbon productivity
and carbon emission intensity are also introduced [7–9]. Carbon emission measurements
are calculated mainly by IPCC methods, input–output methods, MEIC models, etc. Among
them, the IPCC method is widely used [10–13]. Many scholars have calculated the carbon
emissions of different industries and sectors, such as industry, agriculture, tourism, and
transportation. Studies on carbon emissions from land use [14], carbon emissions from
energy consumption [15], and embodied carbon emissions from trade [16] have also grad-
ually increased. Regarding the influencing factors of carbon emissions, related research
focuses on urbanization [17], technological innovation [18], energy consumption scale [19],
and industrial agglomeration [20], these studies use the LMDI model [21], spatial econo-
metric model [22] and threshold effect to conduct in-depth research. According to IPCC
(2019) data, China’s carbon emissions from manufacturing accounted for 53.27% of the
country’s total carbon emissions in 2017. Manufacturing agglomeration is an important
factor affecting carbon emissions. There are three main views on the relationship.

The first view is that manufacturing agglomeration will increase carbon emissions.
This phenomenon generally appears in the early stage of manufacturing agglomeration.
On the one hand, competing regions blindly pursue economic development and may lower
environmental standards to attract industrial agglomeration [23]. Hence, the technical level
of enterprises is not high, the production efficiency and energy utilization efficiency are low,
and the massive expansion of production capacity is accompanied by severe pollution. On
the other hand, agglomeration causes a shortage of land, labor, energy and other resources,
illogical resource allocation, and vicious competition between enterprises. The negative
externality effect of industrial agglomeration begins to become prominent, and the industry
is characterized by “low efficiency and high energy consumption”, resulting in a “crowding
effect” [24], thus increasing carbon emissions. At the same time, in most manufacturing
agglomeration areas, the centralized treatment of pollutants has not been realized, and the
rate of pollutant treatment is low, further aggravating pollution [25].

The second view is that manufacturing agglomeration will reduce carbon emissions.
This phenomenon generally appears in the later period of manufacturing agglomeration.
On the one hand, manufacturing agglomeration can improve regional labor productivity
and increase residents’ income and fiscal revenue. Residents have a higher demand for
a better environment, forcing the government to adopt stricter environmental policies to
protect the environment [26,27]. Strict environmental regulations will bring “innovation
compensation” to companies, further encouraging them to develop clean technologies. On
the other hand, through the mechanism of sharing, matching, and learning, agglomeration
promotes technological innovation, improves labor productivity, and strengthens the ex-
change and interaction of knowledge, technology, and capital among enterprises [28,29],
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resulting in an agglomeration spillover effect. In addition, the agglomeration of upstream
and downstream industries in a geographical space facilitates the centralized production
of products and the centralized treatment of pollutants [30] and achieves improvement of
energy infrastructure, thus reducing carbon emissions [31].

The third view is that there is an upside-down U-shaped relation between manufac-
turing agglomeration and carbon emissions [32]. As the degree of manufacturing agglom-
eration increases, carbon emissions first increase and then decrease. In the early stage of
manufacturing agglomeration, the structure of industry tends to be “pollution intensive,”
and carbon emissions increase with the expansion of the production scale of enterprises.
In the middle and later stages of manufacturing agglomeration, the industrial structure is
gradually optimized, and energy consumption decreases in the region. Overall, the effect
of manufacturing agglomeration on carbon emissions is not a single linear relationship but
results from the combined effect of the agglomeration effect and crowding effect [33]. As
the level of manufacturing agglomeration increases, the positive effects, such as knowledge
and technology spillover and cooperative competition brought by agglomeration, gradually
outweigh the negative effects, such as congestion effect and energy consumption caused by
excessive competition, and carbon emissions are reduced; otherwise, carbon emissions will
be increased. There are also regional differences in the relationship between manufacturing
agglomeration and carbon emissions, but they do not show a certain regularity. The main
reason is that there are many factors affecting the relationship between manufacturing
agglomeration and carbon emission, such as city size, economic development level, in-
dustrial structure, etc., all of which directly or indirectly affect the relationship between
the two, making it difficult to sort out and summarize a general rule. The specialization
of manufacturing agglomeration is significant in small cities, while the diversification of
manufacturing agglomeration is more significant in large and medium-sized cities [34]. In
developed countries such as Japan and the United States [35,36], manufacturing can form
industrial clusters with other industries, promote information sharing and technological
innovation, and reduce carbon emissions. The economic foundation of Western China
is weak, the technological innovation ability is poor, the positive externalities generated
by agglomeration are small, and the crowding effect is obvious. On the other hand, the
Yangtze River Delta region of China has a solid economic foundation, a large number of
scientific research talents, strong positive externalities brought by agglomeration, and less
carbon emissions.

In general, the research on manufacturing agglomeration and carbon emissions in the
relevant literature at home and abroad has made progress, but there are still various debates
on the connection between manufacturing agglomeration and carbon emissions, and the
conclusions vary by region and time scale. At the same time, there are relatively few studies
on the effect of manufacturing agglomeration on carbon emissions in the Yellow River
Basin. The literature that covers regional heterogeneity analysis is also relatively scarce.
In this paper, the Markov transition matrix was used to study the transfer characteristics
of carbon emission types, and the SDM model was constructed to empirically analyze
the effect of manufacturing agglomeration on carbon emission and the spatial spillover
effect and to study the regional heterogeneity of manufacturing agglomeration on carbon
emission. This paper intends to make contributions from three aspects: (1) It considers
regional differences in carbon emissions from the perspective of prefecture-level cities and
enriches the research framework of the carbon emissions of prefecture-level cities. (2) We
further elucidate the spatial spillover effect and regional heterogeneity of manufacturing
agglomeration on carbon emissions in the Yellow River Basin. (3) The Markov transition
matrix was used to analyze the transfer rules of carbon emission types in different regions
of the Yellow River Basin, providing countermeasures for carbon emission reduction.

The remaining paper is organized as follows: the second section is the data and
methods, the third section is the empirical analysis, the fourth section is the discussion, and
the fifth section is the conclusion and countermeasures.



Sustainability 2023, 15, 9386 4 of 18

2. Materials and Methods
2.1. Study Area

According to the constructed index system, 77 prefecture-level cities in the Yellow
River Basin are taken as research samples (Figure 1). Considering that Sichuan belongs to
the Yangtze River Economic Belt, Hulunbuir, Chifeng, Tongliao and the eastern 4 League
cities of Inner Mongolia of Hinggan League belong to the northeast, the study area of this
paper is determined to be eight provincial administrative regions except Sichuan. The
upstream region are Ningxia, Qinghai, Inner Mongolia and Gansu, the midstream region
are Shaanxi and Shanxi, and the downstream region are Henan and Shandong.
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2.2. Research Methods
2.2.1. Markov Transition Matrix

The carbon emission transfer pattern of prefecture-level cities in the Yellow River basin
is studied by the Markov transfer matrix [37], which is calculated as follows:

probt,t+d
uv =

T−d
∑

t=T0

nt,t+d
uv

T−d
∑

t=T0

nt,t+d
u

(u = 1, 2, . . . , k; v = 1, 2, . . . , k; t = T0, . . . , T − d) (1)

where k represents the number of grades of carbon emission types. prob is the transfer
probability of carbon emission type. According to the natural break point method, this
paper divides carbon emissions into four types: I, II, III and IV. Therefore, k is equal to 4; d
represents the transfer period of cities between different levels; nuv denotes the number of
cities shifting from echelon u of year t to echelon v of year t + d; and nu denotes the number
of cities belonging to the U-echelon in year t.
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2.2.2. Spatial Autocorrelation

Moran’s I index reflects the correlation degree of attribute values in the whole region.
The index was used to analyze the spatial aggregation of carbon emissions in the Yellow
River Basin. The calculation formula is as follows:

Moran′s I =

n
n
∑

i=1

n
∑

j=1
wij(xi − x)

(
xj − x

)
n
∑

i=1

n
∑

j=1
wij∑n

i=1(xi − x)2
(2)

where n is the number of samples; x is the sample mean; wij is the element in the spatial
weight matrix, and the spatial weight used in this paper is the Queen spatial weight matrix.

2.2.3. Spatial Panel Durbin Model

Compared with the traditional OLS regression, the spatial panel model can consider
the influence of spatial interaction factors and effectively solve the possible model estima-
tion bias [36]. Therefore, to further study the spatial dependence and spillover effect of
manufacturing agglomeration on carbon emissions, this paper adopts the spatial Durbin
model [26]:

ln CEit = αi + ρ
n

∑
i=1

Wij ln CEit + ϕXit + θ
n

∑
i=1

WijXit + ui + δi + εit (3)

where lnCEit denotes the carbon emissions, i and j both represent urban individuals, n is
the number of cities, αi is the constant term, ρ is the spatial regression coefficient, X is the
independent variable, ϕ is the regression coefficient of the independent variable, ui and
δi are city fixed effect and time fixed effect, θ is the coefficient of its spatial lag term, εit is
the random disturbance term, Wij represents the weight matrix, and WijXit is its spatial
lag term.

2.3. Data Sources

Due to the lack of data for some prefectures resulting from administrative division
adjustment and missing data, this paper selects 77 prefectures as the study area after the
exclusion process. The data are mainly from the 2006 to 2019 China Statistical Yearbook and
the statistical yearbooks of each city (district), etc. For missing data, the linear interpolation
method is used to fill in the data gaps [38].

2.3.1. Explained Variables: Carbon Emission (CE)

The explained variable is carbon emissions. Eight energy sources, including raw coal,
coke, crude oil, gasoline, kerosene, diesel, fuel oil, and natural gas, are selected to calculate
the total carbon emissions according to the IPCC (2006) [38]:

CEi =
8

∑
i=1

(CO2)i =
8

∑
i=1

Ei × SCCi × CEFi (4)

CEi represents total carbon emissions; i represents the type of fossil energy; Ei, SCCi,
and CEFi represent the consumption of Class i fossil energy, the conversion coal coefficient
of fossil energy, and the carbon emission coefficient, respectively.

2.3.2. Core Explanatory Variables: Location Quotient (LQ)

According to the relevant research literature at home and abroad, Location quotient,
Herfindahl Hirschmann index (HHI), and EG index are commonly used to measure the
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degree of industrial agglomeration. Among them, LQ is widely used, as it can better reflect
the spatial distribution of geographical factors [39]. The measurement method is as follows:

LQ =

( Lnitj
n
∑

j=1
Lnitj

)/(

m
∑

i=1
Lnitj

n
∑

j=1

m
∑

i=1
Lnitj

)

 (5)

Ln is the number of employees in industry j in year t of city i; n is the number of
industries; and m is the number of cities.

2.3.3. Control Variables

According to the previous literature, the carbon emission level of the region is affected
not only by industrial energy consumption, but also by the level of economic development
(PIN), population density (PD), industrial structure (IS2), land urbanization (URB), and gov-
ernment macroeconomic regulation (GR) [40–42]. The process of economic development is
accompanied by energy consumption. The environmental Kuznetz curve suggests an in-
verted U-shaped relationship between economic development and carbon emissions [43,44].
The increase in population density will aggravate the energy consumption of production
and day-to-day activities and increase carbon emissions. As a highly energy-consuming
and polluting industry, the secondary industry has a great impact on carbon emissions [45].
Government macroeconomic regulation and the level of urbanization have an important
impact on carbon emissions [46]. URB was measured by the proportion of urban construc-
tion land in the urban areas. IS2 was measured by the ratio of secondary industry output
value to GDP; PIN was measured by regional GDP per capita. PD was measured by the
number of people per square kilometer; GR was measured as the ratio of fiscal expenditure
to GDP. The description of the relevant variables in the regression is shown in Table 1.

Table 1. Variable declaration.

Variables Obs Mean SD Min Max

lnCE 1077 5.967 1.165 2.117 8.4
lnLQ 1077 −0.313 0.691 −3.713 0.969
lnPIN 1077 10.403 0.74 7.926 12.456
lnPD 1077 5.578 1.088 1.547 7.273
lnIS2 1077 −0.707 0.272 −1.997 0.112
lnGR 1077 −1.735 0.632 −3.155 1.354

lnURB 1077 −3.072 1.241 −8.517 −0.064
Note: Obs, SD, Min, and Max. represents observations, standard deviation, minimum, and maximum.

3. Results
3.1. Spatial and Temporal Distribution of Carbon Emissions and Manufacturing Agglomeration
3.1.1. Spatial Differentiation of Carbon Emissions and Manufacturing
Agglomeration Levels

This study selects the cross-sectional data of four time points in 2006, 2010, 2014, and
2019, divides the degree of manufacturing agglomeration into four levels, and explores the
spatial distribution characteristics of manufacturing agglomeration. Overall, the concentra-
tion level of the manufacturing industry fluctuates and increases, and the concentration
level of the manufacturing industry in the lower reaches is better than that in the middle
and upper reaches (Figure 2). The lower reaches have the highest concentration level in
the manufacturing industry, and the mean LQ of the lower reaches in 2019 is 1.21, among
which Weihai, Binzhou, and Luohe are 2.63, 2.19, and 2.34, respectively. The superior
geographical location and factor endowment of the downstream region are more likely to
attract industrial and population agglomeration. In addition, there are many large cities
in the downstream region, whose population and scale advantages are conducive to the
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further extension of the industrial chain, leading to industrial agglomeration. The mean
LQ of the middle reaches is 0.64, and those of Baoji City, Xi’an City, and Yuncheng City are
1.64, 1.05, and 1.01, respectively. The average LQ of the upstream region is 0.67, and those
of Jinchang, Baotou, and Shizuishan are 1.90, 1.24, and 1.18, respectively. The upstream
and midstream regions are inland, and thus are less open to the outside world and less
able to introduce overseas capital and technology. In addition, the road transportation
infrastructure in the middle and upper reaches of the region is weak, the scale of the
manufacturing industry is low, and the small scale of industry inhibits the formation of an
adequate labor market and complete upstream and downstream relationships, which also
inhibits manufacturing industry agglomeration to a certain extent.
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Figure 2. Spatial distribution of manufacturing agglomeration degree in prefecture-level cities along
the Yellow River Basin from 2006 to 2019 (a–d).

Cross-section data were selected from four time points in 2006, 2010, 2014, and 2019.
Using ArcGIS, carbon emissions in the Yellow River Basin were divided into four levels:
“type I” (8.38~456.70 ten thousand tons), “type II” (456.71~1113.90 ten thousand tons),
“type III” (1113.91~1945.20 ten thousand tons), and “type IV” (1945.21~4445.30 ten thou-
sand tons), with carbon emissions increasing step by step, to explore the spatial distribution
characteristics and rules of carbon emissions in the Yellow River Basin (Figure 3). The
spatial variation in carbon emissions in the Yellow River Basin is obvious, and cities with
higher and lower carbon emissions have obvious spatial agglomeration characteristics.
Among them, Qingdao, Weifang, Jinan, Baotou, Hohhot, Yulin, Xi’an, and other developed
areas have higher carbon emissions, while Jiuquan, Zhangye, Bayannur, Ordos, and other
relatively less developed areas have lower carbon emissions. In 2019, Jinan, Xi’an, and
Weifang had the highest carbon emissions of 4445.30, 4045.59, and 36.814,800 tons, respec-
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tively, while Zhoukou, Longnan, and Dingxi had the lowest carbon emissions of 113.68,
51.32, and 492,400 tons, respectively.
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Spatial differences in carbon emissions were further analyzed from the upstream, mid-
stream, and downstream of the basin. In 2019, the average carbon emissions in the lower
reaches were 12.8608 million tons, the average carbon emissions in the middle reaches
were 8.2721 million tons, and the average carbon emissions in the upper reaches were
6.8087 million tons. The distribution pattern of carbon emissions was “downstream > mid-
stream > upstream”, and the spatial polarization effect was very obvious. From 2006 to
2019, the overall carbon emissions of the Yellow River Basin showed an increasing trend,
and the lower reaches were dominated by type II to type IV, while the upper reaches were
dominated by type I, but the carbon emissions also increased slightly. Shandong Province
and Henan Province are the most intensive and developed regions in the Yellow River Basin
with heavy industrial structure. In the process of rapid economic development, a large
amount of energy consumption and increased carbon emissions are inevitable. The down-
stream area has a dense population, a broad market, a large demand for manufacturing
products, a relatively large manufacturing scale, and relatively high carbon emissions.

3.1.2. Markov Transition Matrix

According to the above classification principle of carbon emissions, carbon emissions
can be divided into four types: I, II, III, and IV. Upward transfer refers to the transformation
from low carbon emissions to high carbon emissions, while downward transfer is the
opposite. The Markov transition matrix of carbon emission types in the Yellow River Basin
from 2006 to 2019 was calculated (Table 2).



Sustainability 2023, 15, 9386 9 of 18

Table 2. Markov transition matrix.

Type I II III IV

I 90.18% 8.00% 1.27% 0.55%
II 10.32% 80.16% 9.13% 0.40%
III 5.83% 7.50% 78.33% 8.33%
IV 3.80% 1.27% 3.80% 91.14%

(1) The probabilities on the diagonal in the matrix are much larger than those on the
non-diagonal, indicating that the odds of constant carbon emission types in the Yellow
River Basin are larger than the odds of shifts occurring. The main reason is that due to the
original socio-economic and resource endowment conditions, the economic development
model of the Yellow River Basin is characterized by path dependence, and the scale of
carbon emissions exhibits the characteristics of path locking, showing the phenomenon
of “the higher is always higher and the lower is always lower”. (2) The probabilities of
I→ I, II→ II, III→ III, and IV→ IV were 90.18%, 80.16%, 78.33%, and 91.14%, respectively.
The probabilities of I → I and IV → IV were greater than those of II → II and III → III.
The results show that there is a “club convergence” phenomenon of carbon emissions, and
the probability of the intermediate type maintaining the original type is low. This may be
related to the level of local economic development. Intermediate prefecture-level cities
are mainly located in the lower reaches of the Yellow River Basin, with a relatively high
level of economic development. Government, enterprises, and people pay more attention
to the environment and invest more money, so it is easier to reduce carbon emissions.
Therefore, the focus is on the optimal regulation of type II and III areas to promote the
reduction in carbon emissions in the basin. (3) The probability of I → II is 8.00%; the
probability of I→ III is 1.27%; the probability of I→ IV is 0.55%; the probability of II→III
is 9.13%; and the probability of II→IV is 0.40%. The carbon emission type is transformed
step by step, and the difficulty of cross-step transition is gradually increased. (4) The
sum of the probability of downward and upward transfer of carbon emission types is
32.52% and 27.68%, respectively. The probability of downward shift is higher, indicating
that the carbon emission situation in the Yellow River Basin is gradually improving, but
the pressure of carbon emission reduction is still severe, and the concept of green and
low-carbon development must continue to be implemented in the future.

3.1.3. Spatial Autocorrelation Analysis

Moran’s I index of carbon emissions of prefecture-level cities in the Yellow River Basin
was positive from 2006 to 2019 (Table 3) and passed the significance test of 1% and 5% in all
years except 2014. The results indicate that there is a positive spatial association of carbon
emissions, with high-high and low-low clustering. Generally, Moran’s I index fluctuated
in the range of 0.077–0.282 from 2006 to 2019, and Moran’s I index showed a trend of first
decreasing and then increasing. This indicates that the positive spatial correlation of carbon
emissions in adjacent regions decreases first and then increases, and the positive spatial
correlation of carbon emissions in 2018 is the strongest. This finding suggests the need
to consider spatial factors when studying the effect of manufacturing agglomeration on
carbon emissions.

3.2. Spatial Panel Model Selection and Regression Analysis
3.2.1. Model Selection

LM and LR are used to select the forms of spatial metrology models (Table 4). The
LM test shows that both the spatial panel lag model and the spatial panel error model
are suitable for analyzing the relationship between manufacturing agglomeration and
carbon emissions. Therefore, the LR test is further adopted, and it rejects the spatial Durbin
model (SDM) to degenerate into a spatial lag model (SAR) and spatial error model (SEM).
Therefore, the spatial Durbin model is selected for estimation in this paper (Table 5).
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Table 3. Moran’s I index results.

Year Moran’s I Z-Statistic

2006 0.185 *** 2.8170
2007 0.183 *** 2.7072
2008 0.170 ** 2.5300
2009 0.158 ** 2.2895
2010 0.161 ** 2.5788
2011 0.161 ** 2.4948
2012 0.133 ** 1.9940
2013 0.137 ** 1.9637
2014 0.077 * 1.0419
2015 0.183 ** 2.6805
2016 0.255 *** 3.6676
2017 0.281 *** 3.9190
2018 0.282 *** 3.9133
2019 0.235 *** 3.2616

Note: *** p < 0.01; ** p < 0.05; and * p < 0.1.

Table 4. Model selection.

Spatial Autocorrelation Text Statistic

LM-lag 14.535 ***
Robust LM-lag 21.171 ***

LM-Error 21.253 ***
Robust LM-Error 27.889 ***

LR-lag 51.33 ***
LR-Error 37.22 ***

Note: *** p < 0.01.

Table 5. Regression result.

Variable
(1) (2) (3)

SAR SEM SDM

lnLQ 0.153 *** (3.43) 0.169 *** (3.66) 0.196 *** (4.16)
lnPIN 0.541 *** (10.38) 0.641 *** (14.35) 0.829 *** (10.09)
lnPD 0.390 *** (4.99) 0.408 *** (5.39) 0.621 *** (5.93)
lnIS2 −0.219 ** (−2.33) −0.204 ** (−2.09) −0.243 ** (−2.12)
lnGR −0.135 *** (−3.73) −0.110 ** (−2.33) −0.016 (−0.27)

lnURB −0.060 ** (−2.30) −0.065 ** (−2.54) −0.057 ** (−2.22)
W × lnLQ −0.565 *** (−2.61)
W × lnPIN −0.569 *** (−4.74)

ρ 0.137 (1.45) 0.346 *** (3.13)
N 1078 1078 1078
R2 0.560 0.583 0.636

Note: *** p < 0.01; ** p < 0.05.

3.2.2. Spatial Model Estimation Results and Spatial Spillover Effect

From SAR to SDM, the sign and statistical significance of the core explanatory variables
and other control variables did not change significantly, and only the size of the parameter
estimates changed.

The effect of manufacturing agglomeration on carbon emissions is significantly pos-
itive. On the one hand, as an “energy” basin of China, the Yellow River Basin is rich in
energy reserves such as coal, oil, and natural gas, and resource-based cities account for
51%. Industries with high energy consumption and high pollution account for a large
proportion, and the industrial structure tends to be “pollution-intensive”. The large-scale
agglomeration of the manufacturing industry in the geographical space brings the ex-
pansion of population and production scale. The superposition of the industrial scale



Sustainability 2023, 15, 9386 11 of 18

effect and energy intensity effect makes the output increase substantially, while carbon
emissions, as an undesirable output, will also increase. On the other hand, due to the low
level of overall manufacturing agglomeration, the labor pool effect, intermediate input
sharing effect and knowledge, and technology spillover effect brought by manufacturing
agglomeration are weak, the availability and matching degree of the labor force are low, the
interaction of capital, technology, and knowledge among enterprises is minimal, and the
“positive” agglomeration effect brought by agglomeration is small. This situation causes the
manufacturing industry to demonstrate “low efficiency” and “high energy consumption”,
leading to more energy consumption and carbon emissions.

In terms of control variables, the level of economic development can increase carbon
emissions to some extent. The majority of cities in the Yellow River Basin are relatively
economically underdeveloped and are mainly experiencing extensive development. As
the economic development level rises, energy consumption and carbon emissions also
increase gradually. The impact of population density on carbon emissions is positive, and
an increase in population density causes traffic congestion, more buildings, and increased
energy consumption, thus increasing carbon emissions. The effect of industrial structure
on carbon emissions is negative. With the adjustment of China’s industrial structure, the
optimization of the industrial geographical pattern, the transfer of industry from the East to
the West, and the spillover of technology and knowledge, technological progress, and R&D
innovation occurring, the green transformation of the industry is promoted, and carbon
emissions are reduced to some extent. The effect of urbanization on carbon emissions
is negative. With the accelerated urbanization process, residents’ demand for a better
environment increases, thus, promoting energy conservation and emission reduction in
the basin at the social level. Government macroeconomic regulation has a negative but
insignificant effect on carbon emissions. With the implementation of the dual carbon goals,
local governments actively respond to the dual carbon goals, advocate green and low-
carbon development, and carry out energy conservation and emission reduction activities.
However, sometimes there is excessive government intervention in the process of economic
activities, which cannot play the part of the market in resource allocation, and the effect of
carbon emission reduction is not obvious.

Regarding the spatial spillover effect (Table 6), The impact of manufacturing agglom-
eration on local carbon emissions is positive and significant at the 1% level, and manufac-
turing agglomeration increases carbon emissions. However, manufacturing agglomeration
has a negative effect on carbon emissions in neighboring areas, which is significant at
the 5% level. Hence, manufacturing agglomeration reduces carbon emissions in neigh-
boring areas. The spatial spillover effect can be represented by polarization effect and
radiation effect. When the polarization effect dominates, the manufacturing agglomeration
has a negative spatial spillover effect on the neighboring areas; when the diffusion effect
dominates, the manufacturing agglomeration has a positive spatial spillover effect on the
neighboring areas. The agglomeration of the manufacturing industry in the Yellow River
Basin is in its early stage, and the polarization effect is greater than the diffusion effect.
The agglomeration gravity brought by the agglomeration will attract factors and capital
from the surrounding provinces to converge to the region, exacerbating the differences
and imbalances in the spatial distribution of resources and factors. While expanding the
scale of manufacturing in this region and increasing energy consumption, the development
of manufacturing in neighboring regions is limited, reducing energy demand and carbon
emissions in the region. On the other hand, although the radiation effect is weak, it will also
spread knowledge and technology to neighboring areas to some extent [47]. Optimizing
the industrial structure of the neighboring region, improves innovation ability, improves
energy efficiency, and reduces the cost of enterprises. The combination of these two factors
leads to the reduction in carbon emissions in the neighboring region.
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Table 6. Decomposition of the spatial spillover effect.

Variable
Direct Effect Indirect Effect Total Effect

Coef z Coef z Coef z

lnLQ 0.192 *** (4.03) −0.768 ** (−2.21) −0.576 * (−1.69)
lnPIN 0.823 *** (10.47) −0.425 *** (−3.25) 0.397 *** (4.06)
lnPD 0.620 *** (6.34) −1.524 ** (−2.33) −0.904 (−1.48)
lnIS2 −0.251 ** (−2.23) −1.259 *** (−3.79) −1.510 *** (−4.88)
lnGR −0.018 (−0.30) −0.212 ** (−2.16) −0.230 *** (−2.95)

lnURB −0.059 * (−1.94) 0.814 ** (2.37) 0.764 ** (2.19)
Note: *** p < 0.01; ** p < 0.05; and * p < 0.1.

3.2.3. Robustness Test

In this paper, the robustness of the results is tested from three aspects. The lag period
of the explained variable (carbon emissions) is selected as the instrumental variable, the
per capita GDP of each city is used to establish the economic distance matrix, the economic
geographical weight matrix is used to replace the geographical distance weight matrix,
and the Herfindahl–Hirschmann index (HHI) is used to replace the LQ. Recalculated
concentration levels for manufacturing are shown in Table 7. After the recalculation, no
significant difference between the above three results and the conclusion of this paper is
traced. The influence of manufacturing agglomeration on carbon emissions is significantly
positive, therefore, the results of this paper are robust.

Table 7. Robustness test results.

Variable
(1) (2) (3)

Lag Explained Variable Change the Spatial
Weight Matrix

Change the Core
Explanatory Variable

lnLQ 0.151 *** (3.36)
lnHHI 0.121 *** (2.77)
L.lnCE 0.927 *** (83.77)

P 0.446 *** (4.76) 0.038 (0.63) 0.257 ** (2.13)
Control Yes Yes Yes

Observations 1078 1078 1078
Note: *** p < 0.01; ** p < 0.05.

3.2.4. Heterogeneity Analysis

Economic development in the Yellow River Basin is uneven [48], and the concentra-
tion levels of manufacturing industries upstream, midstream, and downstream are quite
different. The influence of upper, middle, and downstream manufacturing agglomeration
on carbon emissions was studied and analyzed. The results of the upstream and midstream
regions were basically consistent with the overall model, while there were differences in
the downstream regions (Table 8). The effect of manufacturing agglomeration on carbon
emissions in the middle and upper reaches is significantly positive. The manufacturing
agglomeration in the downstream area has no significant impact on the carbon emissions
of the local area but has a negative impact on the carbon emissions of the neighboring
areas. The lower reaches mainly include Henan Province and Shandong Province. Com-
pared to the upper and middle reaches, the superior geographical location of the lower
reaches more easily forms industrial and population agglomerations. The geographical
location of coastal areas is conducive to attracting overseas capital and advanced technol-
ogy, improving the traditional development mode, optimizing the industrial structure of
enterprises and making the allocation of resources more reasonable. Therefore, the degree
of manufacturing agglomeration is relatively high, and it is in the transition stage from
increasing carbon emissions to reducing carbon emissions. The low-carbon transformation
of the manufacturing industries is an issue that must be considered in the future.
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Table 8. Results of heterogeneity analysis.

Variable
Upstream Midstream Downstream

Direct Indirect Direct Indirect Direct Indirect

lnLQ 0.302 *** 0.319 0.262 ** −0.338 0.070 −0.774 ***
(3.47) (0.89) (2.54) (−1.10) (1.08) (−2.63)

lnPIN 0.887 *** −0.040 1.103 *** −0.462 ** 0.315 *** 0.302
(6.29) (−0.19) (6.39) (−2.18) (2.83) (1.47)

lnPD 0.556 *** −0.757 1.064 *** −2.527 *** 0.404 * −1.138
(4.62) (−0.94) (4.66) (−3.01) (1.79) (−0.60)

LnIS2 −0.175 −0.481 * 1.064 *** −1.071 ** −0.143 −0.463
(−0.94) (−1.68) (4.66) (−2.53) (−0.71) (−1.03)

lnGR −0.052 −0.216 0.089 −0.434 *** 0.076 −0.152
(−0.44) (−1.23) (0.78) (−2.77) (1.06) (−1.50)

lnURB −0.038 −0.064 −0.050 0.171 −0.181 *** 0.165
(−0.84) (−0.33) (−0.93) (0.61) (−5.47) (0.60)

Note: *** p < 0.01; ** p < 0.05; and * p < 0.1.

At the same time, Shandong Province and Henan Province also have spatial spillover
effects on their neighboring regions. Labor, capital, technology, and other factors flow into
the surrounding areas, promote the spillover effect of knowledge and technology through
sharing, lead to matching and learning mechanisms, accelerate technical innovation of
enterprises, promote the green transformation of industrial structure, constantly eliminate
energy-intensive and inefficient industries, reduce energy consumption, and reduce carbon
emissions in neighboring areas. The regression results show that the influence coefficient
of manufacturing agglomeration on carbon emissions is the highest in the upstream region,
followed by the middle reaches, and is lowest and insignificant in the downstream region.
This may be related to the lower industrialization development stage in the upstream region,
the relatively limited improvement degree of energy utilization and technical efficiency, and
the relatively large marginal effect of manufacturing agglomeration on carbon emissions.

4. Discussion

Carbon reduction in manufacturing is an important path to achieving the dual carbon
goal. The study of the impact of manufacturing agglomeration on carbon emissions can
provide a basis for carbon emission reduction. By establishing the spatial Dubin model,
we found that from the perspective of the whole Yellow River Basin, manufacturing
agglomeration will increase the local carbon emissions, which is similar to the conclusion
of Zhang et al. [49,50] but will reduce the carbon emissions of neighboring regions. This
is mainly related to the stage of manufacturing agglomeration in the Yellow River Basin.
The manufacturing agglomeration in the Yellow River Basin is in the early stage, and
the labor reservoir effect and intermediate input sharing brought by agglomeration are
weak, while the crowding effect is dominant, which will increase carbon emissions in the
region [51]. The spatial spillover effect on neighboring areas is mainly negative, mainly
because the polarization effect is greater than the radiation effect, attracting capital, talent,
technology and other factors in neighboring areas, hindering the information exchange
and knowledge spillover between enterprises in neighboring areas, and reducing carbon
emissions (Figure 4).

In addition, we tried to study the relationship between manufacturing agglomeration
and carbon emissions from different reaches of the Yellow River basin, which is also an
innovation point of this paper. We found that the middle and upper reaches of the Yellow
River Basin, like the whole basin, are still in the early stage of manufacturing agglomeration,
but the lower reaches are in the transition stage of manufacturing agglomeration from the
early stage to the late stage due to a relatively developed economy, and the spatial spillover
effect on neighboring areas is mainly positive. The radiation effect is greater than the polar-
ization effect; advanced technology and production processes spread to the surrounding
areas, reduce the production cost of enterprises, increase the investment in research and
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development technology, promote the collaborative innovation and technological progress
of enterprises in the neighboring areas, optimize and upgrade the industrial structure, and
reduce the carbon emissions in the neighboring areas. The manufacturing industry in the
Yellow River Basin faces great pressure of carbon emission reduction, so green transforma-
tion is very necessary. The manufacturing industry in the Yellow River Basin faces great
pressure of carbon emission reduction, so green transformation is very necessary. In partic-
ular, the upstream region undertakes energy-intensive industries from the downstream
region, which to some extent leads to the “pollution refuge” effect. Therefore, it is necessary
to design the optimal agglomeration mode and build a modern manufacturing system
according to the characteristics of the manufacturing industry [52].

Sustainability 2023, 15, x FOR PEER REVIEW 15 of 19 
  

River Basin faces great pressure of carbon emission reduction, so green transformation is 
very necessary. In particular, the upstream region undertakes energy-intensive industries 
from the downstream region, which to some extent leads to the “pollution refuge” effect. 
Therefore, it is necessary to design the optimal agglomeration mode and build a modern 
manufacturing system according to the characteristics of the manufacturing industry [52]. 

Existing studies mostly focus on the relationship between industrial agglomeration 
and environmental pollution. For example, Fang et al. [28] believe that manufacturing ag-
glomeration will reduce haze pollution in local and surrounding areas. This paper ex-
plores the relationship between manufacturing agglomeration and carbon emissions, fur-
ther considers regional heterogeneity, and compares the similarities and differences be-
tween manufacturing agglomeration and carbon emissions in different river reaches of 
the basin, which is innovative to a certain extent. Due to limited data sources and research 
time, there are still some limitations. In the future, research on the impact and spillover 
effect of manufacturing agglomeration on carbon emissions at the county scale or in typ-
ical case areas can be further strengthened. 

 
Figure 4. The influence mechanism of manufacturing agglomeration and carbon emissions. 

5. Conclusions and Policy Suggestions 
5.1. Conclusions 

Based on the panel data of the Yellow River Basin from 2006 to 2019, the spatial and 
temporal pattern characteristics of manufacturing agglomerations and carbon emissions 
were analyzed, and a panel SDM model was constructed to empirically test the effect and 
spatial spillover of manufacturing agglomeration on carbon emissions. The main conclu-
sions are as follows: 

(1) From 2006 to 2019, both the degree of manufacturing agglomeration and carbon 
emissions showed an increasing trend, and the level of manufacturing agglomeration 
showed a pattern of “strong in the east and weak in the west”. The carbon emissions 

Figure 4. The influence mechanism of manufacturing agglomeration and carbon emissions.

Existing studies mostly focus on the relationship between industrial agglomeration
and environmental pollution. For example, Fang et al. [28] believe that manufacturing
agglomeration will reduce haze pollution in local and surrounding areas. This paper
explores the relationship between manufacturing agglomeration and carbon emissions,
further considers regional heterogeneity, and compares the similarities and differences
between manufacturing agglomeration and carbon emissions in different river reaches of
the basin, which is innovative to a certain extent. Due to limited data sources and research
time, there are still some limitations. In the future, research on the impact and spillover
effect of manufacturing agglomeration on carbon emissions at the county scale or in typical
case areas can be further strengthened.

5. Conclusions and Policy Suggestions
5.1. Conclusions

Based on the panel data of the Yellow River Basin from 2006 to 2019, the spatial and
temporal pattern characteristics of manufacturing agglomerations and carbon emissions
were analyzed, and a panel SDM model was constructed to empirically test the effect
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and spatial spillover of manufacturing agglomeration on carbon emissions. The main
conclusions are as follows:

(1) From 2006 to 2019, both the degree of manufacturing agglomeration and carbon
emissions showed an increasing trend, and the level of manufacturing agglomeration
showed a pattern of “strong in the east and weak in the west”. The carbon emissions
showed obvious spatial differentiation and concentration characteristics, showing a distri-
bution pattern of “downstream > midstream > upstream”. The spatial polarization effect
was obvious.

(2) Due to the original social and economic conditions and resource endowment, the
scale of carbon emissions in the Yellow River Basin showed the characteristics of path-
locking, with the “club convergence” of high and low levels. The agglomeration of the
manufacturing industry will increase carbon emissions, which indicates that the overall
agglomeration level of manufacturing industry in the Yellow River Basin is low, and the
positive externality brought by agglomeration is weak, leading enterprises to further show
the characteristics of “low efficiency” and “high energy consumption”.

(3) Manufacturing agglomeration has a spatial spillover effect on carbon emissions.
The direct effect is significantly positive, while the indirect effect is significantly negative,
indicating that manufacturing agglomeration increases carbon emissions in the region and
reduces carbon emissions in neighboring regions. The manufacturing agglomeration in the
Yellow River Basin is at a low stage, and the siphoning effect on neighboring areas is greater
than the radiation effect, which will hinder the development of neighboring areas and
reduce the carbon emissions of neighboring areas. According to the heterogeneity analysis,
the manufacturing agglomeration in the lower reaches is not significant in the local carbon
emissions but has an inhibitory effect on the carbon emissions in the neighboring areas.

5.2. Policy Suggestions

Climate change caused by carbon emissions has a serious impact on human life. Both
developed and underdeveloped countries are actively exploring environmental governance
methods suitable for their own conditions and taking various measures to achieve carbon
neutrality. As a vital energy and manufacturing base, the green transformation of its
manufacturing sector is critical to the green development of the Yellow River Basin. Thus,
the following three suggestions are proposed.

First, we need to improve the spatial pattern of manufacturing. According to the
resource endowment and economic characteristics of the regions in basin, the strategy
of adapting to local conditions should be implemented to rationally allocate regional re-
sources and carry out a rational division of labor in the industries. The concentration level
of manufacturing industry in the middle and upper reaches is low, so it is necessary to
further improve the talent guarantee mechanism and infrastructure construction, introduce
high-level scientific talents, accelerate the concentration of human resources, build a re-
gional advanced manufacturing industry, and attract the concentration of upstream and
downstream industries. The manufacturing industry in the downstream area has a high
concentration level. While improving the productivity of the region and optimizing the
industrial structure, it exerts the radiation effect on the neighboring areas and promotes
the coordinated development of the neighboring areas from point to point through talent
exchange and knowledge spillover. Second, we should accelerate the green and low-carbon
transformation of manufacturing. Under the constraint of ecological protection, the trans-
formation and upgrading of the traditional manufacturing industry will be promoted, and
the industrial structure will be adjusted in a low-carbon way to reduce energy consumption
and carbon emissions [53]. Up-stream regions undertake energy-intensive industries from
downstream regions, which not only promote economic growth, but also increase carbon
emissions within the region, leading to the “pollution refuge” effect to a certain extent.
However, the key point to change this phenomenon is not to restrict industrial transfer and
spatial agglomeration of manufacturing industries, but to accelerate the merger and reor-
ganization of small “double-high” enterprises. To change the small enterprises scattered,
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disorderly, excessive competition status quo, we need to give full play to the manufacturing
industry agglomeration carbon emission reduction effect. The midstream manufacturing
sector is at a low level of replacing old growth drivers with new ones. It needs to change the
development model, optimize the economic structure, change growth drivers, and upgrade
heavily polluting industries. Shandong and Henan provinces in the lower reaches are
big industrial provinces with a strong manufacturing base and long history. They should
timely solve the problems of industrial aging.

Third, the collaborative optimization of river basins should be strengthened. Manu-
facturing agglomeration has a spatial spillover effect on carbon emissions; therefore, the
task of carbon emission reduction requires inter-regional collaborative governance. The
upstream region should fully develop its environmental advantages, develop eco-tourism,
and ease the conflict between economic development and ecological protection. The middle
reaches should resolve the contradiction between resources and economic development and
fulfill the role of carrying over between the upper and lower reaches. On the one hand, the
downstream areas need to formulate relevant policies to optimize the energy consumption
structure, reduce fossil energy consumption, and improve energy efficiency [54]. On the
other hand, we should take advantage of geographical advantages to connect with the
Beijing-Tianjin-Hebei region, accelerate the extension of the manufacturing industry to the
middle and high end of the value chain, and radiate the middle and upper reaches of the
region. It is necessary to adhere to the concept of “one game of chess” for the whole basin
and pay attention to the cooperation, complementary advantages and regional linkage
among provinces.
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