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Abstract: The continuous deterioration of terrestrial ecosystems has led to the destruction of many
biological habitats in recent years. The Tumen River cross-border basin, an important biological
habitat, is also affected by this changing situation. Assessing habitat quality (HQ) is crucial for
restoring and protecting habitats, and vegetation plays a significant role in this process. In this
study, we used geographical detector (GD) to extract fraction vegetation coverage (FVC) features
and quantify the contribution of driving factors. By coupling vegetation cover and land use data, we
assessed HQ. Our findings reveal a declining trend in FVC from 2000 to 2020, which mainly assumed
a spatial pattern inclined from northeast and southwest to southeast. Human activities and natural
factors interacted to cause these changes in FVC, with human activities having a more significant
impact. Vegetation and land use changes led to a decline in the basin’s HQ index. This study
highlights the crucial role of FVC in HQ and provides a relevant scientific reference for optimizing the
evaluation of HQ in the Tumen River cross-border basin and promoting the sustainable development
of regional ecology.

Keywords: fraction vegetation coverage; habitat quality; geographical detector; Tumen River cross-
border basin

1. Introduction

Habitat quality (HQ) is a crucial indicator of an ecosystem’s suitability for the survival
and persistence of individuals and populations [1], embodying fundamental attributes
of the ecological environment. Since the industrialization revolution, human activities
have increasingly disturbed terrestrial ecosystems [2], leading to a reduction in and the
degradation of ecosystem service capacities, intensifying ecological crises, and threatening
the ecological security pattern [3,4]. Fraction vegetation coverage (FVC) is the ratio of the
vertical projected area of the vegetation canopy, branches, and leaves on the ground of a
growth area to the total area of the statistical area [5,6]. It can be used to accurately monitor
the dynamic changes of vegetation in time and space and indicates changes in a regional
ecological environment [7,8]. Therefore, analyzing the quality of regional habitats based
on changes in FVC is of great significance for scientifically planning regional ecological
environments [9].

Scholars have been monitoring FVC for a long time. Initially, surface FVC was mainly
monitored through field measurements. Although the data obtained were highly accurate,
the measurement process was time-consuming and laborious. The differences in the
selection of different points increased the uncertainty of the FVC measurements and made
it difficult to better reflect the dynamics of large-scale vegetation coverage. However,
with the rapid development of earth observation technology and the onset of the big
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data era in earth science, scholars began to apply remote sensing data to FVC monitoring,
leading to the development of many remote sensing estimation methods for determining
FVC [10–13]. The remote sensing estimation method has the advantages of wide coverage,
strong temporal and spatial continuity, and the ability to easily realize regional-scale
conversion [14], thereby compensating for the limitations of field measurements. In recent
years, some scholars have extensively studied FVC changes in different regions using the
dimidiate pixel model [15–17]. It is evident that the use of remote sensing technology can
accurately capture the status of surface vegetation in real time, which is essential for the
protection of vegetation communities [18].

HQ serves as an indicator of regional biodiversity levels [19]. This quality, along
with its fluctuations, is influenced by a multitude of factors, encompassing both natural
processes and human activities. Human-induced changes in land use patterns greatly
impact regional species and their habitats [20,21]. The integrated valuation of ecosystem
services and tradeoffs (InVEST) model offers a comprehensive assessment of HQ via
considering the influence of human activities, utilizing land use data, and incorporating
habitats’ sensitivity to threats [22,23]. Beyond land use changes, a holistic evaluation
of habitat quality necessitates the integration of various ecosystem attributes, such as
biological species, vegetation, and other elements [24]. Researchers have endeavored
to quantify these data through field surveys. However, large-scale studies are hindered
by high costs and limited time spans. Vegetation plays a significant role in the material
and energy cycles between habitat patches [24] and is significantly related to HQ [25].
Vegetation type, structure, and growth status affect species habitat selection [26,27] and
can quantify the suitability of the habitat in question [28]. To address these challenges,
this study leverages the advantages of long-term satellite observations, such as their
macroscopic perspectives, rapid data acquisition capacity, and real-time capabilities, and
applied FVC, as a representative indicator of vegetation, to the HQ index, thus enabling a
more comprehensive and scientific evaluation of HQ in the Tumen River cross-border basin.

Spatial analysis of data is a pivotal aspect of research, particularly with respect to
understanding the intricacies of spatial effects [29]. In practical surveys, HQ data are often
influenced by various environmental factors, exhibiting noticeable spatial heterogeneity
based on geographical location [30]. Traditional statistical approaches tend to overlook
the spatial variation inherent in natural phenomena, masking local discrepancies among
variables and yielding potentially biased estimations of spatial distribution. Geostatistics,
which is rooted in the theory of regionalized variables, provides a robust framework for
analyzing spatial heterogeneity and correlations in natural phenomena [31]. Its application
in ecological research has proven effective in describing spatial data and quantifying
uncertainties [32–35]. To investigate the spatial characteristics of the analyzed data [36], this
study employs a geographically weighted regression (GWR) tool to elucidate the spatial
patterns of habitat quality and its associated variables.

The Tumen River Basin, located in the core region of the Northeast Asian ecological
network, possesses rich animal and plant resources and plays a crucial ecological role. The
basin’s development has accelerated with the increasing degree of international cooperation
between China, North Korea, and Russia, leading to the degradation of key regional
ecosystems and intensifying ecological crises. Scholars have been attracted to the eco-
environmental issues concerning the Tumen River cross-border basin, resulting in many
cooperative and research efforts [37–39]. However, the Tumen River Basin is located in
the cross-border area between China and North Korea. Due to regional constraints, the
research conditions are poor, and the corresponding research is difficult. Therefore, there
are few scientific studies on the overall FVC and HQ in the Tumen River cross-border
basin. Therefore, using these considerations as a starting point, this study discusses the
entire Tumen River cross-border basin, both the Chinese side and the Korean side, at three
scales so as to provide important data support for the study of the HQ of the Tumen River
cross-border basin.
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Based on MOD13Q1 NDVI obtained data from 2000 to 2020, this study employs the
dimidiate pixel model method to evaluate FVC in the Tumen River cross-border basin.
The temporal and spatial variation characteristics of FVC are analyzed using the one-
variable linear trend method. The geographical detector (GD) model is used to quantify the
contribution rate of each influencing factor to FVC and determine its suitable range. The
InVEST model is used to calculate the HQ index of the Tumen River Cross-border Basin
in the period from 2000 to 2020. Using the geographically weighted regression (GWR)
tool, the change in the HQ index is used as the dependent variable, and the change in
FVC is used as the independent variable to quantify the impact of FVC on HQ. Moreover,
the paper couples vegetation coverage and land use data based on the InVEST model to
more accurately and scientifically evaluate the HQ of the Tumen River cross-border basin.
The study aims to provide a scientific theoretical basis and data support for the ecological
environmental planning of the Tumen River Basin and the coordination of nature, economy,
and society towards realizing green and sustainable development.

2. Materials and Methods
2.1. Study Area

The Tumen River cross-border basin, located at the junction of China, North Korea,
and Russia, covers approximately 33,170.41 km2, with the Chinese side accounting for
about 68%, including most of the eastern part of Yanbian Korean Autonomous Prefecture
(Figure 1). The North Korean side accounts for 31% and covers Ryanggang Province and
North Hamgyong Province, while a small portion of the estuary belongs to the Hassan
district of Russia’s Primorsky Krai. The basin lies in the middle temperate zone of the
northern hemisphere and is significantly influenced by vapor from the Sea of Japan and the
southeast monsoon, leading to a humid monsoon climate. The annual average temperature
ranges from 2–6 ◦C, while the annual precipitation level is around 400–800 mm, which
is mainly concentrated in the summer, resulting in good water and heat conditions and
a healthy forest coverage rate. The vegetation coverage in this area is mostly coniferous
forest and mixed coniferous–broadleaved forest. The main tree species include larch (Larix
gmelinii Rupr. Kuzen.), fish scale spruce (Picea jezoensis var. microsperma), and birch (Betula
platyphylla Suk.) [40]. The basin is home to a diverse range of natural ecosystems harboring
numerous rare animals and plants, such as the Red-crowned crane (Grus japonensis), Amur
tiger (Panthera tigris ssp. altaica), Korean pine (Pinus koraiensis Sieb. et Zucc.), Korean fir (Abies
koreana E.H.Wilson), and many others. Various landforms are present in the area, with
terrain higher in the south and lower in the north and sloping from southwest to northeast.
Owing to the interaction between nature and human activities, FVC patterns in the basin
exhibit significant temporal and spatial variations, with changes in FVC impacting the
integrity of the habitat.

2.2. Data Source and Processing

The data and sources used in this study are listed in Table 1.
The MOD13Q1-MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid

data were downloaded from the National Aeronautics and Space Administration (NASA)
website (Table 1) [41], and the Maximum Value Composites (MVC) method [42] was used
to synthesize annual vegetation index data. This approach effectively mitigated noise
interference such as cloud shadows and sun height [43]. The meteorological data used for
this study were obtained from Version 4 of the CRU TS monthly high-resolution gridded
multivariate climate dataset provided by the Climatic Research Unit (CRU) (Table 1) [44],
and the surface temperature data were provided by the National Oceanic Atmospheric
Administration Physical Sciences Laboratory (Table 1) [45]. Annual data synthesis was
carried out to derive the annual average temperature, annual average surface temperature,
and annual precipitation data of the Tumen River Basin from 2000 to 2020, which were
downscaled to 250 m using the inverse distance weighting method. The DEM data used
were ASTER GDEM data, which were obtained from the geospatial data cloud platform
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(Table 1). Slope and aspect data were calculated using ArcGIS Pro. Population density data
were obtained from the LandScan Global dataset with a spatial resolution of 30” (Table 1),
while the land use data for the three periods of 2000, 2010, and 2020 were provided by
GLOBELAND30 with a spatial resolution of 30 m (Table 1). Night light satellite data,
covering the period from 2000 to 2020, were obtained from the extended time series of
global NPP-VIIRS-like nighttime light data acquired through across-sensor calibration
(Table 1) [46]. Other auxiliary data, such as those concerning railways, highways, and
settlements, were obtained from China’s 1:1 million public version of the basic geographic
information database (2021) (Table 1). For ease of analysis, the data were uniformly
reprojected to WGS_1984_UTM_Zone_52N and resampled to 250 m × 250 m.
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Figure 1. Location and digital elevation model of the study area.

2.3. Methodology

Initially, we collected data on vegetation coverage of the Tumen River cross-border basin,
such as remote sensing image, statistical, and survey data. We then built a regional data analysis
and processing platform to determine the FVC in the study area alongside other natural and
human-activity-related data. By referencing the literature and using the univariate linear trend
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method and other technical means, we analyzed and studied the spatio-temporal variation
characteristics of FVC in the Tumen River cross-border basin from 2000 to 2020 at the global,
Chinese, and North Korean scales. Additionally, we used GD to explore and measure the driving
factors that caused this dynamic change process. Subsequently, we employed the InVEST habitat
quality model to obtain the habitat quality index of the study area based on the land cover data.
By combining the analytical results of dynamic changes in FVC, we quantitatively assessed the
impact of these changes on habitat quality in the Tumen River cross-border basin from 2000 to
2020 based on the GWR model system. Finally, we systematically and quantitatively evaluated
the joint effect of vegetation status and human activities on the habitat quality change in the
Tumen River cross-border basin and used the Moran’s I method to analyze and discuss its
agglomeration characteristics and spatial pattern.

Table 1. Basic data used in the study.

Type Name Code Resolution Source

Vegetation Normalized Digital
Vegetation Index NDVI 250 m

MOD13Q1-MODIS/Terra Vegetation Indices
16-Day L3 Global 250 m SIN Grid provided

by NASA
(https://ladsweb.modaps.eosdis.nasa.gov/,

accessed on 11 February 2023)

Climatic

Monthly mean air
temperature Tem

0.5◦

CRU TS v. 4.06 provided by the CRU
(https://crudata.uea.ac.uk/,

accessed on 11 February 2023)Monthly total of
precipitation Pre

Monthly mean land
surface air

temperature
Lst

GHCN_CAMS Gridded V2 by the NOAA
Physical Sciences Laboratory

(https://psl.noaa.gov/,
accessed on 11 February 2023)

Topographic
Elevation Ele

30 m
ASTER GDEM 30 m

(https://www.gscloud.cn/,
accessed on 11 February 2023)

Slope Slo
Aspect Asp

Human
activity

Density of population Pop 30”
LandScan Global population dataset

(https://landscan.ornl.gov/,
accessed on 11 February 2023)

Land use and land
cover LULC 30 m

GLOBELAND30
(http://www.globallandcover.com/,

accessed on 11 February 2023)

Nighttime light
satellite data Light 15”

An extended time series (2000–2020) of global
NPP-VIIRS-like nighttime light data from

across-sensor calibration
(https://doi.org/10.7910/DVN/YGIVCD,

accessed on 11 February 2023)
Railway Railway

/
China 1:1 million public version basic

geographic information database (2021)
(https://www.webmap.cn/,

accessed on 11 February 2023)

Highway Highway

Settlement Settlement

Note: The railway, highway, and settlement data are all vector data that have been converted into 250 m × 250 m
grids and used as stress factors in the assessment of HQ.

2.3.1. Dimidiate Pixel Model

The normalized difference vegetation index (NDVI) can provide an objective measurement
of vegetation growth conditions [47]. FVC is closely related to NDVI and can accurately quantify
vegetation dynamics [48]. The dimidiate pixel model is based on NDVI data and hybrid pixel

https://ladsweb.modaps.eosdis.nasa.gov/
https://crudata.uea.ac.uk/
https://psl.noaa.gov/
https://www.gscloud.cn/
https://landscan.ornl.gov/
http://www.globallandcover.com/
https://doi.org/10.7910/DVN/YGIVCD
https://www.webmap.cn/
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decomposition theory. Using the conversion relationship between NDVI and FVC, this model
can accurately calculate FVC. The calculation formula is as follows [49]:

FVC =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(1)

where NDVIsoil represents the NDVI value of pure bare-land pixels and NDVIveg represents
the NDVI value of pure vegetation pixels. The values selected for NDVIsoil and NDVIveg
are influenced by atmospheric conditions, vegetation types, and other factors. To minimize
noise interference from factors such as cloud shadow and sun height, this study utilized
the MVC method to synthesize the annual maximum NDVI. The values corresponding
to the 5th and 95th percentiles of the annual maximum NDVI cumulative frequency were
used as NDVIsoil and NDVIveg, respectively [12]. Based on the actual conditions of the
Tumen River Basin, FVC can be classified into five categories: very low vegetation coverage
(<0.15), low vegetation coverage (0.15–0.35), medium vegetation coverage (0.35–0.55), high
vegetation coverage (0.55–0.75), and very high vegetation coverage (>0.75) [8].

2.3.2. Univariate Linear Trend

Determining the univariate linear trend is a useful method for estimating the change
trend of each pixel over time, allowing for the detection of changes in FVC over a given
time frame and providing information on the spatial evolution of FVC [50,51]. The slope of
a trend line can be calculated using the following formula:

θslope =
n∑n

i=0 (i × FVCi)− ∑n
i=0 i × ∑n

i=0 FVCi

n∑n
i=0 i2 −

(
n
∑

i=0
i
)2 (2)

where θslope is the slope value of the trend line, n is the number of years for long-term
series analysis, and FVCi is the FVC in the i-th year. θslope reflects the slope of the FVC,
where a positive value indicates an increasing FVC over time, and a negative value indicates a
decreasing trend. The significance of the change trend was verified using the F-test, considering
both the slope of the trend line and the significance level. The FVC change trend in the
Tumen River basin was classified into five categories: extremely significant degradation
(θslope < 0, p ≤ 0.01), significant degradation (θslope < 0, 0.01 < p ≤ 0.05), no significant
change (θslope < 0,p > 0.05 or θslope > 0, p > 0.05), extremely significant improvement
(θslope > 0, p ≤ 0.01), and significant improvement (θslope > 0, 0.01 < p ≤ 0.05).

2.3.3. Geographic Detector Model

The geographic detector model enables the detection of spatial heterogeneity of geo-
graphical phenomena [52]. It comprises four detectors, namely, a factor detector, interactive
detector, risk detector, and ecological detector [53]. This tool can expose the spatial associ-
ations of geographic elements and explore the contribution rate of evaluation indicators
to geographic elements [52]. Surface vegetation is affected by various natural and human
factors. Thus, this study has selected nine evaluation indicators, including Tem, Pre, Lst,
Ele, Slo, Asp, LULC, Pop, and Light, to ascertain their contributions to vegetation coverage
and the interactions among these indicators.

2.3.4. Habitat Quality Assessment

This study uses the HQ model of InVEST to assess the HQ of the Tumen River cross-
border basin [54]. This model evaluates HQ by establishing a connection between land
cover types and stress factors and assessing the degree of impact of these stress factors
on habitats [55]. The resulting HQ index is a continuous variable ranging from 0 to 1, for
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which higher values indicate greater availability of living resources [56]. The corresponding
calculation formula is as follows:

Qi = Hj

(
1 −

(
Dz

xj

Dz
xj+kz

))
(3)

where Qi represents the HQ assessed using the InVEST model, Hj is the habitat suitability
of land cover type j, Dxj is the threat to land cover type j, Z is a scaling parameter reflecting
spatial heterogeneity, and k is the half-saturation parameter (usually assuming a value
of 0.05). The values of the maximum impact distance, weight, and distance attenuation
function of each stress factor (Table 2) and the habitat suitability of different land cover
types and their sensitivity to stress factors (Table 3) were determined based on the relevant
literature and the actual conditions of the Tumen River basin [57–60].

Table 2. Attribute table of stress factors.

Threat Max_Dist Weight Decay

Artificial Surfaces 3 1 exponential
Cultivated Land 1 0.7 linear

Railway 4 0.6 exponential
Highway 3 0.5 exponential

Settlement 2 0.4 linear

Table 3. Habitat suitability of different land cover types and their sensitivity to threat factors.

Land Cover Type
Habitat

Suitability
Index

Sensitivity of Habitat Types to Each Threat

Artificial
Surfaces

Cultivated
Land Railway Highway Settlement

Cultivated Land 0.4 0.5 0.3 0.3 0.2 0.5
Forest 0.8 0.5 0.4 0.6 0.5 0.3

Grassland 0.6 0.6 0.5 0.7 0.6 0.4
Wetland 0.9 0.7 0.6 0.8 0.7 0.5

Water Bodies 0.8 0.8 0.7 0.7 0.6 0.6
Artificial Surfaces 0 0 0 0 0 0

Bare land 0.1 0.3 0.1 0.2 0.2 0.1

2.3.5. Geographically Weighted Regression Model

GWR is a spatial analysis technique that considers the influence of observations at
various spatial locations on the estimation of regression point parameters [61]. By incorpo-
rating spatial location information, this model extends the traditional regression framework,
thereby reflecting the non-stationarity of parameters in different spaces, producing results
that are more aligned with objective reality [62]. To simplify data and reduce loss of accu-
racy, the study area was divided into 2 km × 2 km grids [63]. The GWR model utilized the
change in HQ index from 2000 to 2020 as the dependent variable and the change in FVC as
the independent variable. The GWR tool of ArcGIS Pro was used to model this relationship,
and the Gauss function was adopted as the space weight function. The optimal bandwidth
was selected based on the principle of minimum Akaike information criterion (AIC) value.
The calculation formula is as follows:

yi = β0(ui, vi) +
p

∑
j=1
βj(ui, vi)xij + εi (4)

where yi represents the fitted value of the HQ index change for sample i, xij represents the
value of the j-th independent variable for sample i, and the coordinates for the target area i
are (ui, vi). β0(ui, vi) represents the estimated constant value for sample i, while βj(ui, vi)
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represents the local estimated coefficient for independent variable xij. Finally, εi represents
the error term, which follows an independent normal distribution.

2.3.6. Improved InVEST Habitat Quality Model

In order to accurately assess the status of HQ, it is necessary to integrate multiple
attributes of the ecosystem, as solely relying on land use classification data may not suffice.
Vegetation plays a great role in habitat selection for many species and can provide insight
into the current suitability of the analyzed habitat, which is closely linked to HQ. Thus, this
study aimed to improve the InVEST model by incorporating FVC [64], which allowed for
a more comprehensive evaluation of HQ. By incorporating FVC into the HQ assessment
framework, the impact of FVC on habitat change can be better highlighted. The improved
HQ assessment formula is as follows:

Qx = Qi × Qf (5)

where Qx is the comprehensive HQ, Qi is the HQ assessed by the InVEST model, and Qf is
the FVC.

2.3.7. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is used to describe the aggregation characteristics
and spatial pattern of attribute values across entire regions [65]. This type of analysis
is divided into two categories: global autocorrelation and local autocorrelation. Global
autocorrelation can be used to measure the degree of spatial agglomeration of attribute
values across an entire region, while local autocorrelation can further identify the spatial
location of the agglomeration center and any abnormal points. Two primary methods
are used to conduct these analyses: Moran’s I and Getis-Ord G. In this study, we used
Moran’s I method to quantify the spatial characteristics of the HQ index in the Tumen River
cross-border basin [66]. The calculation formula is as follows:

Global Moran’s I =
n∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
∑n

i=1 ∑n
j=1

n
∑

i=1
(xi − x)2

(6)

Local Moran’s Ii =
(xi − x)

n
∑

i=1
(xi − x)

2

n

∑
j

Wij(xj − x) (7)

where n represents the number of spatial positions, xi and xj represent the attribute values
of spatial positions i and j, and the spatial weight Wij denotes the proximity relationship
between spatial positions i and j. Global Moran’s I ranges from −1 to 1. A value greater
than zero indicates positive spatial autocorrelation in the region as a whole, and the degree
of agglomeration increases with a larger value. A value less than zero indicates negative
spatial autocorrelation in the entire region, and the degree of dispersion increases with a
smaller value. When the value is equal to zero, this indicates high randomness or no spatial
autocorrelation. If the value of Local Moran’s I is greater than zero, it indicates that the
spatial unit has properties similar to its adjacent units, that is, local aggregation. On the
other hand, if its value is less than zero, it indicates local dispersion.

3. Results
3.1. Temporal and Spatial Distribution of Fraction Vegetation Cover Changes in the Tumen River
Cross-Border Basin

Based on the temporal trends in FVC in the Tumen River cross-border basin between
2000 and 2020 (Figure 2), it was observed that the Chinese side generally had higher FVC
than the North Korean side. The years with low FVC values in the entire basin were
2005 and 2019, whose corresponding values were 0.5997 and 0.6003, respectively. The FVC
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in the basin showed a relatively obvious downward trend from 2000 to 2005. From the
perspective of the entire basin, the speed of the FVC decline was −0.0082/10a, and the R-
squared value was 0.5254. From 2005 to 2010, the FVC of the whole basin and the Chinese
side increased, with corresponding speeds of 0.0064/10a and 0.0040/10a, respectively.
Although the FVC on the North Korean side has declined, the vegetation in the Tumen
River cross-border basin is still gradually recovering. The FVC in 2010 was lower than that
in 2000, indicating a decline from 2000 to 2010. From 2010 to 2020, the FVC in each region
of the Tumen River cross-border basin fluctuated greatly but showed a slight downward
trend overall. In summary, the FVC in the Tumen River cross-border basin displayed a
general downward trend from 2000 to 2020.
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The distribution map of FVC in the Tumen River cross-border basin for the four
periods (Figure 3) reveals that the overall FVC in the study area is relatively high, with the
main types of FVC being high and very high. The low FVC values are mainly concentrated
in the middle of the basin and a small area in the southwest, including the plains, hills,
and river valleys with minor terrain fluctuations. The high value agglomeration areas are
located in the north and west of the basin. The spatial pattern of FVC in the study area
exhibits a trend of inclination from the northwest and northeast to the southeast.
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Based on the vegetation coverage area ratios between 2000 and 2020 (Figure 4), the
area of very high vegetation coverage follows a 10-year cycle of decline and rise. However,
the overall trend of a very high vegetation coverage area is decreasing due to a decline
in FVC, with the proportion dropping from 44.06% to 35.73%. The cycles of change for
high and medium vegetation coverage are also 10 years, with both showing a trend of
initially rising and then falling, and they are mostly transformed with adjacent vegetation
cover types. In addition, the medium- and low-vegetation-coverage types are concentrated
around the cultivated land and border areas with forest land, and their areas fluctuate
greatly as a result of human activities. The area of very low vegetation coverage, which is
primarily distributed around urban residential land, experienced minimal fluctuation from
2000 to 2020. Although urban expansion has occurred, it has not been significant due to the
small proportion of this type of land use with respect to the total area.
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The transfer and change of vegetation cover types in the Tumen River cross-border
basin exhibit significant temporal and spatial differences (Figure 5). During the period of
2000 to 2005, the transfer area of the extremely high vegetation cover type on the Chinese
side was the largest, covering an area of about 5547 km2. Most of the transferred areas were
transformed from very high vegetation coverage to high vegetation coverage, accounting
for 94.38% of the transfer area, followed by high vegetation coverage, which was mostly
converted to medium vegetation coverage. The North Korean side also has the largest con-
version area of extremely high vegetation coverage, followed by high vegetation coverage;
both are mainly converted to lower-level vegetation cover types. From 2005 to 2010, both
the Chinese side and the North Korean side had the largest transfer area of high vegetation
coverage. In addition, both have the largest conversion area to the extremely high vegeta-
tion coverage type, namely, 4539 km2 and 1251 km2, respectively, accounting for 48.95%
and 30.14% of the high-vegetation-coverage type, and the transfer rate is relatively large.

During the 2010–2015 period, both the Chinese and North Korean sides experienced
significant mutual conversion between the very high vegetation coverage type and the
high vegetation coverage type, with the largest transfer area corresponding to the former
category. Moreover, the transfer areas of both regions with low vegetation coverage ac-
counted for the largest proportions of their respective areas at 47.84% and 46.19%. From
2015 to 2020, the Chinese side saw the largest transfer area of the high-vegetation-coverage
type, which mainly corresponded to a transfer to the very-high-vegetation-coverage type.
Notably, the area of very high vegetation coverage increased by about 1900 km2 compared
to 2015. Meanwhile, the ratio of low vegetation coverage transfer area to its own area
was the highest, with a shift to medium vegetation coverage. The transfer-out rate of
the very-low-vegetation-coverage type was the smallest, remaining relatively stable. On
the North Korean side, there was a significant increase in FVC from medium vegetation
coverage to high vegetation coverage, accounting for an area of about 1171 km2. Addi-
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tionally, the largest transfer area was observed from high vegetation coverage to very high
vegetation coverage.
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To investigate the spatio-temporal changes in FVC, we estimated the change trend of
FVC pixel by pixel from 2000 to 2020 using linear trend analysis. This helped us identify the
dynamic changes in FVC in the Tumen River Basin during five different periods (Figure 6).
The results reveal that the northern part of China and the mountainous areas of North
Korea exhibited relatively active changes in FVC during the four periods from 2000 to
2020. The area wherein FVC remained relatively stable amounted to about 25,886.23 km2,
accounting for approximately 79.96% of the Tumen River cross-border basin. Around
11.94% of the areas showed a degraded trend of vegetation, which was slightly higher
than the proportion of areas where vegetation improved. The areas with improved FVC
were mainly located in the middle of the study area, primarily in the surrounding areas of
farmland. However, the mountainous areas in the northwest, southeast, and northeast of
the study area, including Yanji City, Helong City, and Hunchun City in Yanbian Korean
Autonomous Prefecture on the Chinese side and the northeastern part of North Hamgyong
Province and the Hoeryong area of Ryanggang Province on the North Korean side, showed
degrading FVC.

3.2. Analysis of Driving Factors of Vegetation Cover Change in the Tumen River
Cross-Border Basin

The interaction between human activities and natural factors has influenced the pattern
and change of land surface vegetation. GD can measure the degree of influence of each
factor on FVC. The results from factor detector analysis (Q Value) showed that Pop (0.4779)
followed by LULC (0.4269) are the strongest explanatory factors for FVC in the Tumen
River cross-border basin (Figure 7). The explanatory power of both factors reaches 40%,
indicating a significant impact and serving as the leading driving force. The next most
significant driving factors are Ele (0.2446) and Slo (0.1184), which contribute to the spatial
variation of FVC. Other factors such as Light, Tem, Lst, and Pre also have a certain influence
on FVC, with Q Values exceeding 0.05, while Asp has the weakest explanatory power. Both
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sides of the Tumen River basin have similar dominant driving factors for FVC changes,
which are Pop and LULC. However, the explanatory power of LULC on the North Korean
side is higher than that of Pop. Light was added as an important driving factor on the
Chinese side, and the explanatory power of Ele, Light, and Slo increased compared to
that of the whole basin. Among them, Ele has the highest Q Value of 0.3258, indicating a
significant impact. The Q Values of Pre, Tem, and Lst on the Chinese side are 0.0877, 0.0855,
and 0.0844, respectively. This indicates that the impact of meteorological factors on the
change of FVC on the Chinese side is higher than that on the North Korean side.
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Various evaluation indicators have varying impacts on FVC, with differences observed
in FVC between different ranges or types for a single indicator. By utilizing the risk
detector, the suitable range for vegetation growth in the Tumen River cross-border basin
was determined (Table 4). For climatic conditions, Tem ranged from 2.91–3.42 ◦C, Lst
ranged from 7.437–7.443 ◦C, and Pre was between 661–675 mm, all of which resulting in
high FVC. Topographical factors such as Ele ranging from 666 to 824 m, Slo between 12.4 to
17.5◦, and Asp situated in the west have the largest average FVC. The vegetation conditions
on both the Chinese and North Korean sides are also better with higher Ele and Slo values.
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The three evaluation factors of LULC, Pop, and Light demonstrate the significant influence
of human activities. Figure 3 shows that land cover type has a significant impact on
vegetation, and woodland has the largest average FVC due to dense vegetation. Pop and
Light values are low in areas with a low amount of human activity, resulting in higher FVC.

Table 4. Appropriate ranges or types for different factors.

Evaluation
Index

Vegetation Coverage Suitable Range Mean Vegetation Coverage

Tumen China North Korea Tumen China North Korea

LULC Forest Forest Forest 0.710 0.732 0.654
Tem 2.91–3.42 ◦C 2.98–3.42 ◦C 4.66–5.2 ◦C 0.713 0.754 0.612
Pre 661–675 mm 670–679 mm 624–636 mm 0.693 0.736 0.653
Lst 7.437–7.443 ◦C 7.44–7.45 ◦C 7.61–7.63 ◦C 0.760 0.755 0.662
Ele 666–824 m 761–890 m 1430–1640 m 0.746 0.777 0.681
Slo 12.4–17.5◦ 11.3–15.8◦ 7.62–17.5◦ 0.735 0.791 0.681
Asp West West Northwest 0.676 0.716 0.616
Pop 0–0.0526 0–0.0526 0–0.789 0.773 0.774 0.736

Light 0–0.048 0–0.0482 0–0.0002 0.643 0.686 0.553

Note: The principle of maximizing the Q value guides the discretization of continuous variables in geographical
detection. The appropriate range is determined by selecting the type with the largest average FVC after discretization.

The change in the FVC pattern is not the result of a single index factor but rather
the product of the interaction of multiple factors. The results obtained from detecting
the interaction of each evaluation factor (Figure 8) indicate that there are interactions
between every factor in the Tumen River cross-border basin. The explanatory power of the
interaction of different factors showed two-factor enhancement or non-linear enhancement,
implying that the influence of the interaction factors was greater than that of a single factor.
However, from the North Korean side, the combined effects of LULC and Light and Slo
and Light weakened the explanatory power regarding FVC. In terms of the entire study
area, the interaction influence of Pop and LULC ranked first, with a Q value of 0.5609,
which was followed by the combination of Pop and Ele, with a Q value of 0.5468. The
strongest influence on the Chinese side was the combination of Pop and Ele, with a Q value
of 0.5622. Although the influence of the Lst single factor was weak, the combination of Pop
and Lst ranked second with an influence of 0.5380, indicating that Lst is an indirect factor
affecting the temporal and spatial distribution of FVC. The combination with a stronger
interaction on the North Korean side is consistent with the characteristics of the entire basin,
showing that the interaction between Pop, LULC, Ele, and other factors in the Tumen River
cross-border basin still dominates FVC.
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3.3. Habitat Quality Assessment Results

In this study, the InVEST model was employed to conduct a preliminary assessment of
HQ in the Tumen River cross-border basin from 2000 to 2020 (Figure 9). The results provide
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a comprehensive insight into the impact of LULC type change on biological habitats. The
HQ index of the basin is mainly composed of high-value areas ranging from 0.7 to 0.8,
followed by low-value areas ranging from 0.2 to 0.3. The high-value areas are mainly
distributed in the forested regions, whereas the low-value areas are concentrated in areas
affected by high-intensity human activities such as cultivated land and artificial surfaces.
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Due to the significant spatio-temporal variation in FVC in the Tumen River cross-
border basin between 2000 and 2020, this study used the GWR tool to further explore
the impact of FVC on HQ and its spatial differentiation characteristics (Figure 10). The
results revealed clear spatial differences in the impact of FVC on HQ, with the regression
coefficients showing a trend of high values in the surrounding areas and low values in
the middle, which is a finding that is consistent with the spatial distribution of FVC in
the basin. The regression coefficients ranged from 0.090 to 0.934, with an average of
0.606 and predominantly in high-value intervals of 0.690–0.768 followed by 0.605–0.690.
These findings indicate that the degree of surface FVC has a significant positive impact
on the HQ of the basin. Notably, areas with high FVC showed a high level of correlation
between FVC and the HQ index, while low-value areas were mostly found in the middle
of the study area, where FVC is lower. Therefore, this study concludes that the HQ index
based solely on LULC assessment may not accurately reflect the HQ level of the entire basin.

The spatial distribution of the HQ index coupled with FVC in the Tumen River cross-
border basin from 2000 to 2020 (Figure 11) reveals the strong explanatory power of FVC
with respect to the pattern of the HQ index. The HQ index in the basin displayed a north–
south gradient, sloping from northwest and northeast to southwest, with higher values in
the north and lower in the south. The forest area exhibited a significant spatial difference in
terms of the HQ index, which closely followed the spatial distribution pattern of FVC. Over
the 20-year period, the HQ index and FVC of the basin displayed a relatively consistent
change trend. During this period, the HQ index displayed a downward trend. The average
value of the HQ index was 0.467 in 2000, which dropped to 0.447 in 2010. Compared to 2010,
the HQ index in 2020 showed a slight decline, changing from 0.447 to 0.444. The change in
the HQ index between 2010 and 2020 was minor compared to that in the preceding decade.

To describe the spatial pattern and aggregation characteristics of the HQ index in the
Tumen River cross-border basin, this study employed Moran’s I method to quantify the
HQ index (Figure 12). The results show that the Global Moran’s I value of the HQ index is
positive and high, indicating a significant positive spatial correlation. From 2000 to 2010,
the Global Moran’s I value dropped from 0.648 to 0.628, indicating the weakened spatial
agglomeration of the HQ index. The Global Moran’s I value rose to 0.632 in 2020, showing
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increased spatial autocorrelation. The scatter points of the HQ index mainly occupy the
third quadrant, suggesting an obvious clustering of low values. The number of scatter
points in the fourth quadrant increased, indicating an increase in areas surrounded by
low-HQ-index areas, leading to a weakening of spatial agglomeration.

Sustainability 2023, 15, x FOR PEER REVIEW 15 of 24 
 

Figure 9. Spatial distribution of HQ Index based on LULC in the Tumen River cross-border basin 
from 2000 to 2020. 

Due to the significant spatio-temporal variation in FVC in the Tumen River cross-
border basin between 2000 and 2020, this study used the GWR tool to further explore the 
impact of FVC on HQ and its spatial differentiation characteristics (Figure 10). The results 
revealed clear spatial differences in the impact of FVC on HQ, with the regression coeffi-
cients showing a trend of high values in the surrounding areas and low values in the mid-
dle, which is a finding that is consistent with the spatial distribution of FVC in the basin. 
The regression coefficients ranged from 0.090 to 0.934, with an average of 0.606 and pre-
dominantly in high-value intervals of 0.690–0.768 followed by 0.605–0.690. These findings 
indicate that the degree of surface FVC has a significant positive impact on the HQ of the 
basin. Notably, areas with high FVC showed a high level of correlation between FVC and 
the HQ index, while low-value areas were mostly found in the middle of the study area, 
where FVC is lower. Therefore, this study concludes that the HQ index based solely on 
LULC assessment may not accurately reflect the HQ level of the entire basin. 

 
Figure 10. Spatial distribution of regression coefficients of HQ index and FVC in GWR model. The 
area where the residual value is greater than 2.5 and less than −2.5 was deemed insignificant. 

The spatial distribution of the HQ index coupled with FVC in the Tumen River cross-
border basin from 2000 to 2020 (Figure 11) reveals the strong explanatory power of FVC 
with respect to the pattern of the HQ index. The HQ index in the basin displayed a north–
south gradient, sloping from northwest and northeast to southwest, with higher values in 
the north and lower in the south. The forest area exhibited a significant spatial difference 
in terms of the HQ index, which closely followed the spatial distribution pattern of FVC. 
Over the 20-year period, the HQ index and FVC of the basin displayed a relatively con-
sistent change trend. During this period, the HQ index displayed a downward trend. The 
average value of the HQ index was 0.467 in 2000, which dropped to 0.447 in 2010. Com-
pared to 2010, the HQ index in 2020 showed a slight decline, changing from 0.447 to 0.444. 
The change in the HQ index between 2010 and 2020 was minor compared to that in the 
preceding decade. 

Figure 10. Spatial distribution of regression coefficients of HQ index and FVC in GWR model. The
area where the residual value is greater than 2.5 and less than −2.5 was deemed insignificant.

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 24 
 

 
Figure 11. Spatial distribution of HQ index coupled with FVC in the Tumen River cross-border basin 
from 2000 to 2020. 

To describe the spatial pattern and aggregation characteristics of the HQ index in the 
Tumen River cross-border basin, this study employed Moran’s I method to quantify the 
HQ index (Figure 12). The results show that the Global Moran’s I value of the HQ index 
is positive and high, indicating a significant positive spatial correlation. From 2000 to 2010, 
the Global Moran’s I value dropped from 0.648 to 0.628, indicating the weakened spatial 
agglomeration of the HQ index. The Global Moran’s I value rose to 0.632 in 2020, showing 
increased spatial autocorrelation. The scatter points of the HQ index mainly occupy the 
third quadrant, suggesting an obvious clustering of low values. The number of scatter 
points in the fourth quadrant increased, indicating an increase in areas surrounded by 
low-HQ-index areas, leading to a weakening of spatial agglomeration. 

 
Figure 12. Global Moran’s I scatter diagram of HQ index coupled with FVC in the Tumen River 
cross-border basin. 

The degree of spatial agglomeration of the HQ index in the Tumen River cross-border 
basin was assessed using the Global Moran’s I method. To identify the specific locations 
of the agglomeration centers, Local Moran’s I was further applied to analyze the HQ index 
(Figure 13). The analysis revealed that the basin primarily exhibits high–high and low–
low spatial connections. The low–low clustering was mainly found in the central and 
southwestern parts of the basin, primarily in the areas of artificial surfaces and cultivated 
lands with high human activity intensity. On the other hand, the spatial distribution of 
high–high agglomeration reflects the influence of FVC on HQ. The area of overlap be-
tween the distribution of high FVC and the high–high agglomeration is relatively signifi-
cant and mainly located in the mountainous regions on the northern, eastern, and 

Figure 11. Spatial distribution of HQ index coupled with FVC in the Tumen River cross-border basin
from 2000 to 2020.

The degree of spatial agglomeration of the HQ index in the Tumen River cross-border
basin was assessed using the Global Moran’s I method. To identify the specific locations
of the agglomeration centers, Local Moran’s I was further applied to analyze the HQ
index (Figure 13). The analysis revealed that the basin primarily exhibits high–high and
low–low spatial connections. The low–low clustering was mainly found in the central and
southwestern parts of the basin, primarily in the areas of artificial surfaces and cultivated
lands with high human activity intensity. On the other hand, the spatial distribution of
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high–high agglomeration reflects the influence of FVC on HQ. The area of overlap between
the distribution of high FVC and the high–high agglomeration is relatively significant and
mainly located in the mountainous regions on the northern, eastern, and southwestern parts
of the Chinese side. In general, the high–high agglomeration areas are mainly situated in
regions with an exceptionally high HQ index, while the low–low agglomeration distribution
is associated with areas with an exceedingly low HQ index.
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4. Discussion
4.1. Analysis of Spatio-Temporal Dynamic Variation of Vegetation Coverage

Based on long-term vegetation index data of the Tumen River Basin, this study ana-
lyzed the temporal and spatial dynamics of FVC using trend analysis and other methods.
The results show that low values were recorded in 2005 and 2019, with the former being
attributed to a large-scale summer drought and the latter being significantly impacted
by forest fires on the Sino-Russian border. From a temporal perspective (Figure 2), the
metabolic balance of vegetation was disrupted by the 2000–2005 summer drought, which
seriously affected plant growth and survival, resulting in a significant decline in FVC.
Between 2005 and 2010, relatively few extreme weather events occurred, leading to an
increase in FVC. However, the 2010 major flood disaster disrupted vegetation restoration,
and the FVC level of 2000 was not attained. From 2010 to 2020, the expansion of human
activities and frequent extreme weather events resulted in relatively large interannual FVC
variations. Overall, FVC exhibited a declining trend from 2000 to 2020, with approximately
11.94% of areas experiencing a decreasing trend.

In terms of spatial distribution and variation (Figures 3–6), the FVC on the Chinese
side of the Tumen River cross-border basin is higher than that on the North Korean side.
Low FVC values are concentrated mainly in the central and eastern parts of the basin, while
high values are concentrated in the north and west. The project of “returning farmland
to forests” has resulted in vegetation improvement areas being mainly distributed in the
middle of the study area, mostly surrounding cultivated land. Initially, population density
has been low in the northwest, southeast, and northeast mountainous areas of the study
area, leading to good vegetation growth. However, with the expansion of human activities,
a large amount of land has been destroyed, resulting in the degradation of FVC. To further
validate the reliability of the vegetation coverage in the study area, this study conducted
a comparative analysis between field measurement data and satellite observation data,
revealing obvious similarities (Figure 14).
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4.2. Effects of Different Driving Factors on Fraction Vegetation Coverage

The interplay between human activities and natural factors has led to changes in
the pattern and dynamics of land surface vegetation. The study area’s driving force with
respect to FVC (Figure 7) shows that human activities have a significant impact on FVC
differentiation, which is consistent with previous research findings [67]. Changes in land
use intensity resulting from alterations in land use types and population density are the
primary ways in which human activities affect vegetation coverage. Among the various
land use types, forest land has the highest FVC at 0.71, followed by grassland. Human
beings use the artificial surface most intensively, resulting in the worst vegetation conditions
for this land, with an FVC value of only 0.18, except for the low FVC caused by the water
body’s own characteristics. Additionally, there is a significant negative correlation between
FVC and population density, fully reflecting the impact of land use intensity on FVC.

Changes in vegetation coverage patterns are also influenced by government policies.
The Tumen River Basin, situated in the cross-border area between China and North Korea,
is subject to policy differences between the two countries, which play a significant role in
the alteration of FVC. The impact of policies on FVC is reflected in many aspects, including
changes in agricultural production structures due to policy intervention and the multi-
directional expansion of rail transit under state investment and construction.

The economic development of the Chinese side of the study area has been greatly
facilitated by national policies, which has led to accelerated regional development. As
a result, large amounts of forest and grassland in the region have been developed into
cultivated land, and the forest itself has also been destroyed, which has led to a decline
in FVC. According to the China Forestry Statistical Yearbook (Figure 15), China’s forest
development has continued to expand from 2000 to 2020, with the total value of the
forestry industry increasing by CNY 7816.37 billion. This trend is also evident on the
Chinese side of the Tumen River cross-border basin, where the FVC of forested area has
dropped significantly from 0.757 to 0.725. In addition, China has introduced sustainable
development policies such as the “returning farmland to forest” and “returning farmland
to grassland” pledges. As a result, the vegetation restoration area on the Chinese side
of the study area from 2000 to 2020 was mostly located around cultivated land. On the
other hand, the North Korean side, guided by the national principle of “self-reliance”, has
engaged in the large-scale deforestation and reclamation of hillside terraces to ensure food
security, leading to significant damage to surface vegetation. As a result, the FVC on the
North Korean side of the study area is significantly lower than that on the Chinese side.
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Topographic factors play a crucial role in redistributing water, heat, and nutrients
between regions via different processes, thereby affecting regional vegetation patterns [68].
In the findings of this study, the areas with the highest FVC are situated at elevations
between 666 and 824 m (Table 4). Moreover, the FVC shows an increasing trend with an
increase in slope. This trend could be attributed to the fact that frequent human activities
on the horizontal terrain have inhibited vegetation growth. With an increase in elevation
and slope, the influence of human activities weakens, and the vertical differentiation of
the climate becomes more pronounced, creating an environment that favors vegetation
growth and development. However, with a further increase in elevation, the FVC shows a
declining trend due to factors such as a gradual decrease in temperature, a lack of minerals
in the soil, and excessive sunlight intensity.

The Tumen River cross-border basin is situated in the mid-to-high latitude region,
with the latitude on the Chinese side being relatively high, rendering vegetation more
susceptible to climate factors. In recent years, the concentration of greenhouse gases such
as CO2 and CH4 in the atmosphere has continued to increase, leading to the acceleration of
the rate of climate warming and the exacerbation of the unpredictable nature of climate
change [69]. This trend has resulted in an increase in the inconsistency of the combination
of water and heat conditions in the study area, which could have an impact on the growth
and distribution of plants and, subsequently, affect FVC.

4.3. Effect of Human Activities and Fraction Vegetation Coverage on Habitat Quality

HQ represents a vital component of natural ecosystems that remains highly vulnerable
to external disturbances, particularly those resulting from human activities [21,70]. In 1992,
a collaborative effort between China, Russia, North Korea, South Korea, and Mongolia
led to the initiation of the Tumen River Regional Cooperation Development Project. In
recent years, international cooperative efforts in the Tumen River region have deepened,
fostering rapid economic growth, urban expansion, and changes in agricultural practices.
These developments have exerted escalating pressures on indigenous species and their
habitats. Consequently, in future investigations focusing on HQ assessment, it has become
imperative to comprehensively comprehend the impact of human activities, particularly
national policies, on biodiversity and habitat preservation.

The impact of vegetation on HQ is primarily reflected in the influence of vegetation
type, density, and structure on species habitat selection. Additionally, vegetation is a
vital component of habitats, and the quality of vegetation reflects the quality of a regional
habitat to a certain extent. Vegetation coverage data can be used to accurately monitor
the dynamic changes of vegetation in time and space, enabling the quantification of the
suitability level of the current habitat. This paper employed the GWR model, with the
change in HQ assessed via the InVEST model acting as the dependent variable and the
change in FVC as the independent variable, to quantify the degree of influence of FVC
on HQ. This research demonstrates (Figure 10) that all regression coefficients are positive
and predominantly concentrated in the high-value range of 0.690–0.768, indicating that
the degree of FVC significantly promotes the HQ of the Tumen River cross-border basin.
The spatial distribution of the correlation between FVC and the HQ index is generally
consistent with the distribution pattern of FVC, indicating that the positive impact on the
HQ of the basin deepens with the increase in surface vegetation coverage. It is evident that
relying solely on land use classification data will not result in an accurate representation of
the HQ of the basin.

4.4. Habitat Quality Assessment Coupled with Fraction Vegetation Coverage

This paper comprehensively and scientifically evaluated the HQ of the Tumen River
cross-border basin using FVC as a metric. Changes in FVC affect species–habitat relation-
ships and thus indicate the state of vegetation growth and the food abundance for species.
As a result, variations in FVC have a significant impact on the HQ of a region. In contrast,
alterations in land use types mainly reflect changes in the intensity of human activities,
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which are crucial factors affecting species habitats. The intensity of human activities in
residential areas, cultivated land, and road areas is potent, thereby posing a significant
threat to organisms. Consequently, changes in this area are a vital contributor to the changes
in the HQ index [71].

The FVC in the northern and surrounding areas of the Tumen River cross-border basin
is significantly higher than that in the southern and central areas (Figure 3). Furthermore,
according to the spatial distribution data of land use types, it can be inferred that the
intensity of human activities in the central area of the basin is greater than that in the
surrounding areas. The HQ index of the basin has a spatial pattern of high values in the
north and low values in the south and central areas along with the center of the surrounding
areas (Figure 11). Consequently, the land use types in low-value HQ index cluster areas
are predominantly man-made surfaces and cultivated land, and the FVC in these areas is
low. The spatial distribution of high HQ index values is related to areas with low human
activity intensity or high FVC. If there is an overlapping area between the two to a certain
extent, then high-HQ-index clusters will form in this area (Figure 13).

In chronological terms, the HQ index decreased in 2010 compared to 2000, and the
average values of the HQ index in 2010 and 2020 were similar. Similarly, vegetation
coverage in the study area decreased from 0.6438 to 0.6266 from 2000 to 2010, while the FVC
in 2020 was 0.6234, which was similar to that in 2010. These results fully demonstrate the
impact of FVC on HQ. A comparison of the evaluation results regarding HQ in this study
with the results of the cross-border areas of China, North Korea, and Russia calculated using
Gan.X based on the InVEST model [60] reveals a relatively consistent spatial distribution
pattern and temporal variation characteristics. Zhang.Y et al. also evaluated the HQ on the
Chinese side of the Tumen River cross-border basin and found that it improved slightly [72].
Although their results differ from this study due to the different time scales, the spatial
distribution patterns of the HQ index are similar. Moreover, because FVC was used to
correct the HQ, the overall HQ index was lower than the two results.

Given that the capacity of a given habitat to provide ecosystem services for species in
various regions varies, FVC, as a manifestation of habitat quality, can be used to optimize
HQ assessment. However, this approach simplifies the actual process, disregarding numer-
ous interconnected factors and unknown mechanisms. Although it may not adequately
represent local biodiversity levels, comprehensive HQ assessments provide insights into
the capacity for regional biodiversity maintenance and the extent of disturbance. In future
investigations, we will explore the integration of diverse vegetation indicators and other
factors along with the incorporation of satellite observations [73], aiming to achieve a more
precise evaluation of HQ.

5. Conclusions

This study analyzed the spatiotemporal variation pattern, driving factors, and impact
on habitat quality of the long-term FVC extracted from the Tumen River cross-border basin.
Furthermore, the study incorporated the FVC to improve the HQ assessment model. After
analyzing and discussing the results, the following conclusions were drawn.

The Tumen River cross-border basin has a relatively high overall FVC level, which
showed a downward trend from 2000 to 2020. The Chinese side of the basin has a higher
overall FVC than the North Korean side. Low FVC values are mainly concentrated in the
middle and eastern parts of the basin, while high FVC values are mainly concentrated
in the north and west. FVC is significantly affected by human activities and topographic
factors. Land use, population density, and elevation factors are the main driving factors of
temporal and spatial changes in FVC, while climate factors have little influence. FVC has a
significant impact on habitat quality patterns, especially in areas with stable land use. From
2000 to 2020, the HQ index of the coupled FVC in the basin showed a downward trend with
significant spatial autocorrelation. High–high clusters mostly overlap with forest areas
with extremely high FVC, while low–low clusters overlap with areas with extremely low
FVC and high human activity intensity.
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Based on the research results presented above, the following recommendations are pro-
posed for the ecological management planning of the Tumen River cross-border basin: First,
monitor and track changes in vegetation cover in the basin and strengthen its protection
and management. Second, employ targeted measures to control the areas with low FVC and
severe degradation while safeguarding the areas with good vegetation conditions. Third,
consider ecological security when formulating and implementing policies, and mitigate the
threat posed by human activities to natural habitats.
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