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Abstract: This article tackles a pervasive problem in connected transportation networks: the issue
of conflicting right-of-way between trams and Connected Vehicles (CV) at intersections. Trams
are typically granted a semi-exclusive right-of-way, leading to a clash with CV. To resolve this
challenge, the study introduces a Transit Signal Priority (TSP) system and a guidance framework
that seeks to minimize unintended delays for trams while minimizing the negative impact on CV,
passenger comfort, energy consumption, and overall travel time. The proposed framework employs a
collaborative optimization system and an improved genetic algorithm to adjust both the signal phase
duration and the operating path. The study is based on data collected from a simulated intersection
that includes the signal phase sequence and duration. The findings demonstrate that the proposed
framework was able to reduce the transit time for trams by 45.8% and the overall transit time for
trams 481 and CVs by 17.1% compared to the conventional method. Additionally, the system was
able to reduce energy consumption by 34.7% and the non-comfort index by 25.8%. Overall, this
research contributes to the development of a more efficient and sustainable transportation system for
the future.

Keywords: connected vehicles; trams; intelligent transportation systems; genetic algorithms; optimization

1. Introduction

The concept of sustainable transportation systems is gaining momentum globally,
with the G20 countries emphasizing the need for intelligent solutions to address public
transportation issues. Intelligent Transportation Systems (ITS) offer a range of technological
advancements such as vehicle networking, vehicle-road coordination, road monitoring,
and modern trams [1,2]. However, the application of ITS in real-world settings is limited
due to the specific scenarios used for simulation. In addition, the method section of several
studies that propose ITS frameworks lacks clarity, with insufficient information provided
on the choice of algorithms and simulation parameters. To overcome these limitations,
this study proposes a novel approach to integrate the characteristics of Connected Vehicles
(CV) and trams into a digital traffic control system, operating in a network environment of
information exchange. By leveraging information exchange between CV, trams, and traffic
signals, the proposed framework can optimize vehicle speed and signal phase duration to
improve intersection fluidity. Although the proposed framework is suitable for intersections
in under-saturated conditions and does not consider mixed traffic and traffic throughput,
it has the potential to improve the performance of ITS in urban areas. Previous studies
have explored the impact of Cooperative Driving Guidance (CDG) on traffic systems
under both saturated and unsaturated traffic conditions. However, the results indicate
that the effectiveness of CDG may be limited to specific driving situations, such as starting
platoons at signalized intersections. Other studies have focused on optimizing traffic signals
using platoon information, which can result in increased traffic throughput and reduced
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energy consumption. The proposed framework builds on these studies by providing a
centralized computing station that facilitates the information exchange between different
transportation modes, resulting in an optimized adjustment plan for vehicle speed and
signal phase duration. Overall, the proposed framework has the potential to improve
the performance of ITS in urban areas by leveraging the exchange of digital information
between different transportation modes. While the framework has been developed and
tested for specific scenarios, further research is required to evaluate its performance in a
real-world setting with mixed traffic and varying levels of traffic throughput.

The remainder of this article is structured as follows: Section 2 reviews related
work, Section 3 highlights literature review limitations, Section 4 describes the proposed
framework, Section 5 describes the methods, Section 6 assesses the proposed framework,
Section 7 discusses the work limitations, and Section 8 concludes and suggests future
research perspectives.

2. Related Work
2.1. Collaborative Optimization for Trams and CV

This literature review explores recent articles on Collaborative Trajectories Optimiza-
tion (CTO) for trams and Connected Vehicles (CV) [3,4] at signalized intersections. One of
the main themes in the literature is the use of communication and connectivity technolo-
gies to enable CTO. Many articles have proposed the use of Vehicle-to-Vehicle (V2V) or
Vehicle-to-Infrastructure (V2I) communication to allow vehicles to share information and
coordinate their movements, as highlighted in a comprehensive survey on Cooperative
Intersection Management for CVs [5]. Additionally, some authors propose the use of V2I
communication to optimize the trajectories of trams and connected vehicles at signalized
intersections [6]. In Ref. [7], the authors presented an efficient multilevel probabilistic
model for detecting abnormal traffic in wireless sensor networks. Their model utilizes a
combination of multiple probabilistic classifiers and achieves high accuracy in detecting
abnormal traffic with low computational complexity. In Ref. [8], the authors proposed an
efficient monitoring system called EMS to detect non-cooperative nodes in IoT-based vehic-
ular delay-tolerant networks (VDTNs). EMS utilizes a combination of machine learning [9]
and statistical analysis techniques and achieves high accuracy in detecting non-cooperative
nodes in VDTNs.

Another theme in the literature is the use of optimization and control techniques, such
as model predictive control, optimal control, and game theory, to enable CTO. For instance,
the authors in Ref. [10] proposed the use of model predictive control to optimize the
trajectories of trams and connected vehicles at signalized intersections in real-time. Many
papers also proposed the usage of simulation to evaluate different CTO algorithms, as
shown in Ref. [11], where the authors used a simulation model to evaluate the performance
of different CTO algorithms in terms of safety and efficiency. Additionally, several articles
have proposed the integration of CTO with other technologies such as advanced traffic
management systems and Advanced Driver Assistance Systems (ADAS), as highlighted
in Ref. [11].

Some articles have adopted mathematical modeling to solve the problem of collabora-
tive control of CVs such as in Ref. [12] where the authors focused on the development of a
mathematical model and numerical simulation to analyze the dynamic behavior of a train
and pantograph-catenary system with consideration of nonlinear contact. They proposed
a new method for calculating the contact stiffness and present the results of numerical
simulations to demonstrate the effectiveness of the proposed method. In addition, the au-
thors in Ref. [13] have discussed the nonlinear dynamic analysis of a single-layer spherical
lattice shell using the exact solution method. They proposed a new method for solving
the governing equations of motion and present numerical simulations to demonstrate the
effectiveness of the proposed method.

Lastly, CTO for tram and connected vehicles have also been studied and evaluated
at various real-world intersections in Ref. [14], in which the authors implemented a CTO
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algorithm at a real-world intersection and evaluated its performance in terms of safety
and efficiency.

The literature on CTO for Tram and Connected Vehicles at Signalized Intersections
highlights the potential of using communication and connectivity technologies, optimiza-
tion and control techniques, simulation, and integration with other technologies to improve
the performance of vehicles at signalized intersections.

Additionally, Transit Signal Priority (TSP) is a technology that adjusts traffic signals
in favor of public transit vehicles, such as buses and streetcars, to reduce the delay and
improve the speed and reliability of transit services. TSP systems use various techniques
such as extending green lights, shortening red lights, or holding green lights for transit
vehicles in order to reduce the delay and improve the performance of transit services.
Recent studies have shown that TSP systems can significantly improve the speed, reliability,
and capacity of public transit, as demonstrated in Refs. [15,16]. Furthermore, in Ref. [17]
the authors summarize the benefits and costs of bus rapid transit systems and TSP, and
conclude that they can significantly improve the efficiency and effectiveness of public
transit. However, it is important to note that the design, deployment, and control of TSP
systems are context-dependent and depend on various factors such as traffic volume, public
transit demand, and intersection geometry.

2.2. Genetic Algorithm for Trams and CV

There has been a growing interest in using genetic algorithms (GAs) for tram and CV
trajectory optimization in recent years. A GA-based approach was proposed for optimizing
the operation of trams in a mixed traffic environment [18]. The approach optimizes the
tram’s speed and headway to reduce the delay caused by trams at intersections and
improve the overall traffic efficiency. The authors showed that their GA-based approach
can effectively reduce the delay caused by trams at intersections and improve the overall
traffic efficiency. In Ref. [19], a GA-based approach was proposed for optimizing the
trajectory of CVs in a mixed traffic environment. The authors used a GA to optimize
the vehicle’s speed and headway to reduce the delay caused by CVs at intersections and
improve the overall traffic efficiency. The results of the study showed that the GA-based
approach can effectively reduce the delay caused by CVs at intersections and improve the
overall traffic efficiency. In Ref. [20], a GA-based approach was proposed for optimizing
the trajectory of connected vehicles in a mixed traffic environment. The authors used a
GA to optimize the vehicle’s speed and headway to reduce the delay caused by CVs at
intersections and improve the overall traffic efficiency. The results of the study showed that
the GA-based approach can effectively reduce the delay caused by CVs at intersections and
improve the overall traffic efficiency. Overall, these studies demonstrate the potential of
using GAs for optimizing the trajectory of trams and CVs in mixed traffic environments to
reduce the delay and improve overall traffic efficiency.

2.3. General Workflow

Genetic algorithms (GAs) and collaborative optimization (CO) are optimization tech-
niques used in tram and connected vehicle trajectory optimization. GAs create an initial
population of solutions and apply genetic operators to optimize the vehicle’s speed and
headway to reduce delay. CO involves multiple agents working together to optimize a
shared objective and may involve communication technologies such as V2V or V2I and
optimization techniques such as model predictive control and game theory. Simulation is
used to evaluate different CO algorithms, and real-world evaluations have been conducted
to evaluate their performance in terms of safety and efficiency.

2.4. Limitation in the Related Work

The limitations of the articles on (CTO) detailed in the literature review section for
tram and connected vehicles at signalized intersections can vary depending on the specific
study. However, some common limitations that may be found in these articles include:
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1. Limited scope: Some studies may focus on a specific aspect of CTO, such as the use of
a particular communication technology, and may not consider other factors that may
impact the performance of CTO;

2. Simplified assumptions: Many articles rely on simplified assumptions such as deter-
ministic models, which may not always reflect the complex and uncertain nature of
real-world traffic;

3. Lack of real-world data: Many studies use simulated data, which may not always
accurately represent real-world traffic conditions, and lack of real-world data might
limit the generalization of the results;

4. Limited evaluation: Some articles may not have a thorough evaluation of the proposed
CTO algorithms and techniques, and may not have been tested extensively;

5. Limited scalability: Some CTO algorithms may not be able to scale to handle large-
scale and complex traffic scenarios;

6. Lack of communication coverage: some CTO algorithm and communication technolo-
gies only work under complete coverage of V2V or V2I infrastructure, which might
limit its generalization;

7. Privacy concerns: privacy concerns may arise from the use of communication tech-
nologies to share information between vehicles, especially with personal data.

This work tried to build a compromise that covers these limitations.

3. Motivations and Contributions

Motivated by the limitations highlighted in Section 2.4, we introduce our contributions
in detail, as follows:

1. A Transit Signal Priority (TSP) system and guidance framework were introduced
to minimize unintended delays for trams while also minimizing negative impacts
on Connected Vehicles (CV), passenger comfort, energy consumption, and overall
travel time;

2. A collaborative optimization system and an improved genetic algorithm were used to
adjust both the signal phase duration and the operating path;

3. The impact of tram length on Transit Signal Priority (TSP) was considered in the analysis;
4. A digital integration of trams, CVs, and intersection signals was proposed;
5. A collaborative optimization algorithm running in an online mode was developed to

deal with the cross-transportation mode optimization problem;
6. An enhanced elitist genetic algorithm based on adaptive thought was proposed to

improve efficiency and avoid local optima;
7. The proposed system was validated using a simulated case, showing that the TSP

strategy effectively reduced right-of-way wastage and minimized conflicts between
trams and CVs;

8. The research contributed to the development of a more efficient and sustainable
transportation system for the future;

9. The study addressed a pervasive problem in connected transportation networks;
10. The proposed method set the stage for future research focusing on incorporating the

method into arterial intersection traffic signal control systems and addressing mixed
traffic comprised of connected and unconnected vehicles.

4. Framework

An overview of the proposed connected vehicle model is illustrated in Figure 1. More
details are provided in the following subsections.
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Figure 1. Connected vehicle model overview.

4.1. Tram Dynamics Model

The speed and operation of trams are influenced by a range of factors, including trac-
tion and braking force, as well as speed limits in different segments and intersections [21].
In the mode of semi-exclusive right-of-way, trams have exclusive right-of-way in the seg-
ment. They share this segment with road users at intersections. To optimize the tram’s
operation, a “quickest curve” has been identified as the fastest possible operating curve that
minimizes travel time [22]. Previous studies have developed an ideal tram control curve by
combining maximum traction, coast, cruise, and maximum braking, but the running social
vehicles conditions within intersections must also be taken into account [23]. As a result, the
traction and braking forces do not have to be at maximum levels, and the trams’ running
duration in the section can be flexibly adjusted by modifying these forces. In this research,
the trams’ traction acceleration, braking acceleration, coast acceleration, and basic resis-
tance are computed by examining their traction, coast, and braking states. The simulation
employs a traditional discrete technique, dividing the entire running process into numerous
segments of uniformly accelerated rectilinear motion having a step length set at 0.1 s. At
each time step, the initial speed, distance, and acceleration are considered to calculate the
tram’s discrete speed and distance, given the tram’s fully loaded mass and coefficients for
maximum traction and braking forces, rolling resistance, and air resistance [21,23]. This ap-
proach enables a more accurate assessment of the trams’ performance in complex variable
acceleration motions, allowing for the identification of optimal operating conditions for the
transit system.

4.2. Connected Vehicle Guidance Model

To construct a dynamic vehicle fleet between different CVs, researchers have usually
tended to use a V2V communication system [24]. Using V2V as an intelligent road traffic
technology, the suggested control system utilizes two layers, where the upper layer deals
with the leading vehicle, while the lower layer deals with the coordination control. Both
layers seek to adjust and control the vehicles’ speed. The timing data is collected by the
leading vehicle via traffic signals through a V2I communication system, which computes its
required speed based on a set of predefined rules. It is assumed in this work that both CVs
and trams sharing the same phase are allowed to cross the intersection based on the priority
defined by TSP. This assumption makes sure that the right-of-way is totally occupied and
avoids any wasting of utilization. In addition, V2I prevents contributes to avoiding the
waste coming from hesitancy caused by drivers.

A car-following model developed in Ref. [25] has been adopted in this work. The
model represents an Intelligent Driver Model combining vehicle speed parameters includ-
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ing instantaneous acceleration, maximum acceleration, desired speed, instantaneous speed,
relative speed, gap, and desired gap. A safe gap is considered and set to 1.5 m, and the
comfort deceleration and reaction time is set to 0.8 s. The upper control scheme is initiated
when the lead vehicle enters the speed guidance area, and it begins by computing the
minimum time required to arrive at the intersection. This time is defined as the time it takes
to achieve the intersection when the target speed is equal to or greater than the maximum
speed limit. The calculation takes into account various variables such as the initial speed of
the lead vehicle, the speed limit of connected vehicles (CVs), the comfort acceleration, and
the length of the speed guide area, to determine the time separating the arrival of the stop
line at the intersection and the lead vehicle’s arrival time in the guidance area.

The proposed system can determine the maximum number of vehicles that can cross
the intersection during the remaining green light period if the estimated arrival time falls
within a green light period. In case the following vehicles cannot cross the intersection, the
guide vehicles that are following will be directed to cross the intersection at the next green
light. The number of vehicles allowed to cross is based on several variables such as the end
of the green light phase, the actual distance between the vehicles, the targeted speed, the
vehicle length, and the instance of entering the guidance zone.

The actual distance is calculated when the fleet state is in equilibrium. If the estimated
arrival time falls within a red light period, which means that the upstream vehicle considers
the green light phase through which the downstream vehicle passes to be on a red light
phase, the entire transit time is updated. The update integrates the values of the start of the
next green light and the time between the lead vehicle’s arrival in the guidance area. The
distance compensation planning computation yields the speed guide curve after calculating
the average goal speed from the length of the guidance region and the entire transit time.

The distance compensation planning is crucial to the speed guiding system. After
entering the speed guidance zone, the distance and time required for a CV to reach the
junction are calculated. If the CV speed is less or greater than the intended average speed
associated with the lead vehicle when it reaches the guidance area, the driving distance is
adjusted using accelerating and decelerating guidance. The goal speed is established by
calculating the distance and duration of the acceleration or deceleration, ensuring that the
target speed meets the speed limit requirement.

The proposed model assumes the presence of both CVs and trams, which are as follows:

• The vehicles within the network are connected to the internet;
• The connected vehicles chose the road before the speed guidance zone. They only

changed their speed in that zone;
• All connected vehicles traveling in different directions have similar distances from the

intersection;
• Only early green, phase insertion, and green extension are considered by TSP;
• The delay in communication is ignored;
• Both CVs and trams strictly follow the scheme of speed guidance;
• The road surface slope affecting CVs and the tram is not considered;
• Additional tram resistance is not considered.

4.3. System Objectives

The proposed system represents a holistic approach to address the optimality required
by trams and CVs through a set of objectives. These objectives could be summarized
as follows:

1. Minimize users’ transit times on the road; The overall transit time comprises the time
spent by all CVs and tram passengers traveling in all directions from the start of the
guiding area to the intersection’s stop line. A coefficient of weight is included in the
model to focus on minimizing tram passenger transit time in order to support public
transportation and ensure the priority of public transportation right-of-way. The
objective for overall transit time is expressed using a set of variables. These variables
include the number of fully loaded trams, the full load ratio, the braking duration,
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cruise, traction, the transit time of a given CV, and the number of passengers in this
CV. The public transport right-of-way priority is ensured using weights to avoid the
system’s bias and to let it focalize on minimizing the tram’s transit time;

2. Minimize energy consumption; The overall consumption of energy includes the
consumption of CVs. The index of energy consumption of the tram is represented
by a variable allowing the conversion from electrical energy into mechanical energy
during the traction. It also has a variable allowing for the opposite conversion (from
mechanical to energy) during the braking phase. In addition, the power of the
auxiliary system is considered. A model dedicated to Vehicle Specific Power is
chosen for CV energy consumption model. This choice can be justified through its
resemblance to the tram energy consumption model. A vehicle on a flat road has an
energy consumption depending on its actual acceleration and current speed [26]. The
energy consumption of CVs includes the energy consumption of both the guidance
zone and recovery stage of velocity. Finally, the index of energy consumption is
considered and represented using the mass of CV, which is set to 1.2t;

3. Maximize road comfort;
The average absolute value of the acceleration rate is calculated in this phase. The
result of this rate is associated with the gauge of the passenger’s level of discomfort.
Minimizing the determined objective value will result in :

• Minimizing the vehicle’s impact rate on the passengers;
• Minimizing the determined objective value;
• A smoother the vehicle;
• More passengers’ satisfaction.

Since tram passengers and CVs passengers have the same comfort criteria, their passenger
comfort is measured jointly while considering the statistical overall acceleration.

4.4. TSP Constraints

A set of constraints are considered to represent the TSP information and the operation
status of the tram. These constraints are described as follows:

• Constraint-1: The cruise (tram cruising speed) and coast (tram end speed in coast
mode) speeds do not exceed the maximum tram speed at sections; In addition, they
must be greater than the maximum tram speed at the intersection; Constraint-1 pro-
vides the train running status information;

• Constraint-2: The coast traveled distance must be less than or equal to the braking
and traction traveled distance summed together;

• Constraint-3: The duration of the green extension is less than or equal to the maximum
duration of TSP, which is multiplied by a binary variable that determines whether a
cycle uses TSP. Here, 1 means TSP is in use while 0 means no TSP is in use. Constraint-2
and Constraint-3 provide the duration of 3 TSPs for trams;

• Constraint-4: The difference between the starting of a phase and the end of the tram
green light phase in the current cycle must be greater than or equal to the minimum
interval of phase insertion;

• Constraint-5: The difference between the starting of a green phase provided to the tram
in the next cycle and the end of the phase insertion in the current cycle must be greater
than or equal to the minimum interval dedicated to phase insertion. Constraint-4 and
Constraint-5 constrain the phase insertion interval. One marks the shortest period
between the tram’s beginning of the phase and the end of its initial green light phase.
The remaining reflects the minimum gap between the start time of the following
cycle’s original green light phase and the end time of phase insertion;

• Constraint-5: is considered as a phase protection restriction to prevent phase insertion,
which splits the inserted phase’s green light duration into two pieces. This type of
inappropriate phase insertion will reduce intersection safety and efficiency. As a result,
the phase insertion occurrence period must encompass the start of phase 3 or phase 4.
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4.5. Mathematical Model

The mathematical model [27] including objective and constraints discussed and de-
tailed in Sections 4.3 and 4.4 is detailed as follows:

Minimize
x

f (x) = w1Tt + w2Et + w3 ∗ At

Subject to

(1)

g1(x) = Dc ≤ Db + Dt (2)

g2(x) = Dg ≤ Dmax ∗ Bt (3)

g3(x) = T1 ≤ T2 ≤ T3 (4)

g4(x) = Sp − Et ≥ Imin (5)

g5(x) = Sp+1 − Et+1 ≥ Imin (6)

g6(x) = Sp − Et ≥ Imin (7)

g7(x) = Sp+1 − Et+1 ≥ Imin (8)

g8(x) = Sp /∈ [S3, S4] (9)

where the variables are described as follows:

• x is the decision vector;
• f (x) is the objective function;
• w1, w2, and w3 are the weight coefficients for transit time, energy consumption, and

road comfort, respectively;
• Tt is the transit time for the fully loaded trams;
• Et is the energy consumption of trams;
• At is the average absolute value of the acceleration rate;
• Dc is the coast traveled distance;
• Db is the braking traveled distance;
• Dt is the traction traveled distance;
• Dg is the duration of the green extension;
• Dmax is the maximum duration of TSP;
• Bt is the binary variable that determines whether a cycle uses TSP (1 for TSP in use

and 0 for no TSP use);
• T1, T2, and T3 are the duration of three TSPs for trams;
• Sp is the starting of a phase;
• Et is the end of the tram green light phase in the current cycle;
• Imin is the minimum interval of phase insertion;
• Sp+1 is the starting of a green phase provided to the tram in the next cycle;
• Et+1 is the end of the phase insertion in the current cycle;
• S3 and S4 are the start of phase 3 and phase 4, respectively;
• g1(x) to g8(x) are the constraints.
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5. Methods

The proposed way to calculate TSP using the proposed model and genetic algorithm
is to first encode the decision variables and constraints into a chromosome representation.
This can be done by mapping the variables and constraints to different genes in the chro-
mosome. For example, the decision variables such as Tt, Et, and At can be encoded as real
numbers, while the binary variable Bt can be encoded as a binary gene. The constraints
can also be encoded as genes with specific bounds or ranges. Next, a fitness function can
be defined that assigns a fitness value to each chromosome based on how well it satisfies
the constraints and optimizes the objective function. This can be done by evaluating the
chromosome’s genes against the constraints and calculating a score based on how well
the constraints are satisfied. Additionally, the objective function can be evaluated using
the chromosome’s genes and the weight coefficients. Finally, the genetic algorithm can be
applied using the encoded chromosomes and fitness function. This can involve initializing
a population of chromosomes, applying genetic operators such as crossover and muta-
tion to generate new chromosomes, and selecting the best chromosomes based on their
fitness values to form the next generation. This process can be repeated iteratively until a
satisfactory TSP solution is found.

5.1. Genetic Algorithm

The basic steps of the suggested genetic are as follows:

1. Initialization: Create an initial population of candidate solutions (i.e., decision vec-
tors) randomly;

2. Evaluation: Evaluate the objective function and constraints for each candidate solution
in the population;

3. Selection: Select the best candidate solutions from the current population based on
their objective function values. These solutions will be used for the next generation;

4. Crossover: Combine the selected solutions to create new solutions by exchanging
some of their components. The crossover operator can be chosen based on the prob-
lem’s characteristics;

5. Mutation: Introduce random variations into the new solutions created by the
crossover operator;

6. Repeat steps 2–5 for a fixed number of generations or until a satisfactory solution
is found;

7. The best solution found in the final population is the optimal solution for the problem.

5.1.1. Chromosome Encoding

The chromosome encoding for this suggested model include:

• Binary representation for the binary variable Bt;
• Real-valued numbers for the decision variables Dc, Db, Dt, Dg, T1, T2, T3, Sp, Et,

Sp+1, Et+1;
• Integer values for the number of fully loaded trams and the number of passengers in

the CV;
• Real-valued numbers for the full load ratio, braking duration, cruise, traction, transit

time of the CV, and the mass of the CV;
• Real-valued numbers for the weight coefficients w1, w2, and w3;
• Real-valued numbers for the minimum interval of phase insertion Imin and the maxi-

mum duration of TSP Dmax;
• Real-valued numbers for Tt, Et, At.

The encoded chromosome can then be used as an input to a genetic algorithm, where
the decision variables and coefficients can be decoded and used to evaluate the objective
function and constraints. The genetic algorithm can then optimize the chromosome by
evolving it through the process of selection, crossover, and mutation to find the optimal
solution of the model.
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5.1.2. Speed Guidance for CV

The speed guidance of CV using TSP can be calculated using the following equation:

Vguidance = Vmax − KTSP(Tgreen − Tarrival) (10)

where: Vguidance is the speed guidance of the CV, Vmax is the maximum speed of the CV,
KTSP is the TSP gain factor, Tgreen is the green time phase duration provided by TSP, and
Tarrival is the estimated time of arrival of the CV at the intersection.

This equation calculates the speed guidance of the CV by subtracting the TSP gain
factor multiplied by the difference between the green phase duration provided by TSP and
the estimated time of arrival of the CV at the intersection from the maximum speed of the
CV. The TSP gain factor is a constant that can be adjusted to optimize the performance of
the algorithm.

5.1.3. Fitness Function

A fitness function for this algorithm could be defined as:

f itness(x) =
1

f (x) + penalty
(11)

where f (x) is the objective function defined in the model, and penalty is a value added
for each constraint violation. The penalty value could be calculated as the product of
a predefined penalty coefficient and the number of constraints violated by the solution
represented by the chromosome x. For example, if x violates two constraints, then the value
of penalty would be:

penalty = 2 ∗ penaltyCoe f f icient (12)

The fitness function is used to evaluate the quality of solutions represented by chromosomes.
The higher the value of the fitness function, the better the solution. The genetic algorithm
will then use this fitness function to select the best solutions and combine them to generate
new, better solutions in the next generation. The process continues until a satisfactory
solution is found or a stopping criterion is met.

6. Experimentation
6.1. Case Study

The traffic phases plan, volume and lanes number, and settings of the simulated
intersection are detailed in Tables 1–3, respectively. The layout of the tram is central and
the platform adopted is of asymmetric side type. The data collected before the case analysis
includes the timing information, lane number, volume of traffic, the level of service of each
entry at the intersection, and capacity.

In the east-west direction, 10 lanes are adopted while in the north-south direction, 8
lanes are at the simulated intersection. The tram is located at the east-west side of the inter-
section. In order to simplify the calculation, we merged multi-lanes in the same direction
into a single lane. We considered the traffic volume as the quotient of the original traffic
volume in that direction along with the number of the original lanes. The conventional
method is compared with the target guidance method designed in this paper to analyze
the effect of cooperative optimization of tram and CVs.

Table 1. Phases plan.

Phase (s)
West to East North to South

Across Left Across Left

Green phase duration in seconds 9 11 21 24
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Table 2. Simulation settings.

Setting Value

Length of the CV (m) 4
Length of the tram (m) 40
CV comfort acceleration (m/s2) 2
CV maximum acceleration (m/s2) 2.5
CV comfort deceleration (m/s2) −1
CV maximum deceleration (m·s−2) −3.1
CV speed limit (m/s) 16.6
Tram speed limit at the section (m/s) 18.5
Tram speed limit at the intersection (m/s) 10.2
Speed guide area (m) 400
Passengers number handled by CV 1 to 5
Ratio of full load of the tram 0.4–0.9

Table 3. Number of lanes and traffic volumes at the simulated intersection.

Entrance Direction
and Location

North South East West

Right Left Across Right Left Across Right Left Across Right Left Across

No. Lanes 1 1.5 1.5 1 1.5 1.5 1 1 3 1 1 3
Traffic volume 144 485 614 634 585 553 246 389 781 220 318 690

6.2. Comparison and Performance

In this work, 100 is considered as the number of iterations where the optimal plan
is obtained when the last iteration is reached (refer to Figure 2. The conventional and
suggested target guidance techniques are benchmarked to analyze the impact of cooperative
optimization on tram and CVs.

Figure 2. Fitness function iterative process.

When the tram is delayed and cannot cross the intersection while following the
corresponding phase as previously planned, it is hence necessary to control the tram to
reduce its delay. Usually, the conventional method provides TSP for trams based on the
arrival time of the tram to minimize the public transport delay. In the case in which the
conventional method is considered, and at the beginning of the second phase of the cycle,
the tram attends the intersection. Here, the TSP type has a green extension. In the case of
using the target guidance method, the tram arrives at the beginning of the third phase of
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the cycle to the intersection. Here, the TSP type is phase insertion. For the TSP set at the
third phase, CVs are not affected when crossing the intersection during the second phase.
The TSP of tram is set at the third phase, and multiple CVs are able to cross the intersection
with the tram in the TSP. This process allows for a reduction of the traffic pressure of the
first phase during the upcoming cycle. In addition, the CVs overall trajectory is optimized
when they are passing in the first phase.

6.3. Results and Applicability

As shown in Figure 3, an increase of 45.8% occurs in the transit time of trams, while a
decrease of 17.1% is experienced by the overall transit time of trams and CVs. The perfor-
mance of the proposed guidance system was evaluated in terms of energy consumption
and passenger comfort, as illustrated in Figures 4 and 5. The results showed that the system
enabled trams and CVs to operate smoothly, without the need for excessive acceleration
and deceleration. The total energy consumption of both vehicle types was reduced by
34.7%, and the non-comfort index was reduced by 25.8%.

Figure 3. Transit time of passengers (s): Conventional vs. target guidance techniques.

Figure 4. Energy consumption (Kj): Conventional vs. target guidance techniques.
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Figure 5. Non-comfort: Conventional vs. target guidance techniques.

To assess the applicability of the system, the passenger ratio between trams and
other vehicles was analyzed, taking into account differences between workdays and non-
workdays, and between peak and off-peak hours, as depicted in Figure 6. It was found
that the conventional method led to a decreasing trend in the objective function value as
the proportion of tram passengers increased. In contrast, the optimization of the proposed
model yielded a zigzag pattern of first decreasing, then increasing, and finally decreasing
objective function values.

Overall, the path plan generated by the proposed guidance system was effective in
reducing the overall transit time, energy consumption, and comfort index for different
types of intersection users.

Figure 6. Objective function values using different passenger ratios.

6.4. Findings

The study conducted experiments to compare the performance of the conventional
method and the proposed target guidance method in optimizing traffic flow for trams and
connected vehicles (CVs). The simulated intersection had 10 lanes in the east-west direction
and 8 lanes in the north-south direction, with the tram located on the east-west side. The
proposed method was able to optimize the traffic flow by controlling the tram delay and
reducing traffic pressure in the first phase. The results showed that the proposed method
was able to reduce the transit time for trams by 45.8% and the overall transit time for trams
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and CVs by 17.1% compared to the conventional method. Additionally, the system was able
to reduce energy consumption by 34.7% and the non-comfort index by 25.8%. Furthermore,
the proposed method was analyzed in terms of its applicability, specifically regarding
the passenger ratio between trams and other vehicles during peak and off-peak hours on
workdays and non-workdays. The results showed that the conventional method led to
a decreasing trend in the objective function value as the proportion of tram passengers
increased. In contrast, the proposed method yielded a zigzag pattern of first decreasing,
then increasing, and finally decreasing objective function values, indicating its applicability
across different types of intersection users. Overall, the proposed guidance system proved
to be effective in reducing the overall transit time, energy consumption, and non-comfort
index for trams and CVs at the simulated intersection.

7. Discussion

Our article has succeeded to find a compromise that covers the limitations of the
related work mentioned in Section 2.4. Therefore, we highlight in the following what
limitations are covered totally and/or partially:

1. Introducing a Transit Signal Priority (TSP) system and a guidance framework that
seeks to minimize unintended delays for trams while minimizing the negative impact
on Connected Vehicles (CV), passenger comfort, energy consumption, and overall
travel time;

2. Employing a collaborative optimization system and an improved genetic algorithm
to adjust both the signal phase duration and the operating path;

3. Considering the impact of tram length on Transit Signal Priority (TSP) in the analysis;
4. Proposing a digital integration of trams, CVs, and intersection signals;
5. Developing a collaborative optimization algorithm running in an online mode to deal

with the cross-transportation mode optimization problem;
6. Proposing an enhanced elitist genetic algorithm that is based on adaptive thought to

improve efficiency and avoid local optima;
7. Validating the proposed system using a simulated case and demonstrating that the TSP

strategy effectively reduced right-of-way wastage and minimized conflicts between
trams and CVs;

8. Contributing to the development of a more efficient and sustainable transportation
system for the future;

9. Providing a solution to a pervasive problem in connected transportation networks;
10. Setting the stage for future research that will focus on incorporating the proposed

method into arterial intersection traffic signal control systems and addressing mixed
traffic comprised of connected and unconnected vehicles.

Multiple choices have been considered in this work based on our expertise in the
intelligent transportation domain. We highlight the most important ones and provide the
reasons behind them:

1. The choice of the genetic algorithm was based on our prior research and the character-
istics of the optimization problem in the bimodal transportation system [27].

2. We determined the parameters in the simulation settings based on the character-
istics of the transportation system and our prior knowledge of the behavior of
passengers [1,28].

3. The simulation data has been provided by experts in the field. Through a simulation-
optimization process, we have obtained the values mentioned in Table 2.

However, our work has limitations. These limitations are related to the approach of
Collaborative Trajectories Optimization (CTO), which are as follows:

1. Performance metrics: The CTO approach optimizes performance metrics that are
relevant only in specific traffic situations, namely under-saturated conditions when
roads are empty. This is not representative of typical urban traffic conditions, where
the relevant metric to assess intersection performance would be the traffic throughput;



Sustainability 2023, 15, 9231 15 of 17

2. Space constraints: The CTO approach assumes that there is enough free space on
the roads to avoid stopping, as defined by the speed guide zones. This may not be
feasible in dense urban areas, where road space is limited;

3. Connectivity requirements: The CTO approach requires connectivity between trams,
traffic signals, and all vehicles, and the ability of traffic signal phases to be adapted in
real-time. This is a major requirement for the approach to be effective;

4. Mixed traffic scenario: The CTO approach assumes that all vehicles are connected
and does not address the scenario where there is a mix of connected and unconnected
vehicles. This is a crucial limitation as a 100% penetration rate of connectivity is not a
realistic scenario;

5. Testing required: The CTO approach is only suitable for intersections in under-
saturated conditions and may not perform well in dense urban areas with low space
for guidance zones. Further testing is required to determine its effectiveness in
these scenarios.

8. Conclusions

In this study, we proposed a Transit Signal Priority (TSP) strategy to address the
right-of-way conflicts that occur between connected vehicles (CVs) and trams within inter-
sections. Our objective was to minimize transit time, energy consumption, and discomfort
levels by constructing corresponding objective functions. To achieve this goal, we proposed
a digital integration of trams, CVs, and intersection signals, and developed a collaborative
optimization algorithm running in an online mode to deal with the cross-transportation
mode optimization problem. To improve efficiency and avoid local optima, we proposed
an enhanced elitist genetic algorithm. Our study identified several managerial points that
could aid in the successful implementation of TSP. These include investing in technology,
developing training programs, collaborating with stakeholders, launching pilot projects,
creating public awareness, and continuous monitoring and evaluation. Investing in the
latest technology is crucial to making TSP a reality. Governments and public transporta-
tion agencies should also develop training programs to educate stakeholders about TSP’s
objectives and operation. Collaboration with government agencies, public transportation
companies, and technology providers will be essential to the success of TSP. Pilot projects
should be launched to test TSP’s feasibility, identify potential challenges, and evaluate its
effectiveness before implementing it on a larger scale.Public transportation users should
be informed about TSP’s benefits through awareness campaigns, and its success should
depend on continuous monitoring and evaluation. Our proposed TSP strategy effectively
reduced right-of-way wastage and minimized conflicts between trams and CVs, demon-
strating its good applicability. Future research will focus on incorporating our method into
arterial intersection traffic signal control systems and address mixed traffic comprised of
connected and unconnected vehicles. Overall, TSP has the potential to improve travel time,
safety, and emissions in urban transportation, and our study provides a foundation for its
successful implementation. In this study, we aimed to address the issue of right-of-way
conflicts that occur between connected vehicles (CVs) and trams within intersections. We
also considered the impact of tram length on Transit Signal Priority (TSP) in our analysis.
Our objective was to minimize transit time, energy consumption, and discomfort levels
by constructing corresponding objective functions. To achieve this goal, we proposed a
digital integration of trams, CVs, and intersection signals, and developed a collaborative
optimization algorithm running in an online mode to deal with the cross-transportation
mode optimization problem. To improve efficiency and avoid local optima, we proposed
an enhanced elitist genetic algorithm. The latter is mainly based on adaptive thought. We
validated the proposed system using a simulated case and found that our TSP strategy effec-
tively reduced right-of-way wastage and minimized conflicts between trams and CVs. The
results demonstrate the good applicability of our proposed method. Future research will
focus on incorporating our method into arterial intersection traffic signal control systems
and address mixed traffic comprised of connected and unconnected vehicles.
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