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Abstract: Accurately predicting the remaining useful life (RUL) of lithium-ion batteries holds sig-
nificant importance for their health management. Due to the capacity regeneration phenomenon
and random interference during the operation of lithium-ion batteries, a single model may exhibit
poor prediction accuracy and generalization performance under a single scale signal. This paper
proposes a method for predicting the RUL of lithium-ion batteries. The method is based on the
improved sparrow search algorithm (ISSA), which optimizes the variational mode decomposition
(VMD) and long- and short-term time-series network (LSTNet). First, this study utilized the ISSA-
optimized VMD method to decompose the capacity degradation sequence of lithium-ion batteries,
acquiring global degradation trend components and local capacity recovery components, then the
ISSA–LSTNet–Attention model and ISSA–LSTNet–Skip model were employed to predict the trend
component and capacity recovery component, respectively. Finally, the prediction results of these
different models were integrated to accurately estimate the RUL of lithium-ion batteries. The pro-
posed model was tested on two public lithium-ion battery datasets; the results indicate a root mean
square error (RMSE) under 2%, a mean absolute error (MAE) under 1.5%, and an absolute correlation
coefficient (R2) and Nash–Sutcliffe efficiency index (NSE) both above 92.9%, implying high prediction
accuracy and superior performance compared to other models. Moreover, the model significantly
reduces the complexity of the series.

Keywords: lithium-ion battery; variational mode decomposition; remaining useful life prediction;
long and short-term time-series network

1. Introduction

Lithium-ion batteries have emerged as a primary power source in various industrial
sectors, including mobile communication devices, new energy transportation vehicles,
and aerospace, due to their high energy density, stability, durability, and affordability [1,2].
Over time, the battery’s internal resistance increases, causing a decline in its performance
and ultimately compromising the electrical equipment’s safety [3,4].

Currently, remaining useful life (RUL) prediction methods for lithium-ion batteries are
categorized into two forms: model-driven methods and data-driven methods [5,6]. Model-
driven methods establish a model based on the battery’s electrochemical mechanism and
degradation process to predict its RUL [7]. Model-based methods are commonly employed
to develop battery life degradation models that are rooted in electrochemical mechanisms,
enabling more accurate representation of battery’s electrochemical characteristics. Never-
theless, the utilization of these methods is often restricted due to the demand for specialized
expertise and battery design parameters, impeding their broader applicability [8].

With data-driven methods, lithium-ion battery monitoring data can be directly an-
alyzed, identifying battery performance change patterns and predicting its RUL [9,10].
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Ren et al. [11] proposed an RUL prediction method for lithium-ion batteries leveraging
Auto-CNN-LSTM. Zhang et al. [12] proposed a deep learning-based method for predicting
the RUL of lithium-ion batteries using LSTM and a recurrent neural network (RNN).

Lithium-ion batteries experience problems with capacity recovery during their degra-
dation process. To address this concern, researchers have employed signal processing
methodologies to preprocess the battery’s capacity sequence data [13]. Li et al. [14] pro-
posed an algorithm based on empirical mode decomposition (EMD) combined with Elman–
LSTM for predicting the RUL of lithium-ion batteries. Meng et al. [15] proposed an
algorithm based on complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN) combined with an adaptive neuro-fuzzy inference system (ANFIS) for precise
lithium-ion battery capacity prediction. Lyu et al. [16] proposed a scheme called the VPA
model for predicting the RUL of lithium-ion batteries. Their model uses the variational
mode decomposition algorithm (VMD) to obtain the trend signals and capacity regener-
ation signals. Particle filter and autoregressive moving average models are then used to
predict the two signals separately, and their predicted results are fused to obtain the overall
capacity degradation prediction.

Based on the aforementioned analysis, utilizing a prediction model that utilizes both
signal processing algorithms and data-driven methods can effectively improve the pre-
diction accuracy of RUL. By selecting appropriate signal processing algorithms and data-
driven methods, it is possible to significantly enhance prediction performance. VMD [17]
can effectively mitigate the problems associated with pattern aliasing and endpoint effects.
Additionally, VMD has high decomposition efficiency and is highly resistant to noise.
Therefore, in this paper we adopt VMD as the signal processing algorithm to process the
capacity attenuation signal of lithium batteries [18–20]. Long- and short-term time-series
networks (LSTNet) [21] have recently been widely adopted in diagnostic and predictive
scenarios due to its excellent performance.

The effectiveness of VMD decomposition is mainly influenced by two factors, namely,
the number of mode components (K) and the number of penalty factors (α) [22]. Similarly,
the performance of the LSTNet model is significantly affected by its parameter values [23].
Although the sparrow search algorithm (SSA) is straightforward to implement, it can
be prone to becoming stuck in local optima [24]. Jia et al. [25] proposed the improved
sparrow search algorithm (ISSA), which combines the elite opposition-based learning
(EOBL) and Cauchy Gaussian Mutation strategies. The objective of ISSA is to enhance
the diversity of sparrow populations and prevent them from becoming trapped in local
optima. Qiao et al. [26] proposed an ISSA with firefly search disturbance by incorporating
an iterative strategy from the Firefly algorithm to address the limitations of the original SSA.

In conclusion, this paper proposes a hybrid model for predicting the RUL of lithium-
ion batteries by improving the VMD–LSTNet algorithm to accurately capture the phe-
nomenon of rapid increases and decreases in battery capacity and to address problems
with insufficient prediction accuracy. The paper’s primary contributions are as follows:

(1) A novel method for predicting the RUL of lithium-ion batteries is proposed. First,
the VMD algorithm is enhanced to decompose the measured battery capacity sequence
into its trend components and capacity regeneration components. Additionally, trend com-
ponents are forecast using the LSTNet–Attention model, whereas the LSTNet–Skip model
is leveraged for predicting the capacity regeneration components. Lastly, the predicted
results of each component are integrated to complete the battery RUL prediction process.
The proposed approach addresses the challenge of insufficient accuracy in single models
and inability to predict the complete trend of battery degradation.

(2) In order to overcome the limitation of SSA’s susceptibility to local optima, we
introduce an enhanced SSA algorithm that optimizes the respective positions of the initial
population, producers, and scroungers within the traditional SSA framework.

(3) To enhance the decomposition effectiveness of VMD, we employ the minimum
envelope entropy as the fitness function for ISSA. By optimizing the decomposition mode
number K and the penalty factor α of the VMD algorithm, the subsequent prediction
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algorithms are able to capture the decomposed components more efficiently, thereby
enhancing prediction accuracy.

(4) To address the issue of manual parameter adjustment in LSTNet, we employ
ISSA to optimize its hyperparameters. Leveraging the distinct characteristics of the trend
components and capacity recovery components, we employ the ISSA–LSTNet–Attention
model and the ISSA–LSTNet–Skip model for prediction purposes.

These enhancements enable more accurate prediction of the RUL of lithium-ion bat-
teries and offer more effective tools and methods for battery performance evaluation and
maintenance. The validation and in-depth analysis of these innovative contributions will
be conducted in subsequent experiments and related research.

2. Methods
2.1. Variational Mode Decomposition

There are fundamental differences in the decomposition principles between varia-
tional mode decomposition (VMD) and empirical mode decomposition (EMD). VMD is a
non-recursive signal decomposition method that can specify the number of modes based
on requirements [27]. The VMD algorithm involves constructing and solving variational
problems. VMD has strong decomposition and anti-interference abilities, producing favor-
able results in non-stationary signal processing. Long-term use of lithium batteries results
in the phenomenon of capacity recovery, requiring VMD application to mitigate its effect.

The first step in f (t) signal processing is constructing a variational problem. The fun-
damental constraints for problem solving consist of:

min(u,w)

{
K
∑

k=1
∂t

[(
δ(t) + j

π

)
∗ uk(t)

]
∗ e−jwkt

}
||22

s.t.
K
∑

k=1
uk(t) = f (t)

(1)

where {uk} and {wk} represent the decomposed K intrinsic mode functions (IMF) and their
corresponding center frequencies, respectively. The ∗ symbol refers to a convolutional
operation, ∂t represents taking the partial derivative of the time function t, ∂t represents
the Dirac distribution function, and f (t) is a signal requiring decomposition.

Incorporating the penalty factor α and Lagrange multiplier operator λ while solving
the variational problem in Equation (1) transforms the restrained variational problem into
an unrestrained one.

Γ({uk}, {wk}, λ) =

α

{
K
∑

k=1
∂t

[(
δ(t) + j

π

)
∗ uk(t)

]
∗ e−jwkt

}
||22+(

f (t)−
K
∑

k=1
ut(t)

)
||22 −

(
λ(t), f (t)−

K
∑

k=1
ut(t)

) (2)

The values of uN+1
k , wN+1

k , and λN+1 are updated by Equation (2) using the alternating
direction multiplier algorithm. The algorithm is iterated until the convergence condition
is met.

ûn+1
k (w) =

f̂ (w)− ∑
i 6=k

ûi(w) +
λ̂(w)

2

1 + 2α(w− wk)
2 (3)

wN+1
k =

∫ ∞
0 w|ûk(w)|2dw∫ ∞
0 |ûk(w)|2dw

(4)

where ûn+1
k (w) represents the Wiener filtering of the residual component, wN+1

k represents
the center of gravity of the current mode component power spectrum, ûk(w) denotes the
Fourier transform, and uk(t) denotes the real part.
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2.2. Sparrow Search Algorithm

The Sparrow Search Algorithm (SSA) is an optimization algorithm proposed based
on the behavior of sparrows [28]. In the SSA, the sparrow population is categorized into
producers, scroungers, and scouts. The formula used to update the producers’ location is

Xt+1
i,j =

{
Xt

i,je
−i/(αiitcrmax), R2 < ST

Xt
i,j + QL, R2 ≥ ST

(5)

where t denotes the current number of iterations, Xt
i,j denotes the position of the i-th

sparrow in the j-th dimension at the t-th iteration, α is a randomly generated number
between 0 and 1, iiter max denotes the maximum number of iterations, R2 represents a
predetermined warning threshold, and ST denotes the predetermined security threshold.
If R2 < ST , the population is considered safe, whereas, if R2 ≥ ST the population is
considered unsafe and needs to shift to a secure location. Q is a random variable that
follows a normal distribution.

The formula used to update the scroungers’ location is

xt+1
i,j =

 Q · exp
(

xt
worst−xt

i,j
i2

)
, i > N

2

Xt+1
P +

∣∣∣xt
i,j − Xt+1

P

∣∣∣ · A+ · L, i ≤ N
2

(6)

where Xt
worst represents the minimum position of the sparrow in the i-th iteration, Xt+1

P
represents the optimal position for a producer in the (t + 1)-th iteration, and A is a 1× d
matrix where each element is randomly assigned as either 1 or −1.

The formula used to update the scouts’ location is

Xt+1
i,j =


Xt

best + β
∣∣∣Xt

i,j − Xt
best

∣∣∣, fi > fg

Xt
i,j + K

[ ∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fw)+γ

]
, fi = fg

(7)

where Xt
best represents the optimal position of a sparrow in the i-th iteration, β is a random

number generated from a normal distribution with a mean of 0 and a standard deviation of
1, the fitness value of the current sparrow individual is denoted by fi, the value γ represents
an infinitely small constant, and the values fw and fg represent the current worst and best
fitness values, respectively.

2.3. Improved Sparrow Search Algorithm

Despite its strong optimization performance, SSA is prone to falling easily into local
optima. To address this issue, Tent Chaotic Mapping (TCM) is employed in this article to
generate the initial population [29]. The positions of producers and scroungers are then
optimized via Levy flight strategy (LF) [30].

2.3.1. Tent Chaotic Mapping

The initial population of the SSA plays a crucial role in determining the overall
search performance. Concentration and lack of randomness in the initial population
may result in suboptimal search results. Improvements to the sentence structure and
vocabulary were made in order to align with academic conventions, and the sentences
were restructured to increase clarity and concision. Spelling and grammar were improved
when necessary. The use of TCM to generate the initial population results in improved
randomness and enhances both the global and diversity aspects of the search process.
The specific mapping expression for this process is provided below:
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Xi+1 =

{
kXi, 0 ≤ Xi ≤ 0.5

k(1− Xi), 0.5 < Xi ≤ 1
(8)

where Xi denotes the value of the variable in the i-th iteration, while k represents the
parameter of the function of mapping.

2.3.2. Levy Flight Strategy

The SSA search scheme generation is significantly influenced by the location of the
producers, and adoption of LF can facilitate more rapid identification of the global optimal
solution. The producers’ position has a significant impact on the generation of the SSA
search scheme, while LF enables efficient identification of global optimum solution, pre-
senting myriad exploration prospects. Thus, by optimizing the producers’ position using
LF, the algorithm’s capability for searching the global optimum solution can be improved.
Employing LF to optimize the scrounger position can enable the algorithm to break away
from local convergence and approach the global optimum solution progressively.

The formula used to calculate the Levy flight step length, denoted as s, is shown below:

s = µ/|β|1/β, 0 < β ≤ 2
µ
(

0, σ2
µ

)
, v(0, 1)

σµ =
{

Γ(1+β)·sin(πβ/2)
Γ[(1+β)/2]·β·2(β−1)/2

}1/β

Γ(1 + β) =
∫ ∞

0 tβ · e−tdt

(9)

The formula used for updating the producers’ position by optimizing the LF is pre-
sented below:

Xt+1
i,j =

 Xt
i,je
−i/(αiitcrmax) + s ·

∣∣∣Xt
i,j − Xt

best

∣∣∣, R2 < ST

Xt
i,j + QL + s ·

∣∣∣Xt
i,j − Xt

best

∣∣∣, R2 ≥ ST
(10)

The formula used for updating the scroungers’ position by optimizing the LF is
presented below:

xt+1
i,j =

 Q · exp
(

xt
worst−xt

i,j
i2

)
, i > N

2

Xt+1
P + s ·

∣∣∣xt
i,j − Xt+1

P

∣∣∣ · A+ · L, i ≤ N
2

(11)

2.4. LSTNet

The LSTNet model consists of both linear and nonlinear components [31]. The nonlin-
ear component consists of the convolution module, the recurrent module, and the recurrent
skip module; alternatively, an attention mechanism can be employed. The autoregressive
(AR) model constitutes the linear component.

In this paper, the model that incorporates an attention mechanism in the nonlinear
part is referred to as the LSTNet–Attention model, whereas the one utilizing the recurrent
skip module is referred to as the LSTNet–Skip model. Figure 1 illustrates the network
architecture of the LSTNet model.
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Figure 1. Internal structure of LSTNet.

2.4.1. Convolutional Module

The LSTNet convolutional module consists of a convolutional neural network that
captures local information. The convolutional layer is comprised of several filters, with the
formula for the k-th filter being:

hk = RELU(W ∗ X + b) (12)

where the convolution operation is denoted by ∗ . The output vector produced by this
operation is hk. The activation function employed is RELU(x) = max(0, x) with an offset
term b, and the input and output feature vectors are denoted as X and Y, respectively.

2.4.2. Recurrent Module

Long Short-Term Memory Neural Networks (LSTM) represent an effective solution to
the problems of Recurrent Neural Networks (RNN), specifically, gradient explosion and
gradient disappearance. The core concepts of the LSTM neural network are Cell State and
Gate, which function as filters for historical information and provide greater adaptability.
The calculation process for LSTM is as follows:

ft = σ
(

W f ht−1 + U f xt + b f

)
(13)

it = σ(Wiht−1 + Uixt + bi) (14)

c̃t = RELU(Wcht−1 + Ucxt + bc) (15)

ot = σ(Woht−1 + Uoxt + bo) (16)

ct = ft ⊗ ct−1 + it ⊗ ct (17)

ht = ot ⊗ RELU(ct) (18)

where it represents the value of the input gate, ft represents the value of the forget gate, ot
represents the value of the output gate, ct represents the value of the memory cell, and
bi, b f , bo, and bc represent their corresponding biases. The weight matrices W and U are
utilized in the calculation process; σ is a sigmoid function, RELU is an activation function,
and ⊗ represents an elementwise product.
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2.4.3. Recurrent Skip Module

LSTM can capture dependencies in past information. However, as the length of
the time series increases, issues arises when the gradient disappears, making it difficult
for the LSTM to capture long-term patterns in the time series. To overcome this issue,
a recurrent-skip module can be added.

The update process of the recurrent-skip module is expressed as follows:

rt = σ
(
xt Wxr + ht−p Whr + br

)
(19)

ut = σ
(
xt Wxu + ht−p Whu + bu

)
(20)

ot = σ
(
xt Wxo + ht−p Who + bo

)
(21)

c̃t = RELU
(

xt Wxc + ht−p Whc + bc
)

(22)

ct = ut ⊗ ct−p + rt ⊗ c̃t (23)

ht = ot ⊗ RELU(ct) (24)

The input to the recurrent skip module equals the output of the convolution module,
where p represents the number of hidden layer states skipped.

Here, hR
t represents the output from the recurrent module at time t and{

hS
t−p+1, hS

t−p+2, · · · , hS
t

}
represents the output from the recurrent-skip module at times

t− p + 1 through t. Then, the fully connected layer is used to fuse the outputs from the
recurrent module and recurrent skip module as the prediction results for the nonlinear
section; the predicted results are as follows:

hD
t = WRhR

t +
p−1

∑
i=0

WS
i hS

t−i + b (25)

where hD
t represents the predicted result of the nonlinear section for time t.

2.4.4. Attention Mechanism Module

Not all time series exhibit seasonal characteristics, and the recurrent skip module re-
quires presetting hyperparameters. On the other hand, by utilizing an attention mechanism
in place of the recurrent skip module, it becomes possible to extract the features that require
focus in a time series. The weight of attention at time t can be represented as follows:

αt = AttnScore
(

HR
t , hR

t−1

)
(26)

where HR
t =

[
hR

t−q, . . . , hR
t−1

]
represents the stacking matrix of the hidden state hR

t−1 of the
LSTM neural network and AttnScore is the attention mechanism function.

The output of the attention mechanism module results from the concatenation of a
weighted vector ct = Htαt, a window hidden layer state, and a linear projection. The
specific formula is

hD
t = W

[
ct; hR

t−1

]
+ b (27)

2.4.5. Autoregressive Module

While the convolutional module and the recurrent skip module both possess nonlinear
characteristics, their sensitivity to input data is limited. This shortcoming can reduce
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prediction accuracy. Thus, the LSTNet model addresses this issue by adding an auto-
regressive (AR) model. The formula for the AR module is

hL
t,i =

qar−1

∑
k=0

War
k yt−k,i + bar (28)

where the prediction result of the AR model is represented by hL
t , the coefficients of the AR

model are War and bar, and qar denotes the size of the input window.
To obtain the final prediction result of LSTNet, both the output of the neural network

part and the result of the AR model are overlaid:

Ŷt = hD
t + hL

t (29)

with final prediction result at time t represented by Ŷt .

3. Construction of ISSA–VMD–LSTNet Model
3.1. Experimental Data

The performance of the proposed algorithm was validated using two lithium-ion
battery datasets with distinct electrode materials and discharge environments.

The experimental hardware setup included an AMD 5600X processor, 16 GB of RAM,
NVIDIA GTX 1070, Windows 10 operating system, PyCharm 2021 IDE, Python 3.7 pro-
gramming language, and Keras 2.9.0 library.

3.1.1. Database 1

The first experimental dataset used in this study was obtained from the Center for
Advanced Life Cycle Engineering (CALCE) [32]. Specifically, this study examined CS2_35,
CS2_36, CS2_37, and CS2_38, for which the capacity decay curves and the number of cycles
during discharge are presented in Figure 2. Table 1 lists the detailed specifications of the
selected lithium-ion batteries from CALCE.

Table 1. Detailed specifications of the selected lithium-ion batteries from CALCE.

Battery Rated
Capacity/Ah

Constant
Charging
Current/A

Charging
Cut-Off

Voltage/V

Discharging
Current/A

Discharging
Cut-Off

Voltage/V

Failure
Threshold/Ah

CS2_35 1.1 0.55 4.2 0.55 2.7 0.77
CS2_36 1.1 0.55 4.2 0.55 2.7 0.77
CS2_37 1.1 0.55 4.2 0.55 2.7 0.77
CS2_38 1.1 0.55 4.2 0.55 2.7 0.77

Figure 2. CALCE battery capacity decay curves with the number of cycles during discharge.
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3.1.2. Database 2

The second experimental dataset used was the NASA lithium battery dataset, which
includes the batteries B0005, B0006, B0007, and B0018 as the selected research objects [33].
Table 2 lists the detailed parameters of the selected NASA lithium battery dataset. It should
be noted that the failure threshold of the B0007 battery is set to 1.45 Ah. Concerning the
attenuation curve of capacity with the number of cycles during battery discharge, it is
shown in Figure 3.

Table 2. Detailed specifications of the selected lithium-ion batteries from NASA.

Battery Rated
Capacity/Ah

Constant
Charging
Current/A

Charging
Cut-Off

Voltage/V

Discharging
Current/A

Discharging
Cut-Off

Voltage/V

Failure
Threshold/Ah

B0005 2 1.5 4.2 2 2.7 1.4
B0006 2 1.5 4.2 2 2.5 1.4
B0007 2 1.5 4.2 2 2.2 1.45
B0018 2 1.5 4.2 2 2.5 1.4

Figure 3. NASA battery capacity decay curves with the number of cycles during discharge.

3.2. Definition of RUL and Evaluation Criteria for Forecasting Methods

The RUL of a battery is defined as the number of remaining usable cycles from the
predicted starting point to the end of the battery’s life. When the actual capacity of the
battery deteriorates to the failure threshold, the battery’s life is considered to be over. T
is set as the starting cycle position, and TEOL is the number of cycles at the end of the
battery’s remaining useful life in the actual state. The RUL of the battery is defined as

TRUL = TEOL − T (30)

where the variable EOL represents the number of cycles that a battery can run at the
conclusion of its remaining useful life period as estimated in advance.

The evaluation of the prediction model is based on four criteria: the root mean square
error (RMSE), average absolute error (MAE), absolute correlation coefficient (R2), and Nash–
Sutcliffe efficiency index (NSE). These evaluation indicators are defined by the following
formulas:

RMSE =

√
1
n

n

∑
i=1

(x(i)− x̂(i))2 (31)
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MAE =
1
n

n

∑
i=1
|x(i)− x̂(i)| (32)

R2 = 1−

n
∑

i=1
(xi − x̂i)

2

n
∑

i=1
(xi − x̄)2

(33)

NSE = 1−

n
∑

i=1
(xi − x̂i)

2

n
∑

i=1
(xi − x̄)2

(34)

where the number of cycles of the battery is represented by n and the true and predicted
values of the capacity sequence are represented by x(i) and x̂(i), respectively.

These evaluation criteria are selected to assess the fitting and predictive accuracy of the
model’s prediction curve. Specifically, the smaller the values of MAE and RMSE, the closer
to 1 the R2 and NSE value will be, indicating that the model has a higher prediction
accuracy [34].

3.3. ISSA–VMD

In this paper, the ISSA is used to optimize the number of mode components and
penalty factors of VMD. The fitness function chosen for ISSA–VMD is the Minimum
Envelope Entropy [35]. This function is represented by the following formula:

EP = −
N
∑

i=1
ε(i) lg ε(i)

ε(i) = a(i)
N
∑

i=1
a(i)

(35)

where EP represents the envelope entropy, ε(i) represents the probability distribution
sequence, a(i) represents the envelope signal, and N represents the number of sam-
pling points.

The specific process of the ISSA–VMD method is as follows:
(1) Initialize the fundamental parameters of VMD and ISSA.
(2) The sparrow population is initialized using the TCM and the battery capacity

sequence is subject to VMD decomposition, while the envelope entropy is utilized as the
fitness function for conducting a global search.

(3) Update the positions of the producers, scroungers, and scouts using Equations (10),
(11), and (7).

(4) Continuously execute steps 2 to 3 until the envelope entropy value reaches a
minimum, then generate the current parameters [k, α].

(5) Use the optimal parameters to carry out VMD decomposition on the battery
capacity sequence.

3.4. ISSA–LSTNet

In this paper, the ISSA method is utilized to optimize the key parameters of the
convolution module, recurrent module, recurrent skip module, and AR module of the
LSTNet–Attention model and LSTNet–Skip model:

RMSE =

√
1
n

n

∑
i=1

(x(i)− x̂(i))2 (36)

where the number of cycles of the battery is represented by n and the true and predicted
values of the capacity sequence are represented by x(i) and x̂(i), respectively.
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The specific process of the ISSA–LSTNet method is as follows:
(1) Initialize the fundamental parameters for LSTNet–Attention, LSTNet–Skip, and ISSA.
(2) The sparrow population is initialized using the TCM, and the RMSE value serves

as the fitness function to perform a global search.
(3) Update the positions of the producers, scroungers, and scouts using Equations (10),

(11), and (7).
(4) Repeat steps 2 to 3 until the RMSE value reaches its minimum, then output the

model parameters.
(5) Utilize the optimal parameters to forecast the RUL of the battery’s capacity se-

quence.

3.5. ISSA–VMD–LSTNet Prediction Model

Figure 4 illustrates the architecture of the lithium-ion battery RUL prediction model
proposed in this study. The RUL prediction method follows the steps outlined below.

Step 1
Get battery capacity

Step 2
Sequence decomposition by ISSA-VMD

Step 3
Train the ISSA-LSTNet model

Step 4
RUL Prediction

Autoregressive

Prediction

Time Series
Convolutional 

Layer

Recurrent and

Recurrent-skip Layer

Fully connected and 

Element-wise Sum Output

Linear 

Bypass

Time

Figure 4. Framework overview of the proposed method.

(1) Collect the remaining discharge capacity data of the lithium-ion batteries.
(2) The capacity of the primary battery is decomposed into finite mode components

using the ISSA–VMD algorithm. Next, a correlation analysis is conducted between the
decomposed mode components and the degradation capacity sequence. The mode compo-
nents with high correlation coefficients are considered trend components, while those with
lower correlation coefficients are considered capacity recovery components.

(3) Train the trend and capacity recovery components separately using the ISSA–
LSTNet–Attention model and ISSA–LSTNet–Skip model, respectively.

(4) Equation (37) enables seamless integration of the prediction results of the ISSA–
LSTNet–Attention and ISSA–LSTNet–Skip models for accurate calculation of the RUL of
lithium-ion batteries:

x̂(i) =
n

∑
j=1

IMFj + IMFtrend (37)

where x̂(i) represents the predicted value of the lithium battery capacity sequence, IMFtrend
represents the predicted value of the trend component, n represents the total number of
decomposed mode components, and IMFj represents the predicted value of the capacity
recovery component for the j-th mode.
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4. Results and Discussion
4.1. Decomposition of Lithium-Ion Battery Capacity Sequence by ISSA–VMD

ISSA-VMD is utilized to decompose the capacity attenuation curve based on the cycle
number during the battery discharge process. The VMD parameters are optimized via ISSA
(k, α), and their values are displayed in Table 3.

Table 3. Parameter settings for ISSA.

Populations Number of Iterations Value Range of K Value Range of α

20 10 [1, 10] [1, 1000]

4.1.1. Database 1

Figure 5 displays the iterative process of optimizing VMD parameters using ISSA and
SSA, with battery CS2_35 used as an illustration. The ISSA curve consistently remains at
the bottom when compared to SSA, indicating fast convergence and effective optimization
ability. The optimal parameter combination (k, α) is (3, 151). Figure 6 displays the original
capacity sequence of the battery and the decomposed IMFs.

Figure 5. Change in fitness value for battery CS2_35.

Figure 6. Capacity and decomposition results for battery CS2_35.
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The final parameters resulting from the ISSA-optimized VMD process are presented
in Table 4. In addition, we conducted a Pearson correlation analysis on the IMFs and the
original capacity degradation sequence. The results are displayed in Table 5.

Table 4. Optimal parameters of ISSA–VMD.

Battery Number of Modes K Penalty Factor α

CS2_35 3 151
CS2_36 3 247
CS2_37 3 195
CS2_38 3 183

Table 5. Correlation coefficient between the original capacity sequence and the decomposed IMFs.

Battery IMF1 IMF2 IMF3

CS2_35 0.997899 0.093756 0.038184
CS2_36 0.999201 0.036894 0.026705
CS2_37 0.998997 0.040341 0.032564
CS2_38 0.998850 0.046070 0.032013

4.1.2. Database 2

Using battery B0005 as an example, the original capacity sequence of the battery
was decomposed using ISSA–VMD. The shift of the fitness function in SSA–VMD and
ISSA–VMD is illustrated in Figure 7, with the optimal parameter combination found to
be (k, α) = (3, 1). The IMFs and the battery’s original capacity sequence are displayed in
Figure 8.

Figure 7. Change in fitness value for battery B0005.

Table 6 displays the definitive ISSA optimized VMD parameters. Furthermore, Table 7
exhibits the Pearson correlation analysis between the original capacity sequence and the
decomposed IMFs. As a note, the IMF3 component was absent in batteries B0006 and B0018
during decomposition, and is represented by the symbol “-” in Table 7.
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Figure 8. Capacity and decomposition results for battery B0005.

Table 6. Optimal parameters of ISSA–VMD.

Battery Number of Modes K Penalty Factor α

B0005 3 1
B0006 2 7
B0007 3 60
B0018 2 63

Table 7. Correlation coefficient between the original capacity sequence and the decomposed IMFs.

Battery IMF1 IMF2 IMF3

B0005 0.998680 0.042675 0.071359
B0006 0.998349 0.081128 -
B0007 0.998278 0.077076 0.040673
B0018 0.994283 0.129651 -

Tables 5 and 7 demonstrate that for IMF1, all correlation coefficients exceed 0.99, signi-
fying a robust positive correlation between IMF1 and the original battery capacity sequence.
Consequently, IMF1 can precisely capture the evolving trend of the original battery capacity
sequence, making it an effective trend component that reflects the degradation of lithium
batteries. However, with the exception of IMF1, the correlation coefficients between the
remaining mode components and the original battery capacity sequence are all below 0.13,
indicating very weak relationships. Nevertheless, these components can serve as indicators
of capacity rebound and fluctuation.

4.2. RUL Prediction

The ISSA algorithm was employed in this study to optimize the LSTNet model pa-
rameters. The ISSA–LSTNet–Attention model was applied to train and predict the trend
components, while the ISSA–LSTNet–Skip model was applied to train and predict the
capacity recovery components. Table 8 presents the ISSA parameters.

Table 8. Parameter settings for ISSA.

Populations Number of
Iterations

Value Range of
Kernel Size

Value Range of
Hidden

Dimension

Value Range of
Skip-Length

Value Range of
Regularization

Coefficient

20 30 [1, 10] [1, 200] [1, 10] [1, 4]
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Table 9 presents the parameters acquired from the ISSA-optimized LSTNet model.

Table 9. Optimal parameters of ISSA–LSTNet.

Module Parameter Type Parameter Settings

Convolution Module kernel size 2
hidden dimension 24

Recurrent Module hidden dimension 94

Recurrent-Skip Module hidden dimension 66
skip-length 2

Autoregressive Module regularization coefficient 3

The CS2_35 and B0005 batteries were used as examples. The first half of the data was
chosen for training, while the second half was chosen for testing. The LSTNet–Attention
model was utilized to train the trend component derived from ISSA–VMD decomposition.
On the other hand, the fluctuation component that was obtained from ISSA–VMD decom-
position was input to LSTNet–Skip model for training. Following completion of the training
phase, the prediction results of the LSTNet–Attention model and LSTNet–Skip model were
combined utilizing Equation (37). Figures 9 and 10 display the prediction outcomes for
each individual model, while Figures 11 and 12 signify the final prediction results.

Figure 9. Prediction results for the trend component and capacity recovery component of the CS2_35
battery.
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Figure 10. Prediction results for the trend component and capacity recovery component of the B0005
battery.

Figure 11. RUL prediction results for battery CS2_35.
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Figure 12. RUL prediction results for battery B0005.

4.3. Comparison and Analysis of Forecast Results

This article’s proposed method (M5) was compared against four single prediction
models (CNN, LSTM, LSTNet–Attention, and LSTNet–Skip) in order to verify its superiority.
In this study, we refer to CNN, LSTM, LSTNet–Attention, and LSTNet–Skip as M1, M2, M3,
and M4, respectively. The batteries were trained on the first 50% of the data and tested on
the remaining 50%. We evaluated the prediction results of each model using MAE, RMSE,
and R2. The results are presented in Figures 13 and 14 and Tables 10 and 11.

(a) (b)

(c) (d)

Figure 13. RUL prediction results for CALCE batteries. (a) CS2_35; (b) CS2_36; (c) CS2_37; (d)
CS2_38.
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(a) (b)

(c) (d)

Figure 14. RUL prediction results for NASA batteries. (a) B0005; (b) B0006; (c) B0007; (d) B0018.

Table 10. Comparison of the evaluation indexes of the five methods on the CALCE dataset.

Battery Method RMSE (%) MAE (%) R2 (%) NSE (%)

CS2_35

M1 3.41 2.51 97.15 97.15
M2 2.96 2.1 97.85 97.85
M3 12.53 7.96 61.53 61.53
M4 7.27 5.05 87.04 87.04
M5 1.02 0.60 99.75 99.75

CS2_36

M1 3.32 2.79 97.96 97.96
M2 3.69 2.75 97.48 97.48
M3 18.76 13.94 35.02 35.02
M4 13.38 10.05 66.95 66.95
M5 1.31 1.03 99.68 99.68

CS2_37

M1 3.15 2.45 97.55 97.55
M2 3.16 2.41 97.54 97.54
M3 13.69 9.54 53.72 53.72
M4 8.06 5.97 83.96 83.96
M5 0.66 0.47 99.89 99.89

CS2_38

M1 3.09 2.5 97.57 97.57
M2 2.8 2.13 98 98
M3 17.61 13.18 21.21 21.21
M4 19.01 13.95 8.2 8.2
M5 0.67 0.40 99.89 99.89
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Table 11. Comparison of the evaluation indexes of the five methods on the NASA dataset.

Battery Method RMSE (%) MAE (%) R2 (%) NSE (%)

B0005

M1 4.35 4.13 70.62 70.62
M2 3.13 2.94 84.77 84.77
M3 1.54 0.90 96.33 96.33
M4 2.11 1.51 93.08 93.08
M5 0.82 0.71 98.95 98.95

B0006

M1 3.95 3.37 84.15 84.15
M2 2.30 1.21 94.61 94.61
M3 3.57 2.84 86.99 86.99
M4 2.65 2.04 92.84 92.84
M5 1.23 0.89 98.45 98.45

B0007

M1 3.53 3.27 70.21 70.21
M2 2.98 2.78 78.73 78.73
M3 1.69 1.33 93.17 93.17
M4 1.95 1.64 90.89 90.89
M5 0.58 0.41 99.17 99.17

B0018

M1 3.79 3.52 39.48 39.48
M2 4.79 4.58 3.39 3.39
M3 6.13 5.87 −58.09 −58.09
M4 2.43 1.41 75.23 75.23
M5 1.29 0.95 92.93 92.93

4.3.1. Database 1

From the data presented in Figure 13, it is evident that the CS2_35, CS2_36, CS2_37,
and CS238 batteries all show a level of capacity recovery. The curve for the method proposed
in this paper has a better fit with the actual capacity degradation curve of the battery than
the curves of the other single models, as illustrated in Figure 13.

Table 10 shows that the proposed model outperforms the single LSTNet–Skip model
in terms of the average RMSE, average MAE, and average R2. The average RMSE, average
MAE, and average R2 of the proposed model are 0.915, 0.625, and 99.8025, respectively,
compared to 15.6475, 11.155, and 42.87 for the single LSTNet–Skip model. This represents
an improvement in accuracy of 14.733 and 10.53, respectively, for the average RMSE and
average MAE, and an increase in accuracy of 56.9625 for the average R2. These results
provide strong evidence that the proposed method significantly outperforms other models.

4.3.2. Database 2

Figure 14 indicates that a single model is susceptible to interference because of the
capacity rebound phenomenon observed in batteries B0005, B0006, B0007, and B0018.
Moreover, as illustrated in Figure 14a–c, a single model yields low accuracy in predicting
battery capacity. Additionally, the changes in the instability of battery B0018 and the
limited data available make it particularly challenging for the prediction model to learn
previous patterns. Overall, the predictive abilities of the single models with respect to
battery capacity are inferior to the accuracy achieved by the method proposed in this article.

As per Table 11, the single LSTNet–Skip model has an average RMSE of 3.2325,
whereas the proposed model has an average RMSE of 0.98. Therefore, the proposed model
shows a decrease of 2.252 in average RMSE. Similarly, the average MAE of the single
LSTNet–Skip model is 2.735, while the proposed model averages 0.74, signaling a reduction
of 1.995 in average MAE. Additionally, the average R2 of the single LSTNet–Skip model
is 54.6, whereas the proposed model has an average R2 of 97.375, indicating an increase
of 42.775 on average R2. These results demonstrate that the technique introduced in this
paper can effectively enhance accuracy when predicting the RUL of lithium batteries.

To further illustrate the superior performance of our proposed method, we conducted a
comparison between it and approaches previously reported in the literature. Tang et al. [36]
proposed a hybrid model based on CEEMDAN–IGWO–BiLSTM to predict the RUL of
batteries, while Hu et al. [37] proposed an RUL prediction method for lithium-ion batteries
based on DEGWO–MSVR. Tables 12 and 13 compare the prediction results of the aforemen-
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tioned two algorithms and the proposed hybrid method (unavailable data in references are
denoted by “-”).

Table 12. Comparison of our algorithm with other RUL prediction algorithms on the CALCE dataset.

Battery Method RMSE (%) MAE (%) R2 (%) NSE (%)

CS2_35
CEEMDAN–IGWO–BiGRU 2.58 1.35 98.96 -

DEGWO-MSVR 2.37 1.97 - -
Proposed method 1.02 0.60 99.75 99.75

CS2_36
CEEMDAN–IGWO–BiGRU 2.03 1.57 99.23 -

DEGWO-MSVR 2.9 2.16 - -
Proposed method 1.31 1.03 99.68 99.68

CS2_37
CEEMDAN–IGWO–BiGRU 1.92 1.36 99.06 -

DEGWO-MSVR 2.58 1.91 - -
Proposed method 0.66 0.47 99.89 99.89

CS2_38
CEEMDAN–IGWO–BiGRU 1.91 1.36 99.06 -

DEGWO-MSVR 2.35 1.80 - -
Proposed method 0.67 0.40 99.89 99.89

Table 13. Comparison of our algorithm with other RUL prediction algorithms on the NASA dataset.

Battery Method RMSE (%) MAE (%) R2 (%) NSE (%)

B0005
CEEMDAN–IGWO–BiGRU 4.91 2.53 93.86 -

DEGWO-MSVR 1.19 1.03 - -
Proposed method 0.82 0.71 98.95 98.95

B0006
CEEMDAN–IGWO–BiGRU 4.90 1.99 91.87 -

DEGWO-MSVR 2.24 2.03 - -
Proposed method 1.23 0.89 98.45 98.45

B0007
CEEMDAN–IGWO–BiGRU 4.95 2.47 -

DEGWO-MSVR 0.75 0.63 - -
Proposed method 0.58 0.41 99.17 99.17

B0018
CEEMDAN–IGWO–BiGRU 5.49 3.62 72.29 -

DEGWO-MSVR 0.69 0.59 - -
Proposed method 1.29 0.95 92.93 92.93

The CEEMDAN–IGWO–BiGRU model aligns with the objective of this article. Initially,
the decomposition algorithm is employed to decompose the lithium battery capacity degra-
dation sequence into a global degradation trend component and local capacity recovery
component. Subsequently, an intelligent optimization algorithm is utilized to optimize the
hyperparameters of the neural network. Finally, the prediction results of the various models
are integrated. However, this method does not consider selection of an appropriate predic-
tion model based on the characteristics of the trend components and capacity recovery com-
ponents, which leads to limited generalization capability. Table 12 demonstrates that the
proposed model achieves better performance compared to the CEEMDAN–IGWO–BiGRU
model, with reductions of 1.195 and 0.785 in average RMSE and average MAE, respectively,
and an increase of 0.725 in average R2 and average NSE. Moreover, Table 13 reveals that
the proposed model outperforms the CEEMDAN–IGWO–BiGRU model, with reductions
of 4.0825 and 1.9125 in average RMSE and average MAE, respectively, and an increase
of 9.55 in average R2 and average NSE. These results indicate that the proposed method
significantly improves prediction accuracy compared to other models.

The DEGWO–MSVR model utilizes DEGWO to optimize Multi-Kernel Support Vector
Regression (MSVR), which integrates multiple kernel functions to construct support vector
regression (SVR) prediction models. However, this approach fails to address the issue of
capacity rebound, leading to interference in its prediction accuracy. Table 12 illustrates
that the model proposed in this paper achieves reductions of 1.635 and 1.335 in average
RMSE and average MAE, respectively, compared to the DEGWO–MSVR model. Simi-
larly, Table 13 shows reductions of 0.2375 and 0.33 in average RMSE and average MAE,
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respectively, compared to the DEGWO–MSVR model. These results provide substantial ev-
idence supporting the significantly improved prediction accuracy of our proposed method
compared to other models.

According to Tables 12 and 13, our proposed algorithm surpasses the other two compar-
ative algorithms in various measures. The findings demonstrate that the ISSA–VMD–LSTNet
method can proficiently capture the capacity recovery phenomenon of lithium-ion batteries
and precisely forecast their RUL.

5. Conclusions

This paper presents an RUL prediction model for lithium batteries named ISSA–VMD–
LSTNet. The findings of this research are as follows:

(1) This article introduces the ISSA, a modification of the SSA, which generates an
initial population using TCM and optimizes the positions of discoverers and followers
through LF. This addresses the SSA’s susceptibility to fall into local optima.

(2) The effectiveness of VMD decomposition is improved by adopting ISSA to optimize
the number of modes and penalty factors of VMD. ISSA–VMD separates battery capacity
data into a trend component and capacity recovery component, mitigating the adverse
effects of the latter on model prediction.

(3) Optimizing the LSTNet model parameters with ISSA enhances the predictive
performance of the model. The decomposed IMFs are predicted using LSTNet–Attention
and LSTNet–Skip models, then their prediction results are integrated to eliminate the
vulnerability of single model prediction accuracy to interference.

(4) The experimental results demonstrate the significant advantages of the ISSA–
VMD–LSTNet model in predicting the RUL of lithium batteries, resulting in a notable
enhancement in model accuracy. The proposed model was evaluated using two widely
used lithium-ion battery datasets, yielding an RMSE below 2%, MAE below 1.5%, and R2

and NSE exceeding 92%. These findings indicate that the proposed model exhibits superior
prediction accuracy and performance compared to other models. Moreover, our research
highlights the potential of the ISSA–VMD–LSTNet model to enhance the accuracy and
stability of RUL prediction for lithium batteries.

(5) Finally, it is important to acknowledge the limitations of this study. In practical
battery production, the RUL of lithium batteries is influenced by health factors, including
current, voltage, and temperature. Hence, future experiments should encompass the
consideration of multiple health factors and their impact on RUL prediction for lithium
batteries. Subsequent research endeavors should focus on advancing and broadening the
ISSA–VMD–LSTNet model in order to effectively tackle the challenges encountered in
real-world battery operating conditions. Additionally, exploring additional model fusion
strategies could further enhance prediction performance and stability.
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Abbreviations
The following abbreviations are used in this manuscript:

RUL Remaining Useful Life
SSA Sparrow Search Algorithm
TCM Tent Chaotic Mapping
LF Levy Flight
ISSA Improved Sparrow Search Algorithm
VMD Variational Mode Decomposition
LSTNet Long- and Short-Term Time-Series Network
RMSE Root Mean Square Error
MAE Mean Absolute Error
R2 Absolute Correlation Coefficient
NSE Nash–Sutcliffe Efficiency
EMD Empirical Mode Decomposition
CEEMDAN Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
IGOW Improved Grey Wolf Optimizer
BiGRU Bi-directional Gated Recurrent Unit
DE Differential Evolution
MSVR Multi-Kernel Support Vector Regression
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