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Abstract: Currently, numerous machine learning (ML) techniques are being applied in the field of
renewable energy (RE). These techniques may not perform well if they do not have enough train‑
ing data. Additionally, the main assumption in most of the ML algorithms is that the training and
testing data are from the same feature space and have similar distributions. However, in many prac‑
tical applications, this assumption is false. Recently, transfer learning (TL) has been introduced as a
promising machine‑learning framework to mitigate these issues by preparing extra‑domain data so
that knowledge may be transferred across domains. This learning technique improves performance
and avoids the resource expensive collection and labeling of domain‑centric datasets; furthermore,
it saves computing resources that are needed for re‑training new ML models from scratch. Lately,
TL has drawn the attention of researchers in the field of RE in terms of forecasting and fault diag‑
nosis tasks. Owing to the rapid progress of this technique, a comprehensive survey of the related
advances in RE is needed to show the critical issues that have been solved and the challenges that re‑
main unsolved. To the best of our knowledge, few or no comprehensive surveys have reviewed the
applications of TL in the RE field, especially those pertaining to forecasting solar and wind power,
load forecasting, and predicting failures in power systems. This survey fills this gap in RE classifica‑
tion and forecasting problems, and helps researchers and practitioners better understand the state
of the art technology in the field while identifying areas for more focused study. In addition, this
survey identifies themain issues and challenges of using TL for REs, and concludeswith a discussion
of future perspectives.

Keywords: transfer learning; knowledge transfer; renewable energy; energy forecasting; fault
diagnosis; buildings load forecasting; reinforcement learning

1. Introduction
The numbers given by almost all energy bodies in the world show that RE is growing

faster than all other traditional forms of energy. This fact is a result of the instability in
the fossil fuels market and the numerous benefits of renewables. RE is clean energy that
emits no or very little greenhouse gases and pollutants, which is good for the environment
and better for the health of humans. RE also comes at low cost and is increasingly com‑
petitive, which keeps energy prices at affordable levels and minimizes fuel dependency.
It creates jobs for local communities, makes the overall energy system more resilient, and
prevents power shortages. RE is accessible to all, secure, and ensures the sustainability of
energy systems.

As an important part of smart grids today, RE should support the stability of the
overall energy system. Thus, it is important to successfully predict the amount of energy
available from a given alternative source at a certain time so that energy needs will be
secured. Fault diagnosis systems play a key role in supporting the stability and reliability
of RE systems [1,2]. Faults can seriously reduce the efficiency of power generation and the
lifespan of RE systems. Moreover, they may cause unexpected downtimes, affecting the
production‑consumption balance, which may also lead to an instability and inconsistency
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in the RE economy [2]. In this paper, we highlight four general goals for RE fault diagnosis:
reduce the impact of failures in RE systems, improve their reliability, increase their lifespan,
and reduce their maintenance costs.

Notably, RE resources are, in general, uncertain andvariable [3–5]. To improve the sta‑
bility of RE systems, numerousmethods have been proposed to handle the variability in RE
outputs, aswell as the uncertainty in fault diagnoses [6–8]. In the past fewdecades, various
ML techniques have been suggested to cope with these types of challenges. However, the
performance of classicalMLmethodsmay be subject to some limitations due to several bar‑
riers, namely (i), the lack of sufficient training datasets, also named data scarcity [3,5]. This
may happen particularly for newly implemented solar energy stations and wind turbines
farms. (ii) The shortage or limitation of labeled data instances to trainMLmodels, keeping
in mind that the collection of labeled data records is a laborious and time‑consuming task.
(iii) The need for highly computing resources to train and validate ML models on newly
collected training data, which becomes particularly challenging when deep learning (DL)
models are trained on massive training datasets. Moreover, most applied statistical ML
models are built on the assumption that training and testing data belong to the same fea‑
ture space and follow the samedata distribution, which is not true inmost real applications.
In addition, when the data distribution varies, the developed models must be retrained
using newly gathered data, which is usually difficult and expensive in most real‑world
applications as data become outdated quickly [9]. Whenever an available training dataset
is insufficient, the notion of augmenting the data with a similar dataset from a nearby do‑
main has been tested many times. This happens to be the case with ML models applied to
RE applications (e.g., solar photovoltaic (PV) and wind farm technologies) [10,11].

The purpose of TL, also known as knowledge transfer or domain adaptation, is to
solve or alleviate all the above mentioned issues and limitations. In fact, this recently pro‑
posed ML framework can efficiently help in (i) transferring the learning from the already
trained ML models with enough available annotated data to newly developed models,
and then validate these models with limited available unlabeled data; (ii) save training
time when training newly designed ML models by fine tuning the hyper‑parameters of
the already‑trained models that belongs to similar domains, and therefore improve the
overall efficiency. This is particularly important in the case of DL models; (iii) import the
knowledge from one or more existing models instead of re‑training every newly created
model from scratch. This can be ensured by managing well the knowledge imported from
previous similar domains and definitely improve incremental life‑long learning. Recently,
TL started to draw the attention of RE researchers, mainly to improve energy forecasting,
buildings’ power consumption, and fault diagnosis prediction tasks [10–15]. The grow‑
ing interest of scholars and researches in applying TL techniques on RE systems is clearly
noticed through the increasing number of relevant publications in recent years. Figure 1
depicts the distribution of the past six years’ TL publications on RE in the three areas men‑
tioned above. It is worth mentioning here that in the literature, we recently found one
paper that surveyed the applications of TL on energy systems, and more precisely on
smart cities and sustainability [16]. The authors in [16] focused on smart buildings and
load forecasting—namely sports facilities, thermal comfort control, smart grids, and en‑
ergy disaggregation—in particular types of cities.

In this paper, we present a comprehensive survey on the recent advances in TL ap‑
plications to REs. After introducing TL and the main categories and types of knowledge
transfer with particular examples of RE applications, the paper draws a qualitative anal‑
ysis on the latest applications of TL on particular RE fields, namely RE forecasting that
includes solar and wind energies, building load forecasting, and fault diagnosis in RE
systems. The discussion in this paper helps researchers obtain a better understanding of
the limitations and potentials of applying TL to the RE fields. The paper presents a sur‑
vey covering research works reported between 2016 and 2022 in different popular online
databases, including the Institute of Electrical and Electronics Engineers (IEEE) Xplore digi‑
tal library, ScienceDirect, Scopus, theAssociation for ComputingMachinery (ACM) digital
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library, and Google Scholar. The paper attempts to discuss the challenging questions that
face researchers when they tend to apply a TL framework to RE systems. The questions
can be summarized by the following: When can we transfer? How do we transfer? And
which part of knowledge is to be transferred? The paper also compares recent TL‑based
approaches in each of the three focus topics mentioned above in terms of TL subcategories,
types ofMLmodels, datasets, etc. Additionally, case studies for each of those topicswill be
presented showing the structure of the proposed TL‑based approaches, the adopted ML
models, source domains selection, and the improvement rates provided by TL. Further‑
more, the paper concludes with the open challenges in applying TL to RE systems, such
as the selection and evaluation of similar source domains, negative learning, and others.
This paper will provide RE researchers with a useful survey to help in the identification of
advantages and challenges when applying TL to the three main applications of RE men‑
tioned above. It also identifies the research perspectives of applying TL to solve problems
of REs in the near future.

Practically, TL consists of transferring data or interimmodel results from a source do‑
main, DS, to a target domain, DT . In this context, a domain refers to the set of data records
serving as an input to a model. In the literature, we distinguish between a source task,
TS, and a target task, TT , where both could be related to either classification or regression
tasks. TL is particularly important when the data in the target domain, DT , are limited
or not available. Therefore, when applied appropriately, TL improves the performance
of TT by transferring the right knowledge from TS and DS. The application of TL to RE
is relatively new, and the reported performance and improvements in this field remain
below the level of other TL applications, such as natural language processing, image clas‑
sification, activity recognition, and others [17–22]. Figure 2 presents the distribution of the
current TL publications. It is clear that more than 85% of TL publications were published
in the past four years, indicating a growing interest.
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Figure 1. Transfer learning publications for the three surveyed renewable energy domains taken
between 2016 and 2022. (a) Distribution of TL publications on surveyed topics in RE systems over
the years between 2016 and 2022. (b) Number of TL publications on the surveyed topics in RE for
the years between 2016 and 2022.

Figures 1 and 2 indicate the increasing number of reported research onTL for RE in the
three recent years, particularly for energy forecasting and faults diagnosis in RE systems.
In 2022, the number of publications has doubled compared to 2021. That is justified by the
growing need to improve the fault diagnosis as well as the RE predictions.
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The TL and its main types and characteristics are discussed in Section 2. In Section 3,
an overview of the recent TL applications on RE is provided, namely energy forecasting,
cross‑building energy consumption prediction, and fault diagnosis where we present and
discuss the potential and limitations of the reported techniques. In Section 4, wediscuss the
main challenges and open problems facing researchers in applying TL for the prediction
and classification in RE; in addition, we introduce some open challenges and potentials
that might help in improving the generalizability of TL in order to expand its deployment
in real world RE projects. Finally, we conclude this work with some perspectives for the
near future.

2. Transfer Learning
Classical ML algorithms are data‑driven methods to predict future data using statis‑

tical models that are designed and trained on historical data records [5,23,24]. Most of
these methods assume that the amount of training data instances is sufficient and that the
training and testing data belong to the same feature space and have the same distribution,
which is not always true in real‑world applications. TL addresses the cases in which do‑
mains, tasks, or data distributions in the training and testing phases are different. In fact,
we encounter many examples of TL at the human learning level. For instance, the general
ability to recognize animals in photos will help in the task of identifying cats in a sepa‑
rate set of photos. Likewise, the knowledge and experience of riding bicycles may help in
learning how to ride a motorcycle. TL research is inspired by the fact that human beings
exploit prior knowledge to learn new skills and solve new problems. In the field ofML, the
main idea behind TL is to establish lifelong ML platforms that intake and reuse collected
knowledge to solve new problems of classification, regression, and clustering [23,24]. TL
is also referred to as life‑long learning, domain adaptation, and incremental learning. The
aim is to import knowledge from one or more source domains, and apply it to a target task
in another different domain [23,25,26]. Figure 4 depicts the main differences between the
learning process of classical ML algorithms and those that are adopted by TL techniques.
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As shown in Figure 4, classical ML trains each model to perform a specific task from
scratch, whereas TL exploits and transfers the knowledge accumulated fromprevious tasks
to train for a new target task.

2.1. TL Definitions and Notations
In this section, we present the notations and definitions used in this survey. A do‑

main, D, is defined by two components: a feature space, χ, and a marginal probability
distribution, P(X), where X = {x1, x2, . . . .., xn} ∈ χ. For instance, if the learning task
is a sentiment classification of a particular product given as Good, Neutral, or Bad, each
term (i.e., comment) is encoded as a binary feature, and xk is the kth term vector corre‑
sponding to the comment. Therefore, χ is the space of all possible term vectors, while xk
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is a learning sample. Practically, the two learning domains are said to be different if they
have different features’ spaces or if the marginal probability distributions of those features’
spaces are different. For a given domain, D = {χ, P(X)}, a task, T(ƴ, f (.)), related to this
domain consists of a label space, ƴ, and a prediction function, f (.), which can be found
by the training data sample, X. In general, a training sample consists of pairs in the form
{xk, yk }, where xk ∈ X and yk ∈ ƴ. In our sentiment classification example, ƴ is the set
of all possible labels (i.e., ƴ = {Good, Neutral, Bad}). The objective function, f (.), aims to
associate a label, f (x), to a given instance in the learning sample, X. From the probability
point of view, f (x) can be denoted as a conditional probability, P(y|x), that estimates the
probability of having a label, y, given an input, x. Thus, the data of a source domain are de‑
noted by the set of pairs, Ds =

{(
xS1 , yS1

)
, . . . .,

(
xSk , ySk

)
, . . . ., (xSn , ySn)

}
, where xSk ∈ χS

is an input data instance in the source domain, and ySk ∈ ƴS is the associated label in the
source set of labels for the instance, xSk . On the other hand, the data in a target domain
are represented by DT =

{(
xT1 , yT1

)
, . . . .,

(
xTk , yTk

)
, . . . ., (xTm , yTm)

}
, where xTk ∈ χT is an

input data instance in the target domain, and yTk ∈ ƴT is the corresponding output/label
in the target set of labels for the instance, xTk . In general, we assume that 0 ≤ n ≪ m.

The general goal of TL is to improve the learning of a target predictive function, fT(.),
in a target domain, DT , using the accumulated knowledge in a source domain, DS, and a
source learning task, TS, with the assumption that DS ̸= DT or TS ̸= TT . The assumption
DS ̸= DT means that either the spaces of features χS and χT are not the same (i.e., χS ̸= χT),
or that themarginal distributions of the features’ spaces are not equal (i.e., PS(X) ̸= PT(X)).
For instance, in our sentiment analysis example, either the set of term features in the source
space differs from that of the target (e.g., comments are written for different categories of
products or expressed in different languages), or the marginal distributions of the two sets
are different.

On the other hand, there is the assumption that a source task defined as
TS = {ƴS, P(YS|XS)}, and a target task, TT = {ƴT , P(YT |XT)}, are not equal if either (1),
the label spaces, ƴS and ƴT , are not equal (i.e., ƴS ̸= ƴT), or (2), the conditional probability
distributions, P(YS|XS) and P(YT |XT), are different (i.e., P(YS|XS) ̸= P(YT |XT)), where
YSk ∈ ƴS and YTk ∈ ƴT . In our example, the first case can be depicted as a situation in
which the source task has two classes of evaluations (e.g., “liked” or “disliked” outcomes),
whereas the target task has five classes of evaluations (e.g., number‑of‑stars score). The
second case can be depicted as a situation in which the comments in the source and target
domains belong to unbalanced user‑predefined classes.

2.2. Categories of TL Techniques
The two main considerations of this survey when examining TL solutions are (i),

which part of the knowledge is to be transferred, and (ii), how to make this knowledge
transfer. Based on the different linkages between the source domain, DS, and the target
domain, DT , the answers may lead to a common categorization of TL instances that con‑
sider three common sub‑settings briefly described in the following subsections: inductive,
transductive, and unsupervised TL [23–25].

1. The inductive TL has a source task, TS, and a target task, TT , that are different from
each other. However, domains DS and DT may be the same or different. The induc‑
tive TL requires some labeled data in the target domain, DT , to deduce an objective
predictive function, fT(.) in the DT . In addition, if there is a sufficient amount of la‑
beled data in the source domain, DS, in this case, inductive TL is considered similar to
a multitasking learning case. However, if labeled data are not available in the source
domain, DS, inductive TL will be a self‑taught learning case [21,23,26].

2. Transductive TL has tasks TS and TT , which are identical, whereas domains DS and DT
are different (i.e. either the features spaces in the target and source domains are not the
same, χS ̸= χT , or the same feature spaces are defined in the two domains but with
different marginal probability distributions, χS = χT and PS(X) ̸= PT(X)) [21,23]. In
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this sub‑setting, we assume that there are no labeled data in the target domain, DT , while
there are enough in the source domain, DS.

3. Unsupervised TL assumes that the source task, TS, and target task, TT , differ, but
are related [21,23]. In general, this TL setting is used to solve unsupervised learning
problems in the target domain, DT (e.g., dimensionality reduction and clustering).
This type of sub‑setting is not widely addressed in the RE literature.

The literature suggests that researchers and scholars consider additional TL catego‑
rizations: (i) homogeneous, where the input features are the same (i.e., XS = XT) and
the space of labels is the same (i.e., ƴS = ƴT), or (ii) heterogeneous, where XS and XT do
not have the same features (i.e., XS ̸= XT), or the marginal distributions are not equal
(i.e., PS(X) ̸= PT(X) and/or ƴS ̸= ƴT [23,25]). Table 1 depicts the common TL categoriza‑
tions with real application examples.

Table 1. Transfer learning categories and data similarities.

Transfer Type Features Domain Task

H
om

og
en
eo
us

Inductive Learning χS = χT TS ̸= TT

DS and DT have the same input
features. For instance, temperature,
humidity, and solar radiation. The
TS is tuned to forecast solar power
instead of heat index or dew
point [17].

Transductive Learning χS = χT
P(XS) ̸= P(XT)

TS = TT

DS and DT have the same input
features but different marginal
distribution. For instance,
temperature, humidity, and air
density. The TS and TT are both
used to forecast solar
radiation [11].

H
et
er
og
en
eo
us

Inductive Learning χS ̸= χT TS ̸= TT

DS and DT have a different
number of features. For instance,
the air pressure is additionally
used in the DT to forecast solar
power instead of heat index or dew
point [25,26].

Transductive Learning χS ̸= χT ,
P(XS) = P(XT)

TS = TT

DS and DT have different but
related features of one solar station
location. The underlying marginal
distributions are equal due to the
similar location of solar station.
TS and TT forecast the solar
power [12,13].

Another distinction depends onwhich part of the knowledge is to be transferred from
DS to DT . In this context, four approaches are defined, which depend on the level of in‑
stances, features, and parameters. It may even offer a relational‑based approach [21,25,26].

A. Instance‑based approaches are data oriented and focus on transferring knowledge
by adjusting data to reduce the distribution difference between the source and target
domains. There are two main approaches for the instance‑based category:
1. Instanceweighting: The instances are assignedweights to reduce themarginal

distribution difference.
2. Domain weighting: For multi‑source domains, weights are assigned to each

source to reduce the conditional distribution difference [27].
B. Feature‑based approaches are data‑oriented and aim to find a new representation

for each original feature. The main purpose of constructing a new feature repre‑
sentation is to minimize the conditional and marginal distribution differences and
preserve potential data structures. This can be realized by feature augmentation,
feature alignment, or feature reduction [21,23].
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C. Parameter‑based approaches are model‑based and transfer knowledge using model
parameters that reflect the knowledge of those models. The two main approaches
are as follows:
1. Parameter sharing: Widely used to directly share parameters of the source

learner with the target learner. A widely used technique is to freeze the first
layers in a convolutional neural network and only fine‑tune the last layers to
produce a target model of the same type [10,12].

2. Parameter restriction: The parameters of the target and source learners must
be similar.

D. The relational‑based approaches transfer the logical relationships and rules accumu‑
lated in the source domain to the target.

Figure 5 summarizes the described TL categories. For a more comprehensive under‑
standing of the topic, readers may refer to numerous reports [23,25,28–30]. Those inter‑
ested in particular applications may refer to [19,31,32].
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3. TL for RE Systems
The number of TL applications for RE systems have recently increased, especially for

solar and wind energy forecasting, building energy consumption prediction, and fault di‑
agnosis. Themain idea of TL is to copewith limited or absent historical datasetswithwhich
ML data‑driven models (e.g., Support Vector Regressors, Random Forests (RFs), and Neu‑
ral Networks (NN) [4,5]) must be trained. The scarcity of training data is a real challenge
when building new PV plants and wind farms [10,11]. It is also prevalent in new and ex‑
isting buildings with newly installed electricity meters. TL techniques for RE applications
allowMLmethods to be applied with limited or even no training data by inferring knowl‑
edge from existing energy forecasting models trained with sufficient data. Like the many
TL domains discussed so far, the transfer of knowledge among RE forecastingmodels may
occur in data ormodel domains. Therefore, the same conceptual questions arise about how
the knowledge can be transferred from a source domain, DS, where knowledge is readily
available, to a target domain, DT , where the knowledge is limited. In the following, we
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introduce the TL techniques applied to RE forecasting and address the main challenges
facing researchers when applying such techniques.

3.1. TL for Power Forecasting
For RE forecasting, domain D consists of a feature space, χ, that in general contains

weather, wind speed, or solar radiation data alongside their marginal distribution, P (X)
for X ∈ χ. The task of the domain, T(ƴ, f(.), assigns the expected power, Y, to an input, X,
where f (.) is the rule that assigns the expected power, Y, to the input weather and solar
data, where Y ∈ ƴ.

The type of TL used for RE forecasting is chosen based on the types of challenges that
arise. Table 1 summarizes the common TL categories applied to RE forecasting with respect
to the similarity of data in DS and DT domains alongside the types of adopted learning.

In general, the use of TL for RE forecasting faces two main challenges [10]. The first
challenge arises when researchers assume the absence of historical data in DT . This is typi‑
cally the case when building new PV plants or wind farms [11,12]. In this case, researchers
may use numerical weather parameters and physical non‑ML models [10] that provide
small amounts of training data for DT , which help in selecting similar solar PV or wind‑
farm configurations. The DS and TS of the selected source farms are therefore adapted to
DT to provide forecasting results using TL techniques. The main difficulty in this scenario
is the likelihood of distorting the historical data, XS and YS, owing to the specificity of
the source PV or wind farm [10,11]. Another difficulty is the possible bias of the source
forecasting model, TS, toward a particular PV or wind farm.

The second challenge may take place when researchers assume the availability of lim‑
ited data, YT , for new solar PV or wind farms. The available set of limited records may
consist of measurements related to the first few months of establishing the new energy
station. Among the issues that may arise from the available dataset, YT , is a potentially
different statistical distribution related to the pre‑selected stations in the DS. This is likely
to occur if the set of similar power stations and the one being planned are different. Other
challenges may appear if the dataset related to the first few months of the new power sta‑
tion is biased by the seasonal weather conditions. Two common approaches have been
suggested for dealing with these challenges. The first approach uses multi‑task learning
methods based on parameter sharing [10–12]. A model is chosen using the dataset of sim‑
ilar power stations. All models are assumed to be trained in parallel. The selected model
is then trained on the historical data that are available for the source stations. Then, the
trained model is fine‑tuned to the tasks of the newly added power station. This method
requires a small amount of new data to adapt the parameters of the newly modeled power
station [10]. The second approach consists of combining fine‑tuning with self‑training. A
generic model based on a set of pre‑selected models for similar power stations is designed
and trained. The generic model is then fine‑tuned to the available historical data for a short
period on the newly added power station. The updated version of this model is then used
to generate artificial data from the available numerical weather data at the new station. Af‑
terward, artificially generated data are used for the additional fine‑tuning of the generic
model. The described process of generating artificial data and then retraining provides a
self‑training technique that improves the prediction performance of the target. The fine‑
tuning of the two described techniques minimizes the overall design and training costs.

In theRE literature, numerous researchworks have focused on the application of TL to
forecastingwind and solar power generation [10–14]. Most of the proposed TL approaches
for RE prediction have considered short‑term predictions and have applied feature and pa‑
rameter transfer methods [11,12]. In [11], the authors applied a DL approach to extract a
high‑level representation of weather data to predict wind energy. The authors combined
wind speed information from multiple sources to build a model with shared hidden lay‑
ers. The shared layers ensure a universal feature transformation and help in extracting the
hidden rules among wind‑speed patterns. The output layers of the proposed model are
farm‑dependent, as the data distribution differs from one farm to another [11].
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In [12], the authors assumed that the outputs of PV panels were mainly affected by
the strength of solar radiation. Therefore, the time‑series data records of the PV stations
under study had similar probability distributions. The authors in this study considered
the solar radiation data as DS and the PV output data as DT . They also implemented a
feature‑based TL by extracting common data between DS and DT through shared hidden
layers. The output layer of the target model was fine‑tuned using DT data to improve the
prediction performance. The authors claimed that increasing the amount of training data
caused the advantages of TL to decrease gradually. Figure 6 shows the general structure
of the model introduced in [12], which consists of a share‑optimized‑layer long short‑term
memory (LSTM). In thismodel, the general features are extracted through the hidden layer
of the models pre‑trained using DS. In this work, authors claimed that the features had
good generalizability.

Sustainability 2023, 15, x FOR PEER REVIEW 12 of 30 
 

 

 
Figure 6. The structure of share-optimized-layer long short-term memory with fine-tuned phase 
adapted from [12]. 

In [13], the authors introduced a cluster-based multi-source domain adaptation 
(MSDA) approach with inductive TL to transfer the wind-speed knowledge of multiple 
source stations to a newly built station in order to predict wind power. The proposed ap-
proach captures wind data distribution, and then computes the distributions similarity 
between the source and target domains. The authors claimed that similar weather param-
eters have similar influences on wind-power production, and they formulated the simi-
larities between each source and target domain in terms of marginal and conditional prob-
ability distribution. These similarity measures were used to weigh the contribution of each 
source domain in estimating the predicted wind power. Their cluster-based MSDA-
weighted method provided a 16.88% better estimation than an MSDA approach that as-
signs equal weights to the source domains. The authors of [14] suggested a hybrid TL 
model consisting of a convolutional neural network (CNN) and a gated recurrent network 
(GRU) for short-term wind speed predictions. The CNN extracts complex features from 
meteorological data from surrounding cities to be used by the GRU model, which learns 
the relationships among time series data records to ensure the short-term prediction of 
wind speed. The source and target domains were the same with similar data distributions, 
and the authors fine-tuned the CNN target models accordingly. The authors claimed that 
their model improved the scores of statistical metrics by nearly 20%. In [33], the authors 
introduced an adaptive TL (ATL) for a deep neural network (DNN) for the short-term 
prediction of wind power. The suggested ATL-DNN method continuously exploits the 
arriving information and handles the inductive transfer of knowledge between the task 
domains (i.e., from wind power to wind speed). The design dataset was comprised of 
wind directions and wind speed parameters collected from five wind farms in European 
regions. The suggested ATL-DNN method is ensemble-based, in which three base learners 
are trained adaptively every four months on the continuously generated data. The authors 
in [34] adopted a model-based TL strategy for multi-step-ahead wind-power prediction 
for newly established wind farms. The first layer of the proposed model consists of a serio-
parallel feature extractor consisting of several CNNs separately connected to stacked 
LSTMs (CNN–LSTM). The CNNs extract meteorological features, whereas the LSTMs ex-
tract temporal information features from surrounding similar wind farms with sufficient 

Figure 6. The structure of share‑optimized‑layer long short‑term memory with fine‑tuned phase
adapted from [12].

In [13], the authors introduced a cluster‑based multi‑source domain adaptation
(MSDA) approach with inductive TL to transfer the wind‑speed knowledge of multiple
source stations to a newly built station in order to predict wind power. The proposed
approach captures wind data distribution, and then computes the distributions similar‑
ity between the source and target domains. The authors claimed that similar weather
parameters have similar influences on wind‑power production, and they formulated the
similarities between each source and target domain in terms of marginal and conditional
probability distribution. These similarity measures were used to weigh the contribution of
each source domain in estimating the predicted wind power. Their cluster‑based MSDA‑
weighted method provided a 16.88% better estimation than an MSDA approach that as‑
signs equal weights to the source domains. The authors of [14] suggested a hybrid TL
model consisting of a convolutional neural network (CNN) and a gated recurrent network
(GRU) for short‑term wind speed predictions. The CNN extracts complex features from
meteorological data from surrounding cities to be used by the GRU model, which learns
the relationships among time series data records to ensure the short‑term prediction of
wind speed. The source and target domains were the same with similar data distributions,
and the authors fine‑tuned the CNN target models accordingly. The authors claimed that
their model improved the scores of statistical metrics by nearly 20%. In [33], the authors
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introduced an adaptive TL (ATL) for a deep neural network (DNN) for the short‑term
prediction of wind power. The suggested ATL‑DNN method continuously exploits the
arriving information and handles the inductive transfer of knowledge between the task
domains (i.e., from wind power to wind speed). The design dataset was comprised of
wind directions and wind speed parameters collected from five wind farms in European
regions. The suggested ATL‑DNN method is ensemble‑based, in which three base learn‑
ers are trained adaptively every four months on the continuously generated data. The au‑
thors in [34] adopted a model‑based TL strategy for multi‑step‑ahead wind‑power predic‑
tion for newly established wind farms. The first layer of the proposed model consists of a
serio‑parallel feature extractor consisting of several CNNs separately connected to stacked
LSTMs (CNN–LSTM). The CNNs extract meteorological features, whereas the LSTMs ex‑
tract temporal information features from surrounding similar wind farms with sufficient
training data. The second layer consists of a fully connected network for prediction. The
first stage of the adopted parameter‑based TL strategy transfers the partial parameters of
the well‑trained CNN–LSTM feature extractor of the source wind farm to the prediction
model of the target. In the second phase, a personalized training of the fully connected net‑
work is assured using personalized training data of several weather features (e.g., temper‑
ature, relative humidity, wind direction, and air pressure). The authors in [35] proposed a
multi‑wind farm strategy for the prediction of wind speed using a bidirectional LSTM
(Bi‑LSTM) learning model. Four Bi‑LSTM DL models were pre‑trained with historical
wind speed data collected from four wind farms to obtain an ensemble model. A transduc‑
tive model‑based TLwas applied to transfer the knowledge of the four pre‑trainedmodels
to a centralized control unit, and the wind speed at any newly created wind farm was
predicted using this knowledge. A hybrid multi‑objective optimization algorithm based
on firefly and dragonfly algorithms [36,37] was used to weigh the predictions of a set of
pre‑trained models to obtain optimal wind‑speed predictions.

The authors in [38] introduced a TL‑based approach to extract features from sky im‑
ages using a deep CNN to model the association between sky images and solar radiation.
First, they trained a CNN classifier to extract high‑level features to determine whether the
sun is shaded by clouds. Using a parameter‑based TL, part of the CNN classifier is used to
construct a CNN regressor to extract information from sky images and quantitatively map
the extracted information to continuous solar radiation. Practically, the parameters of the
CNN classifier’s convolutional layers are fixed, whereas the parameters of the subsequent
fully connected layers are updated during the training phase.

In [39], the authors introduced a transductive instance‑based TL method that uses
gradient boosting decision trees (GBDTs) for wind power prediction. GBDT models were
found effective for probabilistic forecasting [39]. The proposed regression model was
trained using auxiliary wind power data from correlated zones as source problems. The
incorporation of data from source problems during training helps in enhancing the pre‑
diction performance in the target zone. The authors in [40] proposed a parameters‑based
TL approach to train one‑hour‑ahead predictors of hourly average Global Solar Irradiance
GHI at new locations with limited data. The authors tuned pre‑trained recurrent neural
network‑based models to use them at other locations with limited data. The methodology
is demonstrated by considering one source site in Egypt (rich in annotated data), and the
target models were tuned using limited datasets at five other locations in Tunisia, Morocco,
and Jordan. The approach in this work was found valid for all targeted locations in terms
of mean absolute errors. Additionally, the authors reported the least and most influential
parameters on the performance of their proposed TL models. Table 2 summarizes the re‑
cent publications that are relevant to the applications of TL in predicting wind power and
solar power/radiation. The table compares the transfer types, adopted features, targets to
be predicted, and the applied ML models.
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Table 2. Overview of the latest works on TL for predicting wind‑ and solar‑power/radiation.

Authors TL Sub Setting Transfer Type Features Target to Predict ML Models

Hu, Q., et al. (2016) [11] Homogeneous
Transductive

Feature‑based
Transfer Wind speed Wind speed Deep learning with

shared hidden layers

Zhou, S., et al. (2020) [12] Heterogeneous
Inductive

Feature‑based
Transfer

Solar irradiance
data, PV output

data

Photovoltaic
power forecasting

LSTM with
sequential

model‑based global
optimization SMBO

Tasnim, S., et al. (2018) [13] Homogeneous
inductive

Instance‑based
Transfer

Statistical features
of wind speed
(mean, std
deviation,

skewness, . . . )

Wind power

Regression models
with multi‑Source
data adaptation

MSDA

Ji, L., et al. (2022) [14] Homogeneous
transductive

Instance‑based
Transfer

Meteorological
features Wind speed CNN and GRU

Qureshi, A., et al. (2018) [32],
(2017) [41]

Homogeneous
inductive

Feature‑based
Transfer

Wind speed and
wind direction Wind speed DNN and ensemble

learning

Yin, H., et al. (2021) [33] Homogeneous
transductive

Model‑based
(parameters
passed)

Weather features Wind power
CNN, LSTM, and
fully connected

networks.

Liang, T., et al. (2021) [35] Homogeneous
transductive Model‑based Wind speed and

direction Wind speed
Bi‑LSTM with
multi‑objective
optimization

Lin, Y., et al. (2019) [38] Homogeneous
transductive Parameters‑based Sky images Solar radiation Deep CNN

Cai, L., et al. (2019) [39] Homogeneous
transductive Instance‑based

Power energy
statistics, wind
speed, wind
directions

Wind power GBDT

Abubak et al. (2022) [40] Homogenous
inductive Parameter‑based Solar radiation Solar radiation Recurrent neural

network

Cao, L., et al. (2018) [42] Homogeneous
transductive Instance‑based Time series wind

power Wind power Extreme gradient
boosting

Liu, Y., et al. (2022) [43] Homogeneous
transductive Model‑based Wind power Wind power MLP + particle

swarm optimization

Abubak et al. (2022) [43] Homogenous
inductive Parameter‑based Solar radiation Solar radiation Recurrent neural

network

Khan et al. (2022) [44] Homogeneous
inductive Parameter‑based Wind and energy

measurements Wind power Deep neural network

Jifeng Song et al. (2022) [45] Homogeneous
inductive Parameter‑based Weather, turbine,

and rotor functions Wind power
Temporal

convolutional
network + LSTM

JeongRim et al. (2022) [46] Homogeneous
inductive Model‑based

Weather data and
wind power

generation data
Wind power Light gradient

boosting machine

Schreiber et al. (2022) [47] Homogeneous
inductive Parameter‑based Weather data Wind/Solar power

Temporal
convolutional
network + auto

encoders

Shuang Yu et al. (2022) [48] Homogeneous
inductive Model‑based Weather and

climate data Wind speed Random forest +
XGBoost

Runhao et al. (2002) [49] Homogeneous Instance‑based
Solar power data
of PV power

station
Solar power

Extreme learning
machine +
TrAdaBoost

Tajjour et al. [50] Homogeneous
inductive Model‑based Satellite data of

solar radiation
Photovoltaic

power
Deep neural

networks DNN

Table 2 shows that TL is widely applied with deep learning models to forecast solar
power/radiation and wind power/speed. Most of the research works reported in the liter‑
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ature targeted wind prediction with homogeneous domains, which can be explained by
the availability of benchmark data in the source domains and by the simplicity of applying
transductive TL among wind power stations. Additionally, most of the reported research
works applied the TL on DL models due to its ability to alleviate the issues of annotated
data scarcity and learning costs we usually face when training DL models.

3.2. TL for Cross‑Building Energy Load Forecasting
In the context of smart grids, the datasets of smart sensors‑based data provided by

the recently deployed smart meters make the sensor‑based power consumption prediction
more popular [51–55]. Short‑ and mid‑term ML‑based and particularly DL‑based predic‑
tions require sufficient quantities of historical data to forecast future energy consumption
in buildings and facilities. Recently, a few studies have applied TL to mitigate the scarcity
of historical data for new and existing buildings with newly installed electricity meters
where datawere not sufficient to achieve accurate prediction [51–55]. In [51], the authors in‑
troduced a cross‑building energy forecastingmethod using an inductive instance‑based TL
to improve the predictions for target buildingswith limited training datasets. They trained
a target model with a small dataset usingmeasurements collected over an extended period
from similar buildings (i.e., schools). Their approach enabled the use of standardML algo‑
rithms with seasonal and trend adjustments to time‑series data. The authors showed that
their approach increased the forecasting accuracy by up to 11.2% compared to models that
use a dataset of information from a target school gathered during only one month. In [52],
the authors introduced a TL approach for the cross‑building transfer of knowledge using
two standard reinforcement learning algorithms coupledwith a deep belief network (DBN)
to model building energy consumption (i.e., building models) using unlabeled historical
data. The proposed method handles new behaviors of existing buildings (e.g., variations
in installation, changes in structure, and changes in energy consumption due to site reno‑
vation), as well as new types of buildings newly connected to the smart grid. The authors
tested their approach using a real dataset collected over seven years, with a resolution of
1 h. The results showed that their approach significantly improved energy prediction ac‑
curacy in more than 91% of cases after using the DBNmodels to extract high‑level features
from the unlabeled data.

The authors in [53] proposed a short‑term future energy consumptionmodel for office
buildings using transductive instance‑based TL. The proposed approach uses a simulation
dataset of a reference building with environmental features (e.g., temperature, humidity,
and solar radiation) and time data. The approach also uses LSTM models for time‑series
regression. The authors trained their TL‑LSTMmodel using an office‑building power con‑
sumption dataset collected during 24 h, and made predictions for the next 24 h. They
reported that the TL‑LSTMmodel outperformed the stand‑alone LSTMmodel. Moreover,
they claimed that when the climate zone was the same for the source and target datasets,
the TL‑LSTM model showed high accuracy, even if the locations of the related buildings
are different.

In [54], the authors introduced a TL‑based framework with two DL models (i.e., an
LSTM‑based encoder–decoder and a 2D‑CNN) to improve the prediction of power con‑
sumption in the offices of a target building. The proposed inductive TL approach used
a seq2seq encode–decoder model with a simple LSTM model, and restricted data to im‑
prove prediction accuracy by more than 19% in terms of mean absolute percentage error.
However, the 2D‑CNNmodel provided a more than 20% improvement in prediction accu‑
racy. The authors used numerical weather features (e.g., temperature, humidity, and dew
points), categorical features (e.g., holidays, and months), and energy consumption labels.

To improve the accuracy of the short‑term power‑load prediction, the authors in [55]
proposed a parameter‑based TL framework using a CNN‑GRU hybrid model. They esti‑
mated the bandwidth of the data distribution by optimizing the mean integrated square
error, which can provide a load prediction interval and a fluctuating range curve of the
future load at a particular confidence interval. The training process of the hybrid models
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in DS and DT was realized using multi‑source data that included time‑series weather and
load measurements. The authors indicated that their proposed method was not suitable
for long‑term predictions. Notably, as the prediction horizon increases, the interval pre‑
diction expands. Figure 7 depicts the CNN–GRU hybrid model with a parameter‑based
TL approach, as proposed in [55].
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Furthermore, recent studies demonstrated the potential benefits of applying reinforce‑
ment learning (RL) on learning‑based building controls to optimize overall energy effi‑
ciency and management [56,57]. Reinforcement learning [58,59] is a field of ML that stud‑
ies how an ML model can react with its environment to achieve a specific task. An RL
model has to control a dynamic system by selecting actions in a sequential mode. The
model moves to a new state after executing an action, and it receives a reward (numeric
value) that shows how far the model is from the goal state.

Recently, numerous reviews including [60,61] analyzed the applications of TLwithRL
models. Actually, the TL techniques are applied with RLmodels to optimize their training
time, which is one of the major difficulties in applying such types of data‑driven models.
This is possible due to a certain degree of similarity among buildings’ activities [56]. Few
research works have introduced the use of RL models with TL techniques for buildings’
energy load prediction [52].

Table 3 summarizes the latest relevant publications that discuss TL applications for
cross‑building energy consumption forecasting. The table compares transfer type, adopted
features, type of buildings, and applied ML model. Additionally, the table indicates that
TL is widely used with DL to handle the energy consumption prediction for various types
of buildings.
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Table 3. Overview on the recent works on TL for cross‑building energy load/consumption forecasting.

Authors TL Sub Setting Transfer Type Features Type‑of Building MLModels

Ribeiro, M. et al. (2018) [51] Inductive Instance‑based
Time data + weather
features + energy
consumption

Schools Regression models:
MLP and SVR

Mocanu, E.et al. (2016) [52] Unsupervised Model‑based

Loads profiles
(time‑of‑use, lightening,
existence of electrical

heater, . . . )

Cross‑types
residential +
commercial

Reinforcement
learning

models + DBN

Ahn, Y. (2022) [53] Transductive Instance‑based Meteorological + time data Offices LSTM

Gao, Y. (2020) [54] Inductive Model‑based
Numerical weather
features + categorical
(holiday, day of weak)

Offices LSTM + 2D‑CNN

Jin, Y. (2022) [55] Transductive Parameters‑based Time data + weather
features + energy load

Residential +
commercial Hybrid CNN‑GRU

Gonzalez‑Vidal et al. (2022) [62] Transductive Instance‑based Weather features +
building meta data

Non‑residential +
offices LSTM + CNN

Among the drawbacks of cross‑building sensor‑based energy consumption forecast‑
ing, we mention the following: (1) the assumption that similarly categorized buildings
(e.g., residents, schools, and commercial buildings) have the same power demands often
leads to weak predictions. (2) The adopted methods for this type of forecasting must con‑
sider the effects of seasonalitywithin the specific domain of usage, aswell as activity trends
in buildings and the changes that may happen on the activities due to renovations and ex‑
tensions [51]. Little work has been focused on applying TL to buildings’ load forecasting
compared to the other surveyed fields of RE. This can be explained by numerous barriers
such as confidentiality issues and the relatively limited number of smart sensors that have
lately been deployed in real‑world projects. In fact, most energy operators do not share
enough information about the status of their systems. Furthermore, business owners do
not reveal details about the daily power consumption of their residential buildings, facili‑
ties, and factories.

3.3. TL for Fault Diagnosis in Energy Systems
Fault diagnosis of RE systems plays a key role in ensuring consistency in the energy

industry by supporting the stability and reliability of the relevant systems [1]. An efficient
faults prediction and classification can certainly help in reducing the impact of failures
in such systems. Various categories of faults may arise during the operation of RE sys‑
tems. For instance, in wind turbines, faults may occur in one or more critical components
(e.g., generator, blades, main bearing, and gearbox) [63]. Most faults occur in offshorewind
farms or in remote areas that are difficult to access. On the other hand, in solar energy sys‑
tems, PV panels are installed in complex climate conditions, which may cause anomalies
such as fragmentation, short‑circuits, shading, cracks, and dust accumulation [1].

Faults in energy systems reduce not only the efficiency of power generation, but also
their life spans. Moreover, faults may cause unexpected downtimes, which consequently
affects the production consumption balance, and may also lead to instability and inconsis‑
tency in the RE economy [63]. For energy systems, four main aspects of fault diagnosis
techniques are prevalent (i.e., reduce the impact of failure, increase the reliability, increase
the lifespan, and reduce the maintenance costs).

3.3.1. Classical Fault Diagnosis Approaches
The physical methods of fault diagnosis are the most conventional approaches, and

they rely on mathematical models to explain anomalies in the collected data. In [64], Wat‑
son et al. proposed a new approach for the continuous calculation of damage accumula‑
tion using the parameters of turbine performance and failure physics. In [65], Qiu et al.
presented a thermo‑physics based method for fault diagnosis in wind turbines. Although
physical methods can provide good explanatory models, they are difficult to develop be‑
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cause they require deep physical knowledge of the system and do not address all kinds of
failures [1].

Apart from physical approaches, data‑driven ML‑based approaches have been intro‑
duced for fault diagnosis in RE systems. They are supposed to benefit from the historical
data records collected from energy systems to automatically predict and classify anomalies
and failures. Among the main challenges that face researchers and engineers in applying
ML‑based approaches are those occurring in the boundaries between normal and faulty
data, as they are ambiguous and difficult to distinguish. Moreover, the data associated
with failure are frequently less common than those associated with normal working con‑
ditions [1]. Notably, data‑driven ML models do not require prior physical knowledge of
energy systems, as they learn fault patterns from stochastic historical operational data.

In the literature, the operational data collected from supervisory control and data ac‑
quisition (SCADA) are widely used to develop fault diagnosis systems. Currently, these
data are used to design and train numerous fault diagnosis systems [63]. For instance,
Pramod et al. [66] applied an artificial neural network to diagnose gearbox bearing faults
using real data from onshore wind turbines. The authors relied on SCADA data to iden‑
tify gearbox‑bearing damage. In [67], Xiao et al. proposed an optimized support vector
machine for misalignment fault diagnosis in wind turbines. In [68], Chen et al. introduced
a fault diagnosis for PV arrays based on RF methods.

However, the traditional ML methods reported in the literature require considerable
effort when choosing the features and labels needed to build accurate models. DL that
emerged in the last decade is currently demonstrating its ability to both learn complex
relationships from data, and provide accurate solutions. DL extracts features through ab‑
straction without the need for human interaction. For instance, Chang et al. [69] proposed
an intelligent bearing‑fault diagnosis system for wind turbines using a concurrent CNN.
Their model extracts deep information from the vibration signals of generator bearings.
In [70], Zhao et al. proposed an anomaly detection and fault analysis system for wind
turbine components using SCADA data based on a deep auto‑encoder. Their method pro‑
vides early warnings of fault components and estimates possible fault locations.

3.3.2. TL Approaches to Fault Diagnosis
Despite the accuracy of DL methods in diagnosing faults in energy systems, they per‑

form poorly with small‑scale SCADA data. Moreover, when a new wind turbine is in‑
stalled, the requirement for abundant training data cannot always be satisfied. In some
cases, wind turbines and PV panels may be implemented in remote areas with poor com‑
munication conditions, whichmay limit data collection and transfer. Most wind farms use
similar types of turbines, and some solar grids use the same types of PV plants. Thus, the
operational data of these systems usually contain common failure information. Therefore,
the TL technique is adequate for coping with data scarcity in cases where DT has limited
training data.

Researchers have introduced different TL approaches to build efficient fault diagnosis
solutions for RE systems. In the following subsections, we overview the recently suggested
TL‑based fault diagnosis approaches in the literature where problems of small‑scale target
data are tackled.

A. TL for Fault Diagnosis in Wind Turbines

Recently, TL was widely used in predicting and diagnosing the faults that may occur
in wind turbines, particularly in rolling bearings, which are considered one of the most
fragile parts of wind turbines. In addition, several TL approaches have been introduced to
detect the blade‑icing issue as one of the frequent problems affecting wind turbines, since
most wind farms are installed at high altitudes with low temperatures and high levels of
humidity. In the literature, the TL is widely used with both DL and convolutional auto‑
encoders (CAE) for the design of adequate approaches to deal with common issues inwind
turbines. In this section, we brief some cases in the literature that show the efficiency of TL
in diagnosing common faults in wind turbine systems.
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In [63], Li et al. proposed a new approach for wind‑turbine fault diagnosis using
parameter‑based TL with small‑scale data. The approach shares the model parameters
that are trained using available data in DS with the target learner. Then, the target learner
freezes part of the parameter set and retrains the remaining part of the DT . In their ex‑
periments, the authors used operational SCADA data from 15 identical wind turbines
in Tianjin, China. The data consists of 52,560 records. Various features related to wind
power, temperature, electrical, operating conditions, and statistical variables were con‑
sidered. The authors used parameter‑based TL and CAE for the proposed model. In
that parameter‑based TL, knowledge was transferred from DS (14 wind turbines) to DT
(one wind turbine) by sharing the parameters and network structure trained by DS. CAE
is a general‑purpose feature extractor that efficiently represents features extracted from a
high‑dimensional space to construct new input data records.

Because CAE is an unsupervised learning technique, the authors added a classifier
to the trained CAE. The authors used a fine‑tuning technique to freeze the parameters
of the bottom layers of the trained network, and to retrain the top layer using DT data.
The CAE was used as a “carrier of knowledge” from DS to DT . In their experiments, the
authors selected data from the 15th wind turbine as the target and those from the other
14 wind turbines as the source. The five‑layer extractor from the CAE was combined with
a three‑layer classifier to produce the final CAE‑TL network. The parameters were ob‑
tained from CAE, and then used to initialize the feature extractor layers while the param‑
eters of the three‑layer classifier were randomly initialized. In the fine‑tuning step, only
the parameters of the classifier network (i.e., the last three CAE‑TL layers) were adjusted
using the target data, while the parameters of the feature extractor (i.e., the first five layers)
were frozen.

The results of [63] demonstrated that the CAE‑TL has excellent accuracy and showed
the high efficacy of TL in handling fault diagnosis problems.

In general, rolling bearings are principal components in wind turbines, as they are
behind 30% of the mechanical faults. This is due to their nearly continuous movement [71].
These faults affect the efficiency of wind turbines in producing power, and may lead to
catastrophic consequences. In [71], Zhang et al. proposed a newmodel based on CNN and
deep TL for fault diagnosis in wind turbines, which performedwell according to statistical
results. The dataset in [65] included rolling bearing and gearbox data. Bearing data were
collected at 1200 samples per second. The first dataset contained different types of rolling
bearing fault data (e.g., normal operation, ball fault, inner ring fault, outer ring fault, and
inner and outer ring combinations). The second dataset contained five types of gear fault
data (e.g., missing teeth, broken teeth, wear, undercut, and normal operation).

The authors used the bearing dataset as the source domain DS, whereas the gear
dataset was used as the target domain, DT . Although the two datasets were measured
under the same operating conditions, they had different distribution characteristics. The
authors tested two methods of parameter‑based TL in their experiments. The first method
consisted of training the network using the source domain, followed by fine‑tuning the
last layer of their model using the target data. The fine‑tuning process included freezing
feature‑extraction parameters while training parameters of the last layers (i.e., fully con‑
nected and classified). The second parameter‑based TL method tuned all network param‑
eters using the target domain, which definitely required more computational costs. The
results showed that the first method (i.e., freezing the first layers and fine‑tuning the last
layers) is not efficient and has low accuracy when the sample data size does not change
significantly. Moreover, the results showed that the second method (i.e., training all pa‑
rameters) was effective with higher accuracy. The experiments of [71] demonstrated that
the suggested model had good TL performance and achieved 97.73% diagnostic accuracy.

Wind turbines are widely installed at high altitudes with high humidity and low tem‑
peratures. This fact renders the system vulnerable to blade‑icing scenarios, which can re‑
sult in power loss and electrical failures, in addition to mechanical failures. In general,
ice detection methods fall into three categories: meteorological, external, and SCADA [72].
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Conventional observation systems use meteorological data to detect icing, which is con‑
sidered a challenging task. On the other hand, external monitoring systems require the
installation of extra equipment for wind turbines. A SCADA system is considered a rela‑
tively low‑cost method for ice detection, and it has been widely used for fault detection.
SCADA data include the ambient temperature as well as the temperatures of mechanical
components. In addition, the data contain electrical operating information and control
variables, which offer comprehensive operating conditions.

Zhang et al. [72] proposed an ice detection model using neural networks and TL. The
proposedmodel precisely detects ice inwind turbines by learning from the labeled SCADA
data of the source domain. The authors collected SCADA data from two wind turbines,
W1 and W2, from a large wind farm. The collected data contained 26 operational wind
parameters. The proposed model used an inductive TL, which can deal with the problem
of having different target classification models and limited labeled data items in the target
domain. The model was trained using the large, labeled SCADA dataset from the source
domain related to W1. Then, the knowledge was transferred to the target domain related
toW2, whichwas trained using few SCADAdata. The requirements for inductive TLwere
satisfied because the source and target domains shared the same feature space and similar
ice detection methods. However, the target ice detection models were not identical. The
authors tested different fully connected neural networks. The best accuracy, stability, and
performance were compared to other models (e.g., AdaBoost, Quadratic Classifier, and
RF). Accordingly, their model outperformed other models. The results also showed that
inductive TL based on a fully connected neural network has higher detection accuracy
(14%) and is more stable (13% better) than a fully connected neural network without TL.

The authors in [73] developed a TL‑based approach for wind turbine fault diagnosis
to address the problem of lacking data, unbalanced data, complex fault types, and weak
generalizability of deep learning models. The authors proposed an improved residual
network ResNet to implement deep TL in the form of pre‑training and fine‑tuning. They
claimed that the proposed deep transfermodelwas able to be sufficiently trained on source
and target domain vibrational data. The performance of the proposed model was verified
by performing fault diagnosis on bearings and gears data from different sources. The au‑
thors reported that the deep residual network has high transferability, high accuracy, and
high diagnostic speed. The reported results showed that the optimal diagnostic accuracy
of the suggested deep TL model can be above 90%.

Most of the reviewed works in the literature showed that TL has proven an ability
to improve RE fault diagnosis performance, particularly in the cases of wind turbines as
depicted in Table 4.

Table 4. Summary of fault diagnosis transfer‑learning approaches discussed in Section 3.3.

Research Energy Base Model Transfer Type Source Data Target Data

Li et al. (2021) [63] Wind Convolutional
autoencoder

Homogenous,
parameter‑based

Operational data of
14 wind turbine

Operational data of
1 wind turbine

Zhang et al. (2022) [73] Wind Deep ResNet Transductive
model‑based

Bearing datasets + gears
datasets

Bearing datasets + gears
datasets

Zyout et al. (2020) [74] Solar Alexnet CNN Heterogeneous,
parameter‑based

Large object recognition
dataset

RGB images of solar
panels

Akram et al. (2020) [75] Solar CNN Heterogeneous,
parameter‑based Infrared images Electroluminescence

images

Yan Zhang et al. (2020) [71] Wind CNN Heterogeneous,
parameter‑based Bearing dataset Gear dataset

Zhang et al. (2018) [72] Wind Fully‑connected NN Inductive,
parameter‑based SCADA dataset SCADA dataset

Korkmaz et al. (2022) [76] Solar Multi‑scale CNN
(Alexnet variant)

Heterogeneous,
parameter‑based

Large object recognition
dataset Infrared images
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Table 4. Cont.

Research Energy Base Model Transfer Type Source Data Target Data

Yang et al. (2021) [77] Wind Alexnet CNN Heterogeneous,
parameter‑based

Large object recognition
dataset UAV images

Demirci et al. (2019) [78] Solar CNN Homogenous,
parameter‑based Electroluminescent imaging Electroluminescent

Imaging

Zhu et al. (2022) [79] Wind LSTM Feature‑based Monitoring data Monitoring data

Hou et al. (2021) [80] Solar CNN Heterogeneous,
parameter‑based ImageNet Electroluminescent

Imaging

Chatterjee et al. (2020) [81] Wind LSTM, XGBoost Transductive,
feature‑based SCADA dataset SCADA dataset

Korkmaz et al. (2022) [76] Solar Multi‑scale CNN Homogeneous
parameters‑based Thermographic images Thermographic images

Chen et al.(2021) [1] Wind CNN Parameter‑based SCADA dataset SCADA dataset

Liu et al. (2022) [82] Wind DLL generative
adversarial Nets GAN

Transductive
feature‑based

Wind turbine
transmission dataset

(unbalanced)

Wind turbine
transmission dataset

B. TL for the Defect Detection in PV Solar Panel Surfaces
The increased adoption of PV power in the energy portfolio worldwide makes per‑

formance monitoring a critical task. PV systems may suffer from various defects, such as
cracks, shadows, bird droppings, and dust. Different image‑based approaches are usually
used to identify faulty PV panels, including electroluminescence (EL) images and infrared
(IR) thermography. Deep CNN iswidely used for defect classification in PV images thanks
to its good performance in computer vision tasks. In the literature, we noticed that many
researchers have adopted TL to enhance the performance of the developed models, es‑
pecially when the available dataset is relatively small, or the computational resources are
limited. A possible approach is to fine‑tune a pre‑trainedDNN such as Alexnet [73], where
the model is trained on a large object recognition dataset. Another approach is to train a
CNN model using a source dataset that is relatively similar to the target one, followed by
a fine‑tuning [74].

In [68], Zyout et al. applied a parameter‑based TL to detect PV panel defects. The
authors implemented a pre‑trained Alexnet CNN architecture composed of 25 layers. A
dataset consisting of 599 images for normal and different defects was prepared by apply‑
ing preprocessing techniques (e.g., cropping and image resizing). The efficiency of the
proposed model was reportedly reduced by 2% after applying augmentation techniques
(e.g., scaling, reflection, flipping, and rotation). Afterwards, the final three layers were re‑
placed with a two‑neuron layer, a SoftMax layer, and a classification layer. The new layers
were trained using the PV panel image dataset. Moreover, fine‑tuning was applied to the
momentum parameter and the initial learning rate. The obtained results confirmed the
importance of using TL with an existing pre‑trained network for the detection of defects
in PV panels.

In [75], Akram et al. introduced two ML‑based models to detect PV panel defects
from infrared images: (1) an isolated CNN model trained from scratch, and (2) another
similar model that includes parameters‑based TL. The same CNN architecture was used
for both models to provide a fair comparison. The dataset consisted of 893 IR images of
normal and defective modules taken before and after the defect induction. The isolated
model was trained with IR images, whereas the TL model was first trained using a similar
dataset of EL images. The model was then fine‑tuned using the IR dataset. With TL, the
selected layers were retrained using the experimental results, while other layers were not
changed. In addition to using TL with a model trained by a dataset of a similar domain
(i.e., EL images), the authors fine‑tuned the Visual Geometry Group‑16 CNN using the
ImageNet dataset. The experimental results showed that the TL model achieved better
performance than the isolated model in terms of accuracy and computational costs.

Table 4 summarizes the approaches surveyed in Section 3.3. It compares the knowl‑
edge transfer types, the base MLmodels, and the source and target data. As shown in this
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table, researchers applied various techniques to transfer knowledge across the domains.
Notably, parameter‑based (also named model‑based) TL is a commonly used approach
thanks to its simplicity compared to other types. A model is pre‑trained using the source
data and fine‑tuned to the target data. Moreover, CNN is a widely used baseline model
thanks to its ability to extract high‑level features and its flexibility for architectural exten‑
sions and modifications.

Table 4 indicates the dominance of DL models with parameter‑based TL in the fault
diagnosis of RE systems. This fact can be justified by the capability of deep TL in resolv‑
ing the conflict between limited data and ML models’ generalization ability. Most of the
reported approaches for wind turbines fault diagnosis implemented the pre‑training fine‑
tuning process.

4. Discussions and Challenges
In this section, we overview the main challenges and open problems that need to be

approached and the perspectives that can be addressed in the near future. We also depict
the main limitations that faced the authors during the preparation of this survey.

4.1. Research Trends and Challenges
TL has proved its ability to help in reducing several data scarcity issues in ML‑based

prediction and the classification of RE systems. However, numerous challenges and limi‑
tations are still to be addressed in this field. For example, the procedure of evaluating and
selecting the source domainwith enough data tomake an optimal transfer of knowledge to
a target domain not having enough data is still an open challenge. In general, and based on
the surveyedworks on TL for RE, the success of knowledge transfer, also known as domain
adaptation, depends on the similarity level of the source and target domains/tasks. This
fact implies the necessity of defining a common process to assess howmuch the source and
target domains are similar before starting the transfer of knowledge. That is particularly
essential for the cases of homogeneous domains orwhen the source and target domains are
of different feature spaces’ dimensions. Practically, a weak similarity between the source
domain(s) and target domain may not guarantee a better accuracy of the target model, and
in the worst cases, may lead to what is known as negative transfer [20,22]. This scenario
may happenwhen the data used to train the source models are not similar enough to those
available in the target domain. In this case, the target models may not perform well, and
their performance could be worse than those of the source domain(s). This is one of the
common limitations of spreading TL in the area of RE applications. It usually occurs when
the training dataset in the DT is extensive but has low similarity to the DS.

Moreover, the limitation in the number of open‑source benchmarking datasets pre‑
vents the fair evaluation of the newly suggested TL‑based approaches for RE systems, es‑
pecially in the generality and mobility of the suggested approach. Therefore, the compari‑
son of these TL‑based solutions becomes complicated and even impossible. The problem
of scarcity of open‑source benchmarking datasets from real‑world RE applications may be
the result of two main reasons:
(1) Most of the proposed TL frameworks for RE systems are trained and evaluated us‑

ing source and target data records that are collected from particular areas and under
common weather conditions.

(2) Most of the collected datasets are private and cannot be shared due to security rea‑
sons, especially for faults diagnosis and buildings’ load forecasting systems. Most
of the operators do not reveal enough information about the status of their systems.
In addition, owners do not disclose enough information about the daily power con‑
sumption activities of their residential buildings, offices, and factories.
Furthermore, a convenient and fair comparison among TL‑based solutions requires

the adoption of unified metrics to measure the similarity between source and target do‑
mains. Most of the surveyed works adopt different evaluation metrics, which makes the
comparison of their performances a difficult task.
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In addition, quantifying the benefit of applying a TL‑framework on a specific task,
particularly on an RE application, is also an open challenge that has not been adequately
addressed yet. However, we can still find some research that has been initiated to find
standard algorithms and measures to quantify the benefit of applying knowledge transfer,
including the transfer loss/gain and the transfer ratio [83]. To the best of our knowledge, it
is not known how those measures will perform with the TL‑based models for RE systems,
and whether they are more suitable for homogeneous and/or heterogeneous domains.

The following points highlight the main challenging research gaps that still need to
be addressed:
1. Further studies are required to define a reliable method to evaluate and select the

right source domain(s) to make an optimal transfer of knowledge to a target domain
not having enough data. This necessitates a robust method to quantify the similarity
between source and target domains, and therefore avoid the negative transfer issue.

2. Few or no shared comprehensive benchmark datasets are available to evaluate and
compare the already existing and the newly suggested TL‑based approaches for
RE applications.

3. There are no common evaluation metrics to assess the performance of the proposed
TL‑based approaches for RE applications. The absence of a standard evaluation frame‑
work prevents the quantifying of the benefits provided by a TL‑based approach to a
classical ML‑based one.

4. There is no clear procedure to determine the amount of data in the source domain nec‑
essary for a successful transfer of knowledge. This limitation becomes critical in cases
where applications depend on seasonal data; e.g., weather and solar radiation data
for RE forecasting, daily activity data for buildings’ load forecasting, and weather
conditions data for turbine faults predictions
All the above‑mentioned factors and others limit the broad adoption of TL‑framework

in the three RE applications that we mentioned at the beginning of this survey. It is worth
mentioning that most of the approaches reported in the literature are still in a research and
scholarly context. Therefore, most of the above‑overviewed challenges are estimated to
become more obvious when TL‑based approaches are deployed in real‑world RE projects.

4.2. Future Directions and Perspectives
The application of TL techniques to RE systems and smart grids is an emerging re‑

search field, and the number of reported works in the literature has been increasing since
2016. However, research and implementation achievements in this topic are still in their
early stages, and a lot of perspectives need to be addressed. For instance, little work has
been focusing on the application of TL to buildings’ load forecasting compared to other
fields of RE reviewed in this paper. Furthermore, very limited successful applications of
TL to RL‑based buildings’ load directions have been reported in the literature [57]. How‑
ever, TL is crucial when adopting RL for smart buildings’ general controls, as it is com‑
putationally demanding, and therefore resource‑ and time‑consuming to train RL‑based
load predictors for each new building [61]. Currently, most TL applications with RL‑based
models are proposed for smart building energy management [57,84–86]. This may help in
deploying more RL‑based methods within the TL frameworks for cross‑building energy
load forecasting.

Among the research opportunities that may help in mitigating the open challenging
questions in applying TL to RE systems in the near future, we can highlight the following:
1. The availability of shared comprehensive datasets for each of the applications in RE

is very helpful to evaluate and compare the newly suggested TL‑based approaches in
RE systems. In addition, preparing a standard evaluation framework with common
evaluation metrics to compare and benchmark different TL‑based approaches in RE
will surely make a true impact in this direction.

2. A potential opportunity to improve the TL‑based approaches for RE systems consists
of preparing robust guidance about the common input features required in the learn‑
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ing datasets that is available in a source domain. That will help in increasing the
benefits of applying TL to RE systems. Therefore, studies on quantifying the impor‑
tance of a particular feature or a specific set of features in a source domain are needed.
This will also help to improve the overall performance of a TL‑based approach for all
three topics mentioned in this survey.

3. In addition, the use of standard setups and metrics to evaluate the performance of
available TL‑based solutions will certainly make the comparison between those solu‑
tions in terms of efficiency, stability, and mobility a possible and easy task.

4. Reinforcement learning is currently used to optimize energy usage in buildings, and
there are potential opportunities to use it within the TL‑frameworks to predict en‑
ergy consumption in buildings. This will definitely allow the development of load
prediction models that can be efficient and quickly adapted to different buildings
and environments.

5. Not all the suggested TL‑based approaches in the literature are easily implemented
in real‑world RE projects since most of the reported challenges and limitations are
estimated to become more obvious when deployed in real applications. Therefore, a
comprehensive survey about the deployed TL‑based approaches in RE systems and
smart grids is adequate and beneficial to helping RE researchers identify the chal‑
lenges in real‑world scenarios.
All the above‑mentioned opportunities for research perspectives in the near future

necessitate the coordination and collaboration among scholars, industries, and business
owners to discuss the real‑world problems and challenges in order to make true advances.
Currently, planners of energy systems believe that TLwill play a key role in improving the
efficiency of ML‑based models in the next generation of RE systems and sustainable smart
grids. Figure 8 depicts the mind map of the most common motivations, open challenges,
and future opportunities in TL for RE systems.
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4.3. Contribution and Limitations
This paper presents a survey on applying transfer learning in selected applications in

renewable energy systems. It shows the sub‑categories of TL that are the most commonly
used in solar and wind energies: forecasting frameworks, buildings’ load prediction solu‑
tions, and faults diagnosis in RE systems. Additionally, it identifies current challenges and
future research opportunities. Themain limitations thatwe have encountered in preparing
this survey can be summarized as follows:
(1) Among the related research that we found in the literature, fewworks provide details

about the improvement one can obtain by adopting TL for RE forecasting, load fore‑
casting, and fault diagnosis and prediction. Furthermore, researchers who reported
the benefit provided by TL have used different performance metrics. This fact pre‑
vented a fair comparison among the different suggested solutions.

(2) The limitation and even the absence of comparative analysis in most of the related TL
applications for RE systems prevented scholars from concluding the cons and pros of
each particular approach.
The limitation of computing resources and open‑source benchmarking datasets pre‑

vented the authors of this work from validating some particular results in most of the sur‑
veyed research found in the literature.

5. Conclusions
Smart grids are increasingly gainingparticular attention from scholars and researchers.

A smart grid aims to maintain the production/consumption balance among several avail‑
able sources of energy, including traditional fuel‑based energy and sustainable forms of
energy. This fact requires the design and implementation of reliable algorithms for RE
forecasting, short and long‑term load prediction of buildings, and faults prediction of RE
systems. Currently, data‑driven ML models in RE systems face major challenges due to
(i) the scarcity of sufficient historical data to adjust the hyper‑parameters of classification
and prediction models, (ii) the lack of labeled data for training, and (iii) the limitation
of computing resources to train models from scratch. This last challenge becomes more
serious with DL‑based models that require a high number of training data records. In
addition, most of the learning algorithms of ML models assume that training and testing
data belong to the same feature space or follow the same data distribution, which is not
true in most real applications. All of these challenges are common for newly built wind
farms, solar stations, and newly implemented sensors for buildings’ power consumption.
TL is a modernML framework that allows the transfer of knowledge from source domains
with enough annotated data to target domains not having enough data. In this work, we
investigated the applications of TL to RE systems as an efficient framework that helps in
mitigating several data scarcity challenges in traditional ML tools for RE systems. In ad‑
dition, we identified the main advantages and challenges of using TL techniques for RE
systems. Energy forecasting, cross‑building prediction of energy consumption, and fault
diagnosis detection and prediction were the key areas highlighted in this work. We also
focused on the applied sub‑settings of TL in the three particular applications of RE.

First, we highlighted the increased interest in applying the TL framework to RE sys‑
tems through the recent research works in the literature between 2016 and 2022 inclusive.
Then, we introduced TL as a powerful ML framework that has a range of potential appli‑
cations in the field of sustainable energy systems. We also outlined the types of TL used
in energy forecasting, prediction of energy consumption in buildings, and fault diagno‑
sis. The studies we have reviewed suggest that TL methods can significantly improve the
accuracy of the abovementioned tasks. We have presented several works about each of
the three application areas, and we compared them based on TL sub‑settings, models, and
adopted feature types. Most of the suggested approaches in this field rely on features‑ and
parameter‑based TL for their simplicity and data availability constraints. In these research
works, the transfer of knowledge is performed using training data from the same or simi‑
lar regions, and in relatively small geographical areas. Such approaches still require more
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operational and utility testing so that they can be applied to wider regions with different
weather and/or topographical characteristics. Furthermore, most of the model‑based tech‑
niques of TL for RE assume that the trained models are of the same type. For example, in
most of the surveyed approaches, the source and destination models are often configura‑
tions of feed‑forward neural networks, LSTMs, and statistical‑based models, whereas in
real‑life applications, source and destination domain models may differ widely and use
heterogeneous data. For instance, a newly built model for solar radiation could be an
LSTM, while another could be an SVR or any other deep recurrent model. Therefore, fur‑
ther investigations of TL among different models are needed.

Finally, wediscussed themain challenges andopenproblems that still face researchers
and scholars in applying a TL‑framework for prediction and classification in RE systems.
Then, we concluded with some potential perspectives in the near future that might help
in improving the generalization of TL in order to expand its deployment in real world en‑
ergy projects. The summary tables containing information about publications regarding
TL application to RE applications showed thatmore than 85% of the publicationswere gen‑
erated in the past four years, which further indicate the importance of this research topic.
However, this ramp‑up in such research activity is correlated with an ever‑increasing di‑
vergence of methods. Hence, this literature survey is beneficial to researchers working in
the field.
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