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Abstract: The GM(1,N) model, as a classical multivariate grey prediction model, can make a holistic
and dynamic analysis of multiple factors and reflect the dynamic change relationship between the
variable series and the related factor series. However, numerous works in the literature show that the
GM(1,N) model has mechanistic defects, parametric defects, and structural defects. Therefore, the
thesis establishes the OGM(1,N) model based on the GM(1,N) model by adding the linear correction
term and the amount of grey action. According to the principle of dynamic optimization, the PSO
algorithm is used to determine the background value. On this basis, the fractional order idea is
introduced to push the model order from the integer field to the real field, and the FOBGM(1,N) model
is established to systematically reduce the model error. Second, the literature in the ScienceDirect
database for the last ten years is reviewed, and the carbon emission impact factors of civil aviation
are selected. The calculated carbon emission values are taken as sample data based on Method 2 of
Civil Aviation in Volume 2 of the 2006 IPCC Guide to National Greenhouse Gas Inventories. The
results show that the prediction accuracy of the model has an increasing trend after multi-layer and
multi-angle optimization. Among them, the MAPE of the OGM model and FOBGM model decreased
by 24.40% and 31.86% compared with the GM(1,N) model. The 5-year average prediction accuracy of
the FOBGM model reaches 99.996%, which verifies the effectiveness and practicality of the model
improvement and has certain practical significance and application prospects.

Keywords: GM(1,N); background values; fractional order; particle swarm algorithm; civil aviation
carbon emissions

1. Introduction

The grey prediction method is one of the effective methods for the analysis and
prediction of systems with “small samples, poor information, and uncertainty”, and its
biggest advantage is that the amount of information required for prediction is relatively
small, which is more suitable in the case of difficult data acquisition and high prediction
accuracy. In grey prediction theory, the most basic prediction model is the GM(1,1) model,
which is based on a small amount of information and has been widely used in industry,
agriculture, medicine, and other fields [1]. However, the GM(1,1) model only analyzes and
predicts the change pattern of a single variable, ignoring the influence of changes in other
influencing factors on the subject of study. Meanwhile, the GM(1,N) model is the basic
model of the multivariate grey system modeling method and is compared with the GM(1,1)
grey model. This model makes up for the defect of using historical data directly to build
a time series prediction model. It can make a holistic and dynamic analysis of multiple
factors and reflect the dynamic change relationship between the study variable series and
the related factor series.

At present, many scholars have applied multivariate grey prediction models for
forecasting in different fields and optimized the GM(1,N) model from different perspectives
to improve its prediction accuracy. Jiang S. et al. (2017) combined grey GM(1,N), Markov
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theory, and metabolic ideas and empirically showed that the relative error of the metabolism
GM(1,N)–Markov model was 32.73% smaller than that of the GM(1,N) prediction model [2].

Wu and Zhang (2018) [3] proposed a new GMC(1,N) model for information priority
accumulation, which adjusted the weight of the data by adding a parameter and ultimately
improved the accuracy of the prediction model.

Xiong et al. (2018) [4] proposed a nonlinear multivariate NGM(1,N) model based on
kernel function and grey radius, which was established based on the kernel number and
grey radius sequence of an interval grey number sequence. The kernel number and grey
radius of the interval grey number sequence were simulated and predicted. According
to the formula of kernel function and grey radius, the upper and lower bounds of the
interval gray number were derived so as to simulate and predict the model. The NGM(1,N)
model based on the interval grey number was used to forecast AQI under haze weather.
Experimental results showed that the model had high prediction accuracy.

Wu et al. (2019) [5] conducted a systematic study of the GM(α, n) model using grey
modeling techniques and the forward difference method to calculate the simulated and
predicted values by transforming fractional order differential equations into fractional
order difference equations and proposed a stochastic testing scheme to verify the accuracy
of the new GM(α, n) model. The results showed that the GM(α, n) model had a high
potential for energy consumption forecasting in China.

Cheng et al. (2020) [6] derived the modified model of the conventional grey differential
equation based on the GM(1,N) whitening equation. Using the grey differential equation
estimation parameters of the improved GM(1,N) model, the parameter estimation methods
under three different background values were given. Compared with the traditional model,
the simulation accuracy and prediction accuracy of the improved GM(1,N) model were
significantly improved.

According to Zeng et al. (2020) [7], the extreme value of the independent variable was
one of the important factors affecting the simulation and prediction results of the GM(1,N)
dependent variable, a new multivariate grey prediction model was constructed on the
basis of the smooth generation of variable weight independent variable sequences. The
performance of NMGM(1,N) was verified with an example

Shen et al. (2021) [8] proposed an optimized discrete GMC(1,N) model (called
ODGMC) to further improve the prediction accuracy and stability of GMC(1,N). In partic-
ular, a linear correction term was introduced into the new model, and the time response
function of the new model was derived. The ODGMC(1,N) model proposed in this paper
not only adjusted the relationship between the dependent and independent variables but
also exhibited better stability than GMC(1,N) and its discrete form. The algorithm results
showed that the proposed ODGMC(1,N) model had better fitting and prediction accuracy
than the traditional GM(1,N) model, GMC(1,N) model, and its discrete form regardless of
whether the dependent variable series was increasing, decreasing or fluctuating.

By analyzing the relevant literature, it was found that scholars from different countries
have improved and optimized the GM(1,N) model in different research fields and obtained
relatively better prediction accuracy compared with the traditional GM(1,N) model. Some
studies [5,9] combined the kernel function with GM(1,N) through the combination of
embedded models, or they cleverly combined the kernel function with GM(1,N). The multi-
variable grey prediction model with higher prediction accuracy was established to reduce
the prediction error of the model to a certain extent, but the inherent defects of the GM(1,N)
model and the optimization of background values were not studied. The authors [2–4,7]
studied the optimization of background values of GM(1,N) and GM(1,N) models based on
the idea of metabolism and the combination of kernel function and GM(1,N), respectively,
to achieve the purpose of improving prediction accuracy. However, these studies did not
deeply study the mechanism of GM(1,N) model construction and ignored the inherent
defects of the GM(1,N) model, and the prediction accuracy of the model was affected.
Aiming at the inherent defects of the GM(1,N) model, some studies [7,8] improved the
GM(1,N) model from multiple perspectives and achieved good results. However, these
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studies lacked the optimization of the cumulative order of GM(1,N) and failed to further
improve the prediction accuracy of the multivariate grey model.

This paper provided an in-depth analysis of the inherent flaws of the GM(1,N) model
and found that there were still some flaws in the construction process of the GM(1,N) model.
GM(1,N) solved the whitening equation and derived the approximate time corresponding
function in a relatively idealized manner, resulting in its mechanistic flaws [8]. GM(1,N)
treated the parameter column estimates as model parameters of the model approximate
time response equation, which was its parametric defects [10]. GM(1,N) did not mine
enough grey action from itself, lacked the study of the effect of the GM(1,N) model per-
formance by the linear relationship of the number of terms k, and when N = 1, the model
could not achieve structural equivalence with the GM(1,1) model, indicating its structural
defects [8].

In all, multi-stage and multi-angle improvement and optimization of the multi-variable
grey model were carried out, including background value optimization, fractional opti-
mization, linear increment optimization, and so on. Specifically speaking, the paper added
a linear correction term and grey action quantity to the GM(1,N) model to compensate for
its inherent defects and built the OGM(1,N) model. Then the Particle Swarm Optimization
(PSO) algorithm was used to find the optimal background value, and the OBGM(1,N)
model was constructed. The OBGM(1,N) model was improved and optimized using the
PSO algorithm and fractional order algorithm at multiple levels and angles, which was
called the FOBGM(1,N) model. Then the literature in the ScienceDirect database for the
last ten years was reviewed, and the carbon emission impact factors of civil aviation were
selected by research frequency statistics and correlation analysis. The carbon emission cal-
culation method for civil aviation of the 2006 IPCC Guidelines for National Greenhouse Gas
Inventories was introduced, relevant data were collected, and the prediction accuracy of the
model before and after optimization was compared and analyzed to prove the effectiveness
of the model optimization, so as to propose a carbon emission prediction model with high
prediction accuracy for civil aviation management to evaluate the effectiveness of imple-
menting current emission reduction measures. It should be noted that the GM(1,N) model
based on fractional order accumulation and background value optimization developed in
this paper can also be applied to the carbon emission forecasting of other transportation
systems according to practical needs.

2. Basic Theory
2.1. Analysis of the Correlation Characteristics of Traditional Multivariate Grey Prediction Model

In terms of the number of input variables to the model, the grey prediction model
is divided into a multi-variable grey prediction model and a univariable grey prediction
model. Among them, the GM(1,1) model (i.e., a grey prediction model with a first-order
equation and only one variable) is a typical representative of univariate grey prediction
models, which take a single time-series data as the modeling object. According to the
system operation law contained in the time series data, the grey generation method is used
to mine the data information so as to predict the future development of the system. As the
prediction model with the widest application range and the most research achievements, the
univariable grey prediction model has a simple structure and is easy to understand without
considering the impact of impact factors on the future development of the system. However,
its fitting results often show saturated S-shaped characteristics or exponential forms and
do not consider the influence of external environment changes on the development trend
of the system, so it cannot predict the “inflection point” in the development process of the
system. Therefore, the limitations of this model are relatively large. As a representative of
a multivariate grey prediction model, the GM(1,N) model is a causal prediction method,
which consists of an N-1 series of related factors and one series of system characteristics. In
the process of model construction, the influence of external environment changes on the
development trend of the system is included in the research scope. The multiple regression
algorithm is similar to this model; however, the former is based on probability statistics,
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and the latter is based on grey theory, and there are essential differences between them.
Compared to univariate grey prediction models, GM(1,N) models no longer have a limited
single simulation capability in terms of structure. For a long time, the GM(1,N) model
has been used more for systematic analysis, and its prediction ability has not been widely
utilized. This is because the GM(1,N) model has certain defects in the model construction
mechanism and structure, which results in its prediction accuracy is often lower than the
GM(1,1) model in the process of use.

2.2. GM(1,N)
2.2.1. Model Definition

Let X(0)
1 be the sequence of dependent variables (i.e., the sequence of system charac-

teristics), X(0)
1 =

(
x(0)1 (1), x(0)1 (2), · · · , x(0)1 (m)

)
. Let X(0)

i (i = 2, 3, · · ·N) be the sequence

of independent variables with a high correlation with X(0)
1 (i.e., the sequence of explana-

tory variables), X(0)
i =

(
x(0)i (1), x(0)i (2), · · · , x(0)i (m)

)
. Further, X(1)

j is the 1-AGO se-

quence of X(0)
j (j = 1, 2, · · · , N), X(1)

j =
(

x(1)j (1), x(1)j (2), · · · , x(1)j (m)
)

. Where x(1)j (k) =

∑k
g=1 x(0)j (g), k = 1, 2, · · · , m. Z(1)

1 is the immediate mean generating sequence of X(1)
1 ,

which can be calculated by

Z(1)
1 =

(
z(1)1 (2), z(1)1 (3), · · · , z(1)1 (m)

)
. (1)

In Equation (1) z(1)1 (k) = 0.5×
(

x(1)1 (k) + x(1)1 (k− 1)
)

, k = 2, 3, · · · , m. The GM(1,N)
model is expressed as

x(0)1 (k) + az(1)1 (k) =
N

∑
i=2

bix
(1)
i (k). (2)

2.2.2. Parameter Estimation and Time Response Equation of GM(1,N) Model

In the GM(1,N) model, −a is called the system development coefficient, bix
(1)
i (k) is

called the driver term, bi is called the driver coefficient, and â = [a, b1, b2, · · · , bN ]
T is called

the parameter column for which the least squares estimate satisfies using

P =
(

BT B
)−1

BTY. (3)

Among them, B and Y can be set

B =


−z(1)1 (2) x(1)2 (2) · · · x(1)N (2)
−z(1)1 (3) x(1)2 (3) · · · x(1)N (3)

...
...

...
−z(1)1 (m) x(1)2 (m) · · · x(1)N (m)

, Y =


x(0)1 (2)
x(0)1 (3)

...
x(0)1 (m)

. (4)

Then we can obtain
dx(1)1

dt
+ ax(1)1 =

N

∑
i=2

bix
(1)
i . (5)

Equation (5) is the whitening equation of the GM(1,N) model, also called the shadow
equation.
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Let the sequence X(0)
i , X(1)

i (i = 1, 2, · · · , N), Z(1)
1 and the matrix B, Y, â be as described

above, then the solution of the whitening equation dx(1)1
dt + ax(1)1 =

N
∑

i=2
bix

(1)
i is

x(1)1 (t) = e−at

[
x(0)1 (1)− t

N

∑
i=2

bix
(1)
i (0) +

N

∑
i=2

∫
bix

(1)
i (t)eatdt

]
. (6)

When the variation in X(1)
i (i = 1, 2, · · · , N) is very small, visualizing ∑N

i=2 bix
(1)
i (k) as

a grey constant, the approximate time response equation of the GM(1,N) model is

x(1)1 (k + 1) =
[

x(0)1 (1)− 1
a

N
∑

i=2
bix

(1)
i (k + 1)

]
e−ak

+ 1
a

N
∑

i=2
bix

(1)
i (k + 1)

. (7)

Then the cumulative reduction equation is

x̂(0)1 (k + 1) = α(1) x̂(1)1 (k + 1) = x̂(1)1 (k + 1)− x̂(1)1 (k). (8)

2.2.3. Defects of the GM(1,N) Model

In the construction of the GM(1,N) model, there are still some shortcomings that affect
the prediction accuracy of the GM(1,N) model.

(1) The GM(1,N) model solves the whitening equation and derives the approximate
time equivalent function in a relatively idealized way. In reality, the “small magnitude
of variation” of X(1)

i is difficult to satisfy. This is because the variables represented by

X(1)
i (i = 1, 2, · · · , N) are different, so their development trends, dynamic rules, and change

characteristics are generally different, and the amplitude of change is difficult to guarantee,
which results in the unstable prediction performance of the GM(1,N) model, resulting in
the mechanism defects of the GM(1,N) model [10].

(2) GM(1,N) is not a time-response equation derived using x(0)1 (k) + az(1)1 (k) =
N
∑

i=2
bix

(1)
i (k), but is computed using its shadow equation. Therefore, the parameter column

â = [a, b1, b2, · · · , bN ]
T calculates its estimates with x(0)1 (k) + az(1)1 (k) =

N
∑

i=2
bix

(1)
i (k). The

GM(1,N) model, however, regards the estimated value of the parameter column as the
model parameter of the approximate time response of the model. The “dislocation” of the
GM(1,N) model parameter estimation and application object causes its unstable prediction
performance, which is its parameter defect [4].

(3) The GM(1,N) model has a simple structure and is a state model and factor model.
The model does not have a sufficient amount of grey action mined from itself and lacks a
study on the effect of the GM(1,N) model performance by the linear relationship between the
number of terms k. In addition, the GM(1,N) model serves as a first-order grey prediction
model for N variables, but when N = 1, the model cannot achieve structural equivalence
with the GM(1,1) model. This indicates that the GM(1,N) model also has structural flaws,
resulting in relatively low prediction accuracy [10].

2.3. Prediction Accuracy Evaluation System

Mean absolute percentage error (MAPE) can be used to compare the prediction accu-
racy of different models [11], which can be obtained with

MAPE =

n
∑

i=1
qi

n
× 100. (9)
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where absolute error ei and relative error qi are calculated as

ei = |xi − x̂i|, qi =
ei
xi

. (10)

Further, the mean square error (MSE), root mean square error (RMSE), and mean
absolute error (MAE) are calculated as

MSE =

n
∑

i=1
(xi − x̂i)

2

n
, (11)

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2, (12)

MAE =
1
n

n

∑
i=1
|xi − x̂i|. (13)

2.4. Carbon Emission Measurement of Civil Aviation

In order to verify the prediction performance of the model, relevant data from the
China civil aviation carbon emission prediction study were used in this paper to verify
the effectiveness of the model before and after improvement. The World Meteorological
Organization (WMO) and the United Nations Environment Programme (UNEP) jointly
established the Intergovernmental Panel on Climate Change (IPCC). This paper calculates
carbon emissions based on Method 2 of Civil Aviation in Volume 2 of the 2006 IPCC Guide-
lines for National Greenhouse Gas Inventories (hereinafter referred to as the Guidelines).
The flight of an aircraft has two stages: the LTO stage and the cruise stage. The method
separates aviation carbon emissions above and below 914 m (3000 feet) during flight, that
is, the LTO phase and cruise phase carbon emissions during flight. The specific calculation
process is as

E = ELTO + EX (14)

where E is the carbon emissions from air transport.ELTO indicates the carbon emissions from
air transport in the LTO phase and EX indicates the carbon emissions from air transport in
the cruise phase. ELTO and EX are calculated as

ELTO = NLTO · FLTO, (15)

KLTO = NLTO ·ULTO, (16)

EX = (K− KLTO) · FX , (17)

FX =
H

(1 × 109)/L
. (18)

NLTO indicates the number of aircraft landings and takeoffs in the national aviation
industry; FLTO indicates the CO2 emission factor in the LTO phase, using the average value
of each aircraft type in the Guide, i.e., 4341 kg/LTO; KLTO indicates the fuel consumption
in the LTO phase; ULTO indicates the fuel consumption per LTO, using the average value of
each aircraft type in the Guide, i.e., 1374 kg/LTO; K indicates the total fuel consumption;
FX indicates the CO2 emission factor in the cruise phase H; indicates the amount of CO2
per unit calorific value, using the recommended value of 71,500 kg/TJ in the Guide; and
L indicates the low-level heating value of aviation fuel, using the recommended value
of 44,100 KJ/kg in the Guide for Accounting Methods and Reporting of Greenhouse Gas
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Emissions of Chinese Civil Aviation Enterprises prepared by the National Development
and Reform Commission.

3. Model Improvement and Optimization
3.1. Model Optimization Ideas

In order to solve the mechanistic defects, parametric defects, and structural defects of
GM(1,N), this paper adds linear correction terms and grey action quantities to the GM(1,N)
and establishes the OGM(1,N). For the multivariate grey model, the background value
coefficient can affect its prediction accuracy to a certain extent, and the value is generally set
to 0.5. In this paper, the global search capability of the PSO algorithm is used to search for
its background value coefficient, and then the order of OBGGM(1,N) is extended from the
integer domain to the real domain using the PSO algorithm and fractional order algorithm
to establish the FOBGM model. The improved GM(1,N) model is optimized by multi-level
and multi-angle, aiming to further improve the prediction accuracy. The calculation process
is shown in Figure 1.
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3.2. GM(1,N) Model Structure Improvement
3.2.1. Definition of the OGM(1,N) Model

Let the OGM(1,N) model (optimizing grey model) be

x(0)1 (k) + az(1)1 (k) =
N

∑
i=2

bix
(1)
i (k) + h1(k− 1) + h2 (19)
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where h1(k− 1) and h2 are the linear correction term and the grey action of the model.

3.2.2. Parameter Estimation and Time Corresponding Equation of OGM(1,N)

The sequences X(0)
1 , Z(1)

1 , and X(1)
i (i = 1, 2, · · · , N) are as described in Section 2.2.1,

then the least squares estimates of the OGM(1,N) model parameter columns
p̂ = [b2, b3, · · · , bN , a, h1, h2]

T . satisfy

p̂ =
(

BT B
)−1

BTY. (20)

Among them, B and Y can be set

B =


x(1)2 (2) x(1)3 (2) · · · x(1)N (2) −z(1)1 (2) 1 1
x(1)2 (3) x(1)3 (3) · · · x(1)N (3) −z(1)1 (3) 2 1

...
...

...
...

...
...

x(1)2 (m) x(1)3 (m) · · · x(1)N (m) −z(1)1 (m) m− 1 1



Y =


x(0)1 (2)
x(0)1 (3)

...
x(0)1 (m)


. (21)

Then the difference model of OGM(1,N) can be described with

x̂(0)1 (k) =
N

∑
i=2

bi x̂
(1)
i (k)− az(1)1 (k) + h1(k− 1) + h2. (22)

The time-corresponding equation is

x̂(1)1 (k) =
k−1
∑

t=1

[
µ1

N
∑

i=2
µt−1

2 bix
(1)
i (k− t + 1)

]
+ µk−1

2 x̂(1)1 (1)

+
k−2
∑

j=0
µ

j
2[(k− j)µ3 + µ4], k = 2, 3, · · ·

. (23)

Among them, µ1 = 1
1+0.5a , µ2 = 1−0.5a

1+0.5a , µ3 = h1
1+0.5a , µ4 = h2−h1

1+0.5a .
The cumulative reduction equation of OGM(1,N) is

x̂(0)1 (k) = x̂(1)1 (k)− x̂(1)1 (k− 1), k = 2, 3, · · · . (24)

OGM(1,N) does not assume that “∑N
i=2 bix

(1)
i (k) is regarded as a grey quantity when

the variation of X(1)
i (i = 1, 2, · · · , N) is small”. There is no “misalignment” between the

shadow equation dx(1)1 /dt + ax(1)1 = ∑N
i=2 bix

(1)
i and the parameter column

p̂ = [b1, b2, · · · , bN , a, h1, h2]
T . Furthermore, the linear correction term and the grey action

quantity are added to the model to make the model structure more reasonable. OGM(1,N)
is an optimization improvement of GM(1,N), which better compensates for the mechanism
defects, parameter defects, and structural defects of the latter.

3.3. Optimization of Background Values for OGM(1,N)

The background value coefficient is a parameter in grey theory that can have an
impact on the prediction accuracy of multivariate grey prediction models to a certain extent.
However, multivariate grey prediction models generally use 0.5 as their background value
coefficients with the aim of simplifying the model construction process. Therefore, this
section improves the OGM(1,N) model by optimizing its background value coefficients
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with the help of the global search capability of the PSO algorithm, calls the improved model
OBGM(1,N), and derives the time response function and the final reduced equation of
OBGM(1,N).

3.3.1. OBGM(1,N)

OBGM(1,N) is defined by Equation (25), which is an OGM(1,N) model with a back-
ground value coefficient of ξ(0 < ξ < 1).

x(0)1 (k) + aξx(1)1 (k) + a(1− ξ)x(1)1 (k− 1) =
N
∑

i=2
bix

(1)
i (k) + kc + d,

k = 2, 3, · · · , m.
(25)

The parameter column p̂ = [b2, b3, · · · , bN , a, c, d]T is computed using the least squares
method. Provided that p̂ = [b2, b3, · · · , bN , a, c, d]T is known, If a certain ξ minimizes
the mean absolute percentage error of sequence X(0)

1 , it is the optimal background value
coefficient of the OGM(1,N) model. Further, this model is called the OBGM(1,N) model.

The least squares estimate of the parameter column p̂ = [b2, b3, · · · , bN , a, c, d]T satisfies

p̂ =
(

ETE
)−1

ETS. (26)

Among them, E and S can be set

E =


x(1)2 (2) x(1)3 (2) · · · x(1)N (2) (ξ − 1)x(1)1 (1)− ξx(1)1 (2) 2 1
x(1)2 (3) x(1)3 (3) · · · x(1)N (3) (ξ − 1)x(1)1 (2)− ξx(1)1 (3) 3 1

...
...

...
...

...
...

x(1)2 (m) x(1)3 (m) · · · x(1)N (m) (ξ − 1)x(1)1 (m− 1)− ξx(1)1 (m) m 1

 (27)

S =


x(0)1 (2)
x(0)1 (3)

...
x(0)1 (m)

 (28)

then x̂(0)1 (k) + aξ x̂(1)1 (k) + a(1− ξ)x̂(1)1 (k− 1) =
N
∑

i=2
bix

(1)
i (k) + kc + d, k = 2, 3, · · · , m. Be-

cause x̂(0)1 (k) = x̂(1)1 (k)− x̂(1)1 (k− 1), then, we can obtain x̂(1)1 (k)− x̂(1)1 (k− 1)+ aξ x̂(1)1 (k)+

a(1− ξ)x̂(1)1 (k− 1) =
N
∑

i=2
bix

(1)
i (k) + kc + d. The collation is obtained from x̂(1)1 (k) =

1
1+aξ

N
∑

i=2
bix

(1)
i (k) + 1−a+aξ

1+aξ x̂(1)1 (k− 1) + c
1+aξ k + d

1+aξ . Let v1 = 1
1+aξ , v2 = 1− a

1+aξ , v3 =

c
1+aξ , v4 = d

1+aξ , then x̂(1)1 (k) = v1
N
∑

i=2
bix

(1)
i (k) + v2 x̂(1)1 (k− 1) + v3k + v4, k = 2, 3, · · ·m.

When k = 2, x̂(1)1 (2) = v1
N
∑

i=2
bix

(1)
i (2) + v2x(1)1 (1) + 2v3 + v4.

When k = 3, x̂(1)1 (3) = v1
N
∑

i=2
bix

(1)
i (3) + v2 x̂(1)1 (2) + 3v3 + v4. Substituting x̂(1)1 (2),

and the equation is reduced to x̂(1)1 (3) = v1
N
∑

i=2
bix

(1)
i (3) + v1v2

N
∑

i=2
bix

(1)
i (2) + v2

2x(1)1 (1) +

2v2v3 + v2v4 + 3v3 + v4.
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Continuing the derivation, when k = p x̂(1)1 (p) = v1
N
∑

i=2
bix

(1)
i (p) + v1v2

N
∑

i=2
bix

(1)
i (p− 1)

+ · · · + v1vp−2
2

N
∑

i=2
bix

(1)
i (2) + vp−1

2 x̂(1)1 (1) + 2vp−2
2 v3 + vp−2

2 v4 + 3vp−3
2 v3 + vp−3

2 v4 + · · · +
p·v3 + v4.

Simplify to get x̂(1)1 (p) =
p−1
∑

u=1

[
v1

N
∑

i=2
vu−1

2 bix
(1)
i (p− u + 1)

]
+

p−2
∑

v=0
vv

2[(p− v)v3 + v4]

+vp−1
2 x̂(1)1 (1), which is the time response function of the OBGM(1,N) model, k = p =

2, 3, · · · , m.
From x̂(0)1 (k) = x̂(1)1 (k) − x̂(1)1 (k− 1), we can obtain the final reduced form of the

OBGM(1,N) model. Thus, the time response equation is

x̂(1)1 (k) =
k−1

∑
u=1

[
v1

N

∑
i=2

vu−1
2 bix

(1)
i (k− u + 1)

]
+

k−2

∑
v=0

vv
2[(k− v)v3 + v4] + vk−1

2 x̂(1)1 (1). (29)

The final reduced equation is

x̂(0)1 (k) = v1
k
∑

d=2

[
N
∑

i=2
(v2 − 1)[

d−2
d ]v

[ d−2
d ][ d−3

d ](d−3)
2 bix

(1)
i (k− d + 2)

]
+

k−3
∑

v=0

[(
vk−2

2 (2v3 + v4 + 1)[
v

k−3 ] − vk−2
2

)
+ vv

2v3

] . (30)

Equation (30) contains two parts. The first half refers to the effect of the independent
variable X(1)

i (i = 2, 3, · · · , N) on the dependent variable X(0)
1 . The second half refers to the

effect of the constant terms v1, v2, v3, and v4 on the dependent variable X(0)
1 .

3.3.2. Background Value Coefficient of OBGM(1,N) Model Optimized by PSO Algorithm

In 1995, Kennedy and Eberhart proposed a global optimization algorithm, namely
particle swarm optimization (PSO) [12]. The PSO algorithm is simple in concept, easy to
program, has fewer parameters, and is widely used in the fields of neural network training
and function optimization. In this paper, the PSO optimization algorithm is used to find
the optimal background value coefficients of the OBGM(1,N) model and the mean absolute
percentage error (i.e., MAPE) of the output results of the OBGM(1,N) model is used as
the objective function. When the minimum objective function is found, its corresponding
background value is the optimal background value coefficient.

At the minimum MAPE, the optimal background value coefficient of the OBGM(1,N)
model is essentially to solve the following optimization problems, which can be seen with
Equation (31).

min f (ξ) =
1

m− 1

n

∑
k=2

∣∣∣x̂(0)1 (k)− x(0)1 (k)
∣∣∣

x(0)1 (k)
, ξ ∈ R+. (31)

The computational procedure for finding the optimal background value coefficients
for the OBGM(1,N) model using the PSO algorithm ξ is shown below.

Step 1: Set the PSO algorithm parameters to initialize the velocities and positions of
the particles in the particle swarm.

Step 2: Set the current position in the particle to pBest and the best particle position in
the group to gBest = 1.

Step 3: Calculate the MAPE of the OBGM(1,N) model when ξ = pBest.
Step 4: Update all particles as follows.
Step 4.1: Update of particle velocity and position (shown in Equations (32) and (33))

V = ω×V + c1 × rand× (pBest− Present)
+c2 × rand× (gBest− Present)

, (32)
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Present = Present + V. (33)

Step 4.2: Update pBest to the new location if the adaptation is better than the adaptation
of pBest.

Step 4.3: Update gBest to the new position if the adaptation is better than the adaptation
of gBest.

Step 5: Determine whether the maximum number of iterations is reached or the
accuracy requirements are met. If yes, proceed to Step 6; Otherwise, go back to Step 4.

Step 6: Output gBest to get the optimal value of the optimal background value
coefficient ξ, and output the simulated or predicted value of the OBGM(1,N) model of this
optimal background value coefficient ξ = gBest, and the run is finished.

3.4. Fractional Order Optimization of OBGM(1,N)

The essence of the OBGM(1,N) model is a multi-variable grey prediction model of
first-order equations. By mining the information contained in the data with the help of the
first-order cumulative sequence, the fractional order idea is introduced into the OBGM(1,N)
model, and the order of the model is extended from the integer domain to the real domain,
in order to improve prediction accuracy. The OBGM(1,N) model is further optimized
by the optimal cumulative order. Among them, the optimization of cumulative order is
determined using the global optimization ability of the PSO optimization algorithm.

3.4.1. Model Definition

Assuming that the original non-negative series sequence is X(0)
1 = (x(0)1 (1), x(0)1 (2), · · ·

x(0)1 (m)), add r-order to the original sequence X(0)
i (i = 2, 3, · · · , N) to obtain the sequence

X(r)
j (j = 1, 2, · · · , N), X(r)

j =
(

x(r)j (1), x(r)j (2), · · · x(r)j (m)
)

, which can be calculated using
Equation (34) [13].

x(r)j (k) =
k

∑
i=1

Γ(r + k− i)
Γ(k− i + 1)Γ(r)

x(0)j (i), k =1, 2, · · · , m. (34)

The OGM(1,N) model with a background value coefficient of ξ(0 < ξ < 1) and frac-
tional order of r can be described by Equation (35), where p̂ = [b2, b3, · · · , bN , a, c, d]T is
the column of parameters estimated by the least squares method. Under the condition
that p̂ = [b2, b3, · · · , bN , a, c, d]T is known, if ξ and r exist to minimize the average relative
simulation error percentage of sequence X(0)

1 , the OGM(1,N) model is said to have the
optimal background value coefficient ξ and the optimal order r, and the multivariate grey
prediction model is denoted as the FOBGM(1,N) model.

x(0)1 (k) + aξx(r)1 (k) + a(1− ξ)x(r)1 (k− 1) =
N
∑

i=2
bix

(r)
i (k) + kc + d,

k = 2, 3, · · · , m.
(35)

3.4.2. Parameter Estimation and Time Response Equation of FOBGM(1,N)

Let X(−r)
j = (x(−r)

j (1), x(−r)
j (2), · · · , x(−r)

j (m)) be the r-order reduction generator of

X(0)
j , which can be gained using Equation (36).

x(−r)
j (k) =

k−1

∑
i=0

(−1)i Γ(r + 1)
Γ(r− i + 1)Γ(i + 1)

x(0)j (k− i), k =1, 2, · · · , m. (36)
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Let the least squares estimate of the parameter column p̂ = [b2, b3, · · · , bN , a, c, d]T

satisfy

p̂ =
(

ETE
)−1

ETS, (37)

E =


x(r)2 (2) x(r)3 (2) · · · x(r)N (2) (ξ − 1)x(r)1 (1)− ξx(r)1 (2) 2 1
x(r)2 (3) x(r)3 (3) · · · x(r)N (3) (ξ − 1)x(r)1 (2)− ξx(r)1 (3) 3 1

...
...

...
...

...
...

x(r)2 (m) x(r)3 (m) · · · x(r)N (m) (ξ − 1)x(r)1 (m− 1)− ξx(r)1 (m) m 1

, (38)

S =


x(0)1 (2)
x(0)1 (3)

...
x(0)1 (m)

. (39)

Then the time response equation of the FOBGM(1,N) model is

x̂(r)1 (k) =
k−1
∑

u=1

[
v1

N
∑

i=2
vu−1

2 bix
(r)
i (k− u + 1)

]
+

k−2
∑

v=0
vv

2[(k− v)v3 + v4] + vk−1
2 x̂(r)1 (1)

. (40)

The final reduced equation is
x̂(0)1 (k) =

(
x̂(r)1

)(−r)
(k) =

k−1
∑

i=0
(−1)i Γ(r+1)

Γ(r−i+1)Γ(i+1) x̂(r)1 (k− i),

k =2, 3, · · · , m.
x̂(0)1 (1) = x(0)1 (1)

(41)

4. Empirical Study
4.1. Influencing Factor Screening

Although there is relatively little in the literature on China’s civil aviation carbon
emission prediction, some scholars have studied the influencing factors of civil aviation
carbon emission from different perspectives. In this paper, the literature on carbon emission
factors of civil aviation from the most recent ten-year period was reviewed, and some
literature on carbon emission of other modes of transport was introduced to calculate the
research frequency of carbon emission factors studied so as to preliminarily screen out the
impact factors of carbon emission by civil aviation.

As can be seen from Table 1, among the main indicators affecting civil aviation car-
bon emissions in the past decade, the research frequency of several influencing factors
such as civil aviation transportation traffic (passenger/cargo volume), total civil aviation
turnover, civil aviation fuel consumption, civil aviation industry-wide operating income,
and transport intensity are relatively high. Therefore, in this paper, civil aviation trans-
port traffic is divided into passenger traffic and cargo volume. Finally, six influencing
factors were determined to predict China’s civil aviation carbon emissions using civil
aviation passenger traffic, civil aviation cargo volume, total civil aviation turnover, civil avi-
ation fuel consumption, civil aviation industry-wide operating income, and civil aviation
transportation intensity.
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Table 1. Civil aviation carbon emission influencing factors and representative authors.

Impact Factor Literature
Statistics

Representative
Authors

Civil aviation fuel consumption 16 [14–17]
Total civil aviation turnover 9 [18–20]

Civil aviation industry-wide operating income 9 [18–20]
Civil aviation transport traffic (passenger/cargo volume) 8 [14,17,20,21]

Transportation intensity 5 [16,22]
Number of civil flights 4 [19–21,23]

GDP per capital 4 [24]
Population 4 [25]

GDP 2 [25,26]
Energy intensity 2 [22]

Flight Type 1 [23]

4.2. Original Data Collection and Correlation Analysis

According to the above civil aviation carbon emission accounting standards and
selected impact factors, the data on civil aviation fuel consumption, passenger traffic, cargo
volume, total civil aviation turnover, and civil aviation industry-wide operating income
were collected from 2003 to 2017. Among them, the data on civil aviation fuel consumption
was from the Statistical Data on Civil Aviation of China. The data on total civil aviation
turnover and the data on aircraft takeoffs and landings were from the Statistical Data on
Civil Aviation of China and the China Traffic Yearbook. The data of civil aviation industry-
wide operating income were from the Statistical Bulletin on the Development of the Civil
Aviation Industry, among which the average value of two years before and after was used
because the data for 2008 is missing. The data on civil aviation passenger traffic and cargo
traffic volume were from the China Statistical Yearbook.

The prediction model in this paper is based on the GM(1,N) model, the construction of
which focuses on the structure of matrix B. If the value difference between rows or columns
of matrix B is too large or too close, the condition number of the matrix will be too large,
resulting in the phenomenon of matrix drift. The order of magnitude and dimension of the
original data selected influencing factors are quite different, so it is necessary to preprocess
the original data, such as initializing. After initializing the original data, the predicted
value is obtained, and then the predicted value is initialized by inverse transformation so
as to restore the order of magnitude and dimension of the predicted sequence. Through the
above-screened influencing factors, the Pearson correlation coefficient is used to analyze
the correlation between each impact factor and civil aviation carbon emissions, and the
results are shown in Figure 2.

As shown in Figure 2, the diagonal plot shows the distribution of China’s civil aviation
carbon emissions and the six influencing factors themselves; the upper triangle shows the
corresponding Pearson correlation coefficients, and the lower triangle shows the corre-
sponding scatter plots. The Pearson correlation coefficient is −0.31583, while the other five
factors are strongly correlated with China’s civil aviation carbon emissions, with Pearson
correlation coefficients greater than 0.9, and these five factors are also strongly correlated
with each other. Therefore, in summary, this paper selects five influencing factors of carbon
emissions in China’s civil aviation, which are civil aviation passenger traffic, civil avia-
tion cargo volume, total civil aviation turnover, civil aviation fuel consumption, and civil
aviation industry-wide operating income.
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4.3. Empirical Results

According to the five influencing factors screened out above, the background values
and order optimization of different models were shown in Table 2, then GM(1,5), OGM(1,5),
OBGM(1,5), and FOBGM(1,5) were used to forecast the carbon emissions of civil aviation
in China, and the prediction accuracy of the four models was analyzed. In this paper,
we collected relevant data from 2003 to 2017 and used the data from 2003 to 2012 as the
original data to forecast China’s civil aviation carbon emissions from 2013 to 2017 and
then compared it with the actual data to obtain the prediction accuracy of the model. The
prediction results are shown in Table 3.

Table 2. Background values and order of the different models.

GM(1,5) OGM(1,5) OBGM(1,5) FOBGM(1,5)

Background value 0.5 0.5 1 1
Order 1 1 1 1.0907

Based on the prediction results, the absolute and relative errors of each model for each
year were obtained, as shown in Figures 3 and 4.

It can be found in Figures 3 and 4 that the prediction accuracy of the model gradually
improved during the improvement of the model, and the FOBGM(1,5) model had the high-
est prediction accuracy among the four models, and the prediction error of the FOBGM(1,5)
model gradually decreased by 99.56%, 33.46%, 28.43%, 26.67%, and 24.87%, relative to the
GM(1,5) model from 2013 to 2017. In order to further simplify the prediction errors of each
model and more directly reflect the prediction accuracy of the model, this paper compares
the prediction performance of each model through MAPE, MAE, RMSE, and MAE.
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Table 3. Prediction results of carbon emissions.

Year
Civil Aviation

Carbon Emissions
Original Data

GM Model Background
Value/Order OGM(1,5) OBGM(1,5) FOBGM(1,5)

Background
Value

Cumulative
Order

Background
Value

Cumulative
Order

Background
Value

Cumulative
Order

Background
Value

Cumulative
Order

0.5 1 0.5 1 1 1 1 1.0907

2013 6302.916254 6303.041342 6302.988503 6302.987549 6302.916802
2014 6990.086895 6990.332886 6990.260412 6990.259593 6990.250567
2015 7901.107325 7901.670548 7901.5331 7901.531429 7901.510396
2016 8879.055003 8879.86047 8879.67912 8879.676821 8879.645614
2017 10,009.66542 10,010.64701 10,010.4437 10,010.44095 10,010.40286
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As can be seen from Figure 5, through multi-stage optimization and improvement of
the model, the prediction accuracy of the model is gradually improved. The prediction
error of the OGM(1,5) model was reduced by 24.40% compared with the GM(1,5) model.
The prediction error of the OBGM(1,5) model was reduced by 0.43% compared with
OGM(1,5) model. The prediction error of the FOBGM(1,5) model was reduced by 9.48%
compared with that of the OBGM(1,5) model, which proves the effectiveness of the model
improvement, and the FOBGM(1,5) model had the smallest prediction error and the highest
prediction accuracy among the four models.
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5. Conclusions

In this paper, based on the GM(1,N) model, first, the mechanism defects, parameter
defects, and structural defects of the GM(1,N) model were compensated by adding linear
correction term and grey action, and the OGM(1,N) model is established. Then, the back-
ground value coefficients of the OGM(1,N) model were optimized using the PSO algorithm,
and the OBGM(1,N) model was established. Then, by introducing the fractional order idea,
this paper uses the PSO algorithm to optimize the cumulative order of the OBGM(1,N)
model and extend the order of the OBGM(1,N) model from an integer field to a real number
field to establish FOBGM(1,N) model. Five influencing factors were determined to predict
China’s civil aviation carbon emissions using civil aviation passenger traffic, civil aviation
cargo volume, total civil aviation turnover, civil aviation fuel consumption, civil aviation
industry-wide operating income, and civil aviation transportation intensity. Based on the
carbon emission prediction data of civil aviation transportation in China, the improvement
effect of each model was empirically studied. It can be seen from the prediction results
that the prediction error of the model decreases gradually, and the prediction accuracy
shows an increasing trend after multi-level and multi-angle improvement and optimization.
Among them, the MAPE of the OGM(1,5) model decreased by 24.40% compared with the
GM(1,5) model, the MAPE of the OBGM(1,5) model decreased by 24.72% compared with
the GM(1,5) model, the MAPE of the FOBGM(1,5) model decreased by 31.86% compared
with the GM(1,5) model. It reflects the effectiveness of model improvement and proves the
practicability of the FOBGM(1,5) model. From the perspective of algorithm improvement,
the idea of improving the GM(1,N) model based on fractional summation and background
value optimization has certain practical significance and application prospects and can
be applied to the optimization research of other prediction models of grey system theory.
Although the paper has carried out multi-angle and multi-level optimization of the model,
such as background value, fractional order, linear increase, etc., the model still has room
for improvement, such as from the perspectives of initial value improvement, residual
correction, and metabolism, as a subject of further research.
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