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Abstract: Grapes, particularly the species Vitis vinifera L., are one of the most widely grown crops
in the world. Winemaking processes generate a high amount of residues, which currently pose an
environmental and economic sustainability problem for companies in the sector. For this reason,
solutions are being explored for the development of new products with high-added value derived
from the valorization of these residues. One of the wastes produced by winemaking processes
is grape pomace, which chemical composition is promising because it is rich in compounds with
high antioxidant activity, such as polyphenols (anthocyanins, flavonols, flavan-3-ols, procyanidins),
phenolic acids, resveratrol, and fiber. Commonly grape pomace is used to produce distillates and
to extract tartaric acid and coloring substances such as enocyanin. Recently, alternative uses of
grape pomace have been adopted, such as the production of extracts with antioxidant properties,
fermentation substrates, composting and biomass for energy production, and fiber extraction for the
development of high-value-added products enriched with bioactive molecules from grape pomace.
Here, we discuss how bioactive molecules from grape pomace are involved in various human
biological functions and their applications in the agri-food sector.

Keywords: grape pomace; bioactive compounds; polyphenols; biological effects; functional food;
waste recovery

1. Introduction

Grapes are widely cultivated worldwide; specifically, in Italy, wine grape production
occupies about 646,249 hectares of productive area, producing about 73,773,441 hectolitres
of wine according to National Institute of Statistics (ISTAT) 2022 data. Thus, the winemak-
ing process generates a considerable volume of different residues, characterized by the
presence of biodegradable compounds and suspended solids that, if not properly disposed
of, can cause negative environmental and economic impacts, including water pollution,
soil degradation, damage to vegetation, energy consumption, and emission of unpleasant
gases and odors [1]. Therefore, it is necessary to develop environmentally friendly methods
of valorization. The main by-product of the winemaking process includes grape pomace,
consisting of stalks, grape seeds, skins, stems, and seeds [2]. Nowadays, an important
aspect widely investigated is the promising chemical composition of grape pomace, rich
in polyphenols, vitamins, and fibers well-known for their positive biological activities on
human health [3–7]. Grape pomace is a complex matrix rich in bioactive compounds and
macromolecules (hydroxycinnamic acid, hydroxybenzoic acid, flavonoids, fibers) which,
once extracted and evaluated for safety, can be used to formulate new products [3,8]. Par-
ticularly, extraction processes represent an important step for the identification, isolation,
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and recovery of active components from grape pomace, such as solid–liquid extraction
for recovery of catechin-enriched grape pomace extracts [2,9]. Figure 1 displayed different
extraction methods divided into traditional and non-conventional categories allowing
the recovery of bioactive molecules (i.e., polyphenols, flavonoids, tannins, organic acids,
terpenes, peptides, and polyunsaturated lipids). Therefore, grace pomace is considered
a promising source for obtaining high-value-added materials due to its antioxidant, anti-
inflammatory, cardiovascular, anticancer, and antimicrobial properties [8–14]. In recent
years, sustainability has driven and promoted research to enhance and valorize grape
pomace to support health and well-being, as the high nutritional profile of this by-product
allows it to be used as an ingredient for food enrichment. In this regard, innovative
biotechnologies have been applied to produce new food products with a high nutritional
value from grape pomace, enriched with bioactive compounds, making them functional
foods with antioxidant, anti-inflammatory, cytoprotective, and other important biological
activities [15,16]. The potential bioactivity of dietary ingested nutraceuticals is strongly
influenced by their digestive stability, bioaccessibility, bioavailability, and interaction with
the intestinal microbiota [17]. Thus, the valorization of grape pomace is a growing theme
not only in the agri-food sector but, in recent years, has also involved other sectors such
as the biomedical, cosmetic, and nutraceutical ones. As largely investigated, grape po-
maces are rich in bioactive compounds and macromolecules [3,8]. However, researchers
and enterprises approaching the valorization of this by-product first need to characterize
them. Nevertheless, the characterization of grape pomace is sometimes very complicated
and provides only a hazy overview of their huge potential [18,19]. On the contrary, the
characterization of matrices derived from grape pomace subjected to different extraction
techniques appears relatively easier. It also allows acquiring knowledge about extracts
that may become the starting blocks or additional ingredients of novel products, such as
functional foods. The current review aims to offer a comprehensive characterization of the
grape pomace molecules allowing for ascertaining not only the potential health benefits of
the extracts but also the eventual presence of allergens, anti-nutritional factors, and toxins
that would make the novel products not safe for all the consumers. Although the grape
pomace topic has already been studied, to date, there are no studies that encompassed both
biological effects and agri-food application of grape pomace. Specifically, we discuss how
bioactive molecules from grape pomace are involved in various human biological functions
and their applications in the agri-food sector. Moreover, the inclusion of grape pomace as a
fortification element in different edible matrices is reviewed, analyzing its possibilities and
limitations also from a sensory and technological point of view, giving a contribution to
future studies.
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2. Chemical Composition of Grape Pomace

Grape pomace—the main solid residue of winemaking derived from the pressing of
fresh grapes in white winemaking and from the pressing of fermented grape pomace in red
winemaking—represents 20–25% of the initial weight of the grapes [20]. To date, 9 million
tons of grape pomace are produced annually worldwide [21]. The Italian legislation defines
grape pomace as “the complex of solid parts of the grape that remain after the crushing and
pressing of the grapes, such as skins and seeds, with or without the stalk” [Official Gazette,
16 December 1998] including:

- The skin or epicarp—the membrane that encloses the pulp and the seeds—is formed
by an epidermis of 6–10 layers of flattened cells, covered with a waxy substance called
pruine, an ideal substrate for yeasts and other microorganisms’ growth [22].

- The grape seeds, normally two or three per berry, are covered with a tough epidermis,
making them passive to the fermentation process (and distillation to obtain grappa).
They represent 25–35% by weight of the fresh destemmed grape pomace and are very
rich in antioxidant compounds, mainly linoleic acid, an essential fatty acid belonging
to the omega-6 family [23].

- The stem is made up mostly of cellulosic substances, small quantities of simple
carbohydrates, and organic and mineral salts; it performs important functions in the
transport of all the substances that are deposited in the berries and is characterized by
a high content of tannins [24].

Overall, its chemical composition is strongly influenced by grape variety cultivar,
stage of ripeness, harvesting, and the type of winemaking process [25,26]. Despite the wide
variety of grape pomace being influenced by environmental issues, its composition remains
almost consistent among all, mainly consisting of water, followed by sugar, fiber, proteins,
and fatty acid [27]. On average, grape pomace consists of the following composition:
water 50–70%, cellulose 10–20%, sugars 6–8%, fats 2–4%, organic acids 1–2%, tannins 1–2%,
minerals 1–2% [28–30], as well as numerous other substances such as proteins, pectins, col-
oring substances, aromatic substances, vitamins, and microorganisms. Generally, literature
data showed that grape pomace contains total dietary fiber values in the range of 40–50%,
crude protein 7–14.5%, crude oil 7–8%, moisture 4.5–11%, crude ash 3–5% (Table 1) [28–30].
Furthermore, as shown in Table 1, grape pomace contains a broad spectrum of mineral
substances, mainly represented by calcium, iron, zinc, potassium, and manganese.

Table 1. Proximate composition, TPC, ABTS, and DPPH and mineral substances of average value
grape pomace of different varieties (data from Caponio, G.R. et al., 2022 [6]; Antonić, B. et al., 2020 [28];
Mohamed Ahmed, I.A. et al., 2020 [29]; Ribeiro, L.F. et al., 2015 [30]; Spinei, M. and Oroian, M.,
2021 [15]; Sousa, E.C. et al., 2014 [31]; John, W.P. et al., 2011 [32]).

Compounds Dry Matter Content * References

Moisture 7.8 ± 4.6 g/100 g [29,30]
Ash 4.0 ± 1.4 g/100 g [28,29]

Protein 10.8 ± 5.3 g/100 g [28,29]
Fat 7.5 ± 0.7 g/100 g [28,29]

Carbohydrates 25.0 ± 4.2 g/100 g [30]
Total dietary fiber 45.0 ± 7.1 g/100 g [29,30]

Insoluble fiber 39.0 ± 32.5 g/100 g [29,30]
Soluble fiber 7.0 ± 7.1 g/100 g [29,30]

ABTS 101.5 ± 16.3 µmol TE/g [6,29,32]
DPPH 96.5 ± 14.8 µmol TE/g [6,29,32]
TPC 59.5 ± 27.6 mg GAE/g [29,32]

Calcium 9.9 g/kg [14,31]
Phosphorous 2.7 g/kg [14,31]



Sustainability 2023, 15, 9075 4 of 26

Table 1. Cont.

Compounds Dry Matter Content * References

Magnesium 0.8 g/kg [14,31]
Sodium 0.22 g/kg [14,31]
Sulfur 1.5 g/kg [14,31]

Copper 49.0 mg/kg [14,31]
Zinc 25.0 mg/kg [14,31]
Iron 361.0 mg/kg [14,31]

Potassium 140 mg/kg [31]
Manganese 13.0 mg/kg [14,31]

* Values are an average value ± SD. ABTS, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid; DPPH, 2,2-
diphenyl-1-picrylhydrazyl; GAE: Gallic acid equivalents; TE: Trolox equivalents; TPC, total phenol content.

2.1. Phenolic Compounds

Grape pomace contains a high content of total phenol content, and antioxidant ac-
tivity estimated with ABTS and DPPH assays was reported in Table 1 [32]. Of note,
the phenolic compounds of grape pomace were strongly impacted by cultivar, genome,
soil and climatic conditions, grape maturation, winemaking technology, and extraction
method [33]. Considering different cultivars of grape pomaces (Aglianico (AG), Nero
di Troia (NT), Cabernet Sauvignon (CS), Merlot (M), Italian Riesling Agner (IRA), and
Italian Riesling Bajilo (IRB)) were confirmed a slight difference between different solvent
extraction method and total phenol content [4]. As previously evidenced, 80% MeOH
and 80% EtOH extracted similar amounts of total phenol content from grape pomace [4].
Moreover, the results of a recent study encompassed a phenolic composition of grape
pomace with solvent-free extraction compared with a hydroalcoholic one when subjected
to in vitro gastrointestinal digestion [6]. Although the extraction yield of the alcoholic
solvent was higher, the Recovery Index % (RI) of each phenolic group (anthocyanins,
phenolic acid, flavonoids, stilbenes, and total) in samples extracts before (undigested)
and after in vitro digestion (gastric- and intestinal-digested) underlined higher RI values
for the samples extracted without alcoholic solvent [6]. Table 2 reported the content of
quantified phenolic compounds in 80% EtOH grape pomace extracts belonging to different
cultivars. During the winemaking processes, only 30–40% of the phenolic compounds
are extracted from different parts of the berry, so a high amount of these compounds
remains in grape pomace, amounting to 60–70% of the total phenolic content of the grape.
For this reason, grape pomace is an extremely rich source of polyphenols. According
to chemical characterization carried out in a recent study by HPLC-DAD quantification,
the polyphenolic component of grape pomace is mainly composed of flavonoids (antho-
cyanins, flavonols, flavanols), phenolic acids (gallic acid, syringic acid), and stilbenes (trans-
Resveratrol, ε-Viniferin) [6]. Grape pomace of NT and AG cultivar contained high contents
of anthocyanins, especially delphinidin-3-O-glucoside, petunidin-3-O-glucoside, peonidin-
3-O-glucoside, malvidin-3-O-acetylglucoside, peonidin-3-O-p-coumarylglucoside, and
malvidin-3-O-p-coumarylglucoside. Among other flavonoids, (+)-catechin, hydrated rutin,
quercetin-3-glucoside, myricetin, quercetin, kaempferol, and isorhamnetin, and among
phenolic acids, gallic acid, and syringic acid were identified and quantified. Moreover,
grape pomace contained stilbenes, such as trans-resveratrol and ε-viniferin. Generally,
as shown in Table 2, the richness of phenolic compounds is lost in white cultivars of
grape pomace, such as IRB and IRA, according to previously published [34]. These results
agreed with other studies of chemical characterization of the polyphenolic component of
grape pomace [29,35]. Of note, in vitro gastrointestinal digestion of grape pomace allowed
an increase in the polyphenolic component and its antioxidant activity, improving the
bioavailability and bioaccessibility of polyphenols [6].
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Table 2. Quantified sample content (mg/kg dry weight ± SD) of the main phenolic compounds by the UHPLC-DAD analysis in grape pomace extracts of
different cultivars [4,6].

AG AG-Q NT NT-Q CS ME IRA IRB

Flavonoids
Anthocyanins

Delphinidin-3-O-glucoside 2356.4 ± 335.2 231.1 ± 5.1 146.2 ± 2.3 1427.9 ± 1630.3 71.3 ± 0.7 / / /
Cyanidin-3-glucoside 296.9 ± 1.8 51.7 ± 0.1 16.6 ± 0.4 27.6 ± 1.5 50.0 ± 0.7 / / /

Petunidin-3-O-glucoside 4667.4 ± 102.5 637.9 ± 1.9 365.9 ± 0.4 484.0 ± 23.5 77.5 ± 0.6 / / /
Peonidin-3-glucoside 3717.3 ± 98.5 949.4 ± 8.9 127.7 ± 0.6 224.8 ± 8.5 95.0 ± 1.0 / / /

Malvidin-3-O-glucoside 35,813.3 ± 850.5 10,775.9 ± 67.0 4908.4 ± 42.3 5306.2 ± 482.7 669.0 ± 3.9 / / /
Vitisin A 288.3 ± 1.9 182.9 ± 7.4 120.2 ± 0.3 106.6 ± 3.5 / / / /

Peonidin-3-O-acetylglucoside 340.9 ± 8.5 120.7 ± 3.7 200.8 ± 3.3 240.4 ± 41.6 / / / /
Delphinidin-3-O-p-
coumarylglucoside 546.0 ± 42.1 273.4 ± 6.9 628.7 ± 2.7 646.3 ± 76.8 / / / /

Malvidin-3-O-acetylglucoside 2210.8 ± 43.1 1008.9 ± 14.2 3126.2 ± 72.1 3150.0 ± 343.2 / / / /
Petunidin-3-O-p-

coumarylglucoside 932.5 ± 28.0 607.4 ± 12.6 761.5 ± 25.7 697.8 ± 27.0 / / / /

Peonidin-3-O-p-
coumarylglucoside 1688.1 ± 35.3 1680.9 ± 13.0 549.9 ± 10.7 637.9 ± 54.7 / / / /

Malvidin-3-O-p-
coumarylglucoside 15,221.2 ± 302.6 13,992.5 ± 59.6 12,156.2 ± 242.7 9843.4 ± 548.5 / / / /

Total 68,079.2 ± 685.0 30,512.8 ± 108.5 23,108.3 ± 240.1 22,792.9 ± 1140.9 962.8 ± 11.3 / / /
Flavonols

Rutin hydrate 118.5 ± 3.7 105.0 ± 0.6 113.7 ± 28.9 115.2 ± 5.3 18.2 ± 0.2 9.4 ± 0.1 40.3 ± 0.5 8.4 ± 0.1
Quercetin-3-glucoside 31.5 ± 44.5 41.7 ± 0.8 92.5 ± 5.9 106.1 ± 0.1 123.0 ± 1.6 40.3 ± 0.4 234.0 ± 2.8 81.7 ± 0.8

Myricetin 19.6 ± 0.2 22.4 ± 0.3 29.1 ± 1.3 94.7 ± 7.1 1627.0 ± 9.3 / / /
Quercetin 14.3 ± 0.1 27.4 ± 0.6 49.7 ± 3.2 91.8 ± 5.2 759.0 ± 6.6 661.0 ± 5.7 / /

Kaempferol 2.9 ± 0.4 4.9 ± 0.05 9.9 ± 0.7 6.9 ± 9.8 487.0 ± 4.4 473.0 ± 3.3 / /
Isorhamnetin 13.6 ± 0.1 10.1 ± 0.1 18.7 ± 1.1 19.9 ± 2.4 701.0 ± 4.3 606.0 ± 3.0 / /

Total 200.4 ± 23.1 211.5 ± 0.5 313.6 ± 28.6 434.6 ± 12.3 3715.2 ± 13.8 1789.7 ± 39.5 274.3 ± 3.1 90.1+ ± 0.7
Flavanols

(+)-Catechin 20.8 ± 2.6 24.2 ± 0.1 33.9 ± 0.3 47.1 ± 0.4 841.0 ± 8.2 / 992.0 ± 6.1 927.0 ± 9.1
Total 20.8 ± 2.6 24.2 ± 0.1 33.9 ± 0.3 47.1 ± 0.4 841.0 ± 8.2 / 992.0 ± 6.1 927.0 ± 9.1

Phenolic acid
Gallic acid 638.0 ± 29.8 579.2 ± 19.5 1139.6 ± 19.7 1093.7 ± 2.5 574.0 ± 8.1 607.0 ± 13.0 193.0 ± 2.1 248.0 ± 3.0

Syringic Acid 23.7 ± 0.1 25.5 ± 0.15 20.8 ± 0.2 25.7 ± 0.1 226.0 ± 2.9 432.0 ± 5.0 / /
Total 661.7 ± 21.1 604.7 ± 13.7 1160.5 ± 13.8 1119.5 ± 1.8 800.0 ± 7.5 1039.0 ± 4.0 193.0 ± 2.05 248.0 ± 3.0

Stilbenes
trans-Resveratrol 61.2 ± 18.6 34.9 ± 0.2 33.93 ± 0.34 26.37 ± 1.21 9.1 ± 0.1 / / /
ε-Viniferin 8.3 ± 0.6 7.6 ± 0.1 / / / /

Total 69.5 ± 12.8 42.4 ± 0.2 33.9 ± 0.2 26.4 ± 0.9 9.1 ± 0.2
/ = analyzed but not detected; all values are means ± SD. Abbreviation: AG, Aglianico; AG-Q, Aglianico added with oak chips; CS, Cabernet Sauvignon; IRA, Italian Riesling Agner;
IRB, Italian Riesling Bajilo; ME, Merlot; NT, Nero di Troia; NT-Q, Nero di Troia added with oak chips.
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2.2. Minor Components

Minor components of grape pomace include non-phenolic antioxidants such as toco-
pherols and β-carotene. These are molecules with high antioxidant potential that are mainly
present in grape seeds. Their content varies depending on grape varietal characteristics
and extraction methods; however, the average content of tocopherols ranges from 265 to
454 mg kg−1 [36,37]. In addition, grape pomace contains phytosterols mainly found in grape
seeds. Of these, the most abundant is β-sitosterol (69.80–61.54%), followed by stigmasterol
(11.87–16.03%), campesterol (10.79–9.28%), and sitostanol (3.47–3.97%) [37]. The main bio-
logical applications of phytosterols relate to the cardiovascular and metabolic areas due to
their marked cholesterol-lowering activities. Phytosterols are effective in inhibiting intestinal
absorption of dietary cholesterol, resulting in increased excretion of cholesterol through the
feces and subsequent significant reduction in blood concentrations [38]. Furthermore, an
important physiological component for its health-promoting characteristics, mainly found
in grape pomace, seeds, and stems, is represented by tannins—a class of water-soluble
polyphenolic compounds with molecular weights ranging from 120 to 3000 Da [39]. These
are non-nitrogenous compounds synthesized at the levels of roots, rhizomes, bark, immature
fruits, and seeds. According to their characteristics, tannins are classified into hydrolyzable
tannins and condensed tannins. Hydrolyzable tannins consist of a polyol, usually glucose,
which can be linked to gallic acid or ellagic acid, forming gallotannins (gallic tannins) and
ellagitannins (ellagic tannins), respectively. On the other hand, condensed tannins consist of
flavonoids (catechin and epicatechin) and polyphenols with antioxidant action, also called
protoanthocyanidins because their acid-catalyzed oxidation gives rise to anthocyanidins [40].
Because of their characteristics, tannins promote the natural balance of the bacterial flora and,
at high concentrations, can be considered antibacterial substances [41].

2.3. Dietary Fiber

Dietary fiber is defined as “edible parts of plants or analogous carbohydrates that
are resistant to digestion and absorption in the human small intestine with complete or
partial fermentation in the large intestine” [42]. Since its consumption is associated with the
improvement and control of many diseases, it is considered a beneficial component with
a central role in a healthy diet [43]. In this scenario, grape pomace is a highly functional
source of fiber, characterized by a good insoluble/soluble fiber ratio and low-calorie content.
Research literature reports a high content of hemicellulosic sugars present in the lignocel-
lulosic material of grape skins that, upon enzymatic hydrolysis actions, are converted to
xylose and glucose monomers [44,45]. Rhamnose, xylose, mannose, arabinose, galactose,
glucose, and uronic acid represent the monosaccharides mainly present in grape pomace,
and their composition appears to be rather distributed (Table 3). Comparing different culti-
vars of grape pomace, red grape pomace was significantly higher in dietary fiber compared
to white grape pomace, 51–56% and 17–28%, respectively [46]. Nevertheless, white grape
pomace was rich in soluble sugar (55–77% approximately). Scientific evidence classifies the
monosaccharide composition of grape pomace in 30% of neutral polysaccharides (cellulose,
xyloglucan, arabinan, galactan, xylan, and mannan), 20% of acidic pectin substances, and
15% of insoluble proanthocyanidins, lignin, structural proteins, and phenols [44,47,48]. Of
note, grape pomace fiber exerted many beneficial effects correlated to the consumption of
fiber on human health [49,50].

Table 3. Composition of monosaccharides (mol%) * of grape pomace of different cultivars.

Chardonay a Chardonay b Vitis vinifera L. c Cabernet
Sauvignon d Pinot Noir e Merlot f

Glucose 39.1 29.8 62.7 10.7 37.0 8.4
Arabinose 29.8 6.4 5.5 21.2 20.4 0.6
Mannose 8.5 4.8 4.8 19.9 11.8 1.1
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Table 3. Cont.

Chardonay a Chardonay b Vitis vinifera L. c Cabernet
Sauvignon d Pinot Noir e Merlot f

Galactose 14.5 3.9 4.9 15.5 8.8 1.2
Xylose 3.5 14.1 20.4 7.7 3.0 2.1

Rhamnose 4.6 0.1 1.7 3.8 2.0 –
Galacturonic acid – 40.7 – 21.2 17 –

* Average value determinations presented as relative mol%. a, Ferreira C.D.S. et al., 2013 [48]; b, González-Centeno
M.R. et al., 2010 [51]; c, Prozil, S.O. et al., 2012 [52]; d, Corbin, K.R. et al., 2015 [53]; e, Beres, C. et al., 2016 [44];
f, Deng, Q. et al., 2011 [46].

2.4. Fatty Acids

Due to the presence of grape seeds in grape pomace, its oil content is higher than that of
grape skin, which gives grape pomace an enrichment in fatty acids considered a good source
of healthful nutrients with known bioactive activities [12]. Among the fatty acids of grape
seeds, the unsaturated fatty acids (linoleic and oleic, respectively 60% and 18–20%) stand
out, followed by palmitic acid (5–7%), stearic acid (3%), myristic acid (3%), and palmitoleic
and linolenic acid present in lower amounts [29]. Overall, grape pomace is comparable to
some oilseeds (sunflower, corn, soy) in terms of acid composition, as they are characterized
by a low linolenic acid content [29]. Because scientific evidence reported that high levels of
linolenic acid were implicated in unpleasant odor and taste effects, a lower level of linolenic
acid in edible oils is preferred [54,55]. Therefore, grape pomace contains polyunsaturated
fatty acids (PUFAs) levels of approximately 63.64–73.53%, saturated fatty acids (SFAs)
levels of approximately 11.64-14.94%, and monounsaturated fatty acids (MUFAs) levels
of approximately 14.19–21.29% [56]. Consequently, grape pomace also has a high ratio
of PUFA/SFA and a high ratio of n−6/n−3 [29]. In addition, SFAs are all essential fatty
acids involved in maintaining the fluidity of the neuronal membrane and in controlling the
physiological functions of the brain by preventing the deterioration of brain functions [57].
Grapeseed oil is a product used in both cooking and cosmetics, as it boasts numerous
benefits for the human body. Its nutritional qualities are mainly due to its high content
of linoleic acid, an omega-6 series essential fatty acid known for its antioxidant and anti-
cholesterol properties [58,59]. Indeed, the high linoleic acid content in grape pomace seeds
becomes important in the regulation of low-density lipoprotein (LDL)-C metabolism.

2.5. Amino Acids and Biogenic Amines

Grape pomace contains considerable levels of amino acids, including tryptophan,
5-hydroxytryptophan, and L-dopa, some of which are precursors of serotonin and mela-
tonin with important biological activities. Indeed, serotonin is a monoamine neuro-
transmitter involved in neuromodulation, appetite regulation, and lipid and glucose
metabolism [60], whereas melatonin acts on the immune system as a potent scavenger of
hydroxyl radicals [61]. A recent chemical characterization study of different grape pomace
varieties showed high values of tryptophan, 5-hydroxytryptophan, and L-dopa with values
of about 118–153 mg kg−1, 20–80 mg kg−1, and 0.3–27 mg kg−1, respectively. Specifically,
the tryptophan values recorded for grape pomace were higher than those of other fruits, as
previously published [62]. Microbial decarboxylation of amino acids produces biogenic
amines, low molecular weight amine bases with some biological activity. Being biologically
active on the nervous and vascular systems, biogenic amines can cause headaches, redness,
palpitations, and various allergic reactions in humans depending on their concentration
and individual sensitivity. Biogenic amines of fermentative origin can be present in many
fermented beverages, such as wine [16]. The most frequent biogenic amines in wine are
histamine, tyramine, and 2-phenylethylamine—with the highest toxicity—and putrescine,
cadaverine, spermine, and spermidine, which, although not very toxic in themselves,
enhance the effects of other biogenic amines and represent possible precursors for the
formation of nitrosamines, potentially carcinogenic substances [16]. The toxicity of biogenic
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amines is related to quantities. Specifically, 440.6 mg kg−1 of histamine and 301.8 mg kg−1

of tyramine are considered toxic [63]. However, chemical characterization studies of grape
pomace recorded values lower than the established limits of biogenic amines, probably
due to the absence of undesired fermentation by microorganisms [16]. In addition, grape
pomace from Barbera, Chardonnay, Muscat, Müller-Thurgau, Nebbiolo, and Pinot Noir
was studied for biogenic amine content, and the results reported values of putrescine,
cadaverine, ethanolamine, and ethylamine below the permitted ranges [64]. Therefore,
results from the literature suggest a careful selection of grape pomace for obtaining flour
and/or extracts for use in the food sector, not only based on their polyphenol and fiber
content but also on contaminants that are co-extracted with the compounds of interest.

3. Bioactive Compounds from Grape Pomace and Its Healthy/Functional Applications

Grape pomace components are recognized as bioactive molecules with known benefi-
cial effects on human health (Figure 2). This paragraph encompasses the biological effects
related to the grape pomace molecules, such as anti-inflammatory, antioxidant, anti-tumor,
antibacterial activity, and anti-hypercholesterolemic activity.
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3.1. Cardiovascular Properties

Cardiovascular disease is the leading cause of death worldwide, mainly due to
atherosclerosis [65]. The appearance of atherosclerotic plaques causes the narrowing
of vessels resulting in reduced blood supply to affected areas promoting ischemic events.
To date, therapeutic angiogenesis with colony-forming endothelial cells (ECFCs) represents
a new strategy to rebuild the vascular network damaged by ischemia. ECFCs are excellent
cells for vascular regeneration due to their pronounced angiogenic ability. However, ECFCs
need to be pre-stimulated in vitro with antioxidant substances to enhance this ability. Re-
cent studies have shown that anthocyanin—phenolic acid rich in grapes—promotes the
pro-angiogenic effect of these cells [66] and that resveratrol enhances the angiogenesis of
cord vein endothelial cells [67]. Moreover, resveratrol also induced the differentiation of
vascular progenitor cells into endothelial cells critical for new vessel formation [66]. In
addition to the pro-angiogenic effects induced by the bioactive compounds present in grape
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pomace, they could directly reduce atherosclerosis, as demonstrated by several experimen-
tal studies. Thus, grape polyphenols reduce the atherosclerotic process by (i) inhibiting LDL
oxidation, reducing LDL and VLDL levels, and increasing HDL levels; (ii) lowering blood
pressure; (iii) inhibiting platelet aggregation; (iv) reducing pro-inflammatory processes and
activating proteins that prevent cellular senescence [68].

Platelet aggregation is involved in several disease processes, such as stroke and my-
ocardial infarction. Several agonists and adhesion proteins mediate platelet reactivity.
Indeed, platelet cell membranes have numerous receptors that mediate their activation
upon injury to form platelet plugs and stop bleeding [69]. However, excessive platelet
activation activated by several factors such as thrombin, adenosine diphosphate (ADP),
adenosine triphosphate (ATP), and collagen may occur in some pathological cases [11,70].
Following platelet activation, G proteins associated with these membrane receptors result
in an increase of (Ca +2) in the cell cytosol. This increase releases arachidonic acid (AA),
which in turn is converted to thromboxane A 2 (TXA 2) by cyclooxygenase-1 (COX-1) in
the platelet cytosol, causing platelet activation and aggregation. This causes the release
of certain metabolites that can further aggravate the atherosclerotic lesion. Flavonoids
can inhibit platelet activation and aggregation through the inhibition of AA activation
or blockade of ADP and collagen [71–73]. For example, resveratrol in 20 healthy volun-
teers reported antiplatelet effects as it increased nitric oxide (NO) production, which
in turn inhibits platelet aggregation as it causes an increase in platelet NO synthase
enzyme activity [74].

Grape pomace phenolic extracts showed cardioprotective effects in ex-vitro models
in male Winstar rats. Specifically, rat arteries were treated with grape pomace extracts
at concentrations ranging from 0.0001 to 0.03 g/L. The extracts resulted in relaxation in
aortic rings in a dose-dependent manner through the activation of endothelial nitric oxide
synthase. Moreover, the antioxidant activity of the phenolic compounds inhibited the
contraction of aortic rings caused by endothelin-1 [75]. In addition, in subjects with high
cardiovascular risk and healthy subjects, the culinary use of grape pomace-based condiment
significantly reduced blood pressure and fasting blood glucose, assessing its promising
strategy against these factors [76]. Obesity certainly stands out among the risk factors
leading to atherosclerotic plaque formation. Obese male mice induced to follow a high-fat
diet for 12 weeks gained 29% more weight than those given a normal diet. Norton grape
extract (GPE) supplementation was observed to lead to a reduction in plasma levels of
C-reactive protein and pro-inflammatory action, demonstrating the positive antioxidant
effects of GPE in managing these risk factors underlying cardiometabolic imbalances [77].

3.2. Antioxidant and Antidiabetic Properties

The best-known activity of polyphenols is antioxidant activity, which consists in
neutralizing free radicals, preventing cellular damage, and the subsequent risk of conditions
such as cancer, diabetes, and heart disease [78]. Grape pomace has been studied for
its antioxidant and antidiabetic effects. Because hypertension and diabetes are related
to a stage of inflammation and increased oxidative stress, a recent study evaluated the
effects of grape pomace on attenuating these parameters in hypertensive and diabetic rat
models [79]. The results of these experiments showed a positive role of grape pomace
polyphenols against endothelial dysfunction and vascular remodeling in rats by decreasing
the formation of reactive oxygen species (ROS) (Figure 3). A previous study investigated
the mechanisms of the antioxidant activity of grape pomace. Grape pomace extracts
at different concentrations were tested on muscle and endothelial cells, evaluating the
enzymatic activities of critical antioxidant enzymes, namely catalase (CAT), superoxide
dismutase (SOD)1, heme oxygenase 1 (HO-1) and gamma-glutamylcysteine synthetase
(GCS). Treatment with grape pomace reduced GCS levels in both cell models. On the other
hand, regarding the expression of CAT activity, it had a different trend for the two cell lines,
decreasing in muscle cells and conversely increasing in endothelial cells [80].
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Figure 3. Effects of grape pomace polyphenols. (1) Polyphenols reduce the production of ROS. ROS
diffused in the cell or exploded from mitochondria stimulate the activation of MAPKs, NF-κβMAPKs,
and NF-κβ determine the inflammatory transcription factor characteristics of pro-inflammatory me-
diators. Transcription of antioxidant enzymes is determined by the dissociation of Nrf2. (2) Polyphe-
nols inhibit the activation of TLRs by bacterial toxins and PAMPs, which in turn activates NF-κβ.
(3) polyphenols inhibit the NF-κβ pathway leading to the release of pro-inflammatory cytokines,
which (4) cause cell membrane destruction and inflammation. (5) Polyphenols reduce LDL-C levels
and the formation of oxLDL. Arrows indicate activation, and perpendicular lines indicate inhibi-
tion. Blu arrows indicate a decrease. Abbreviations: AP1, activator protein 1; CAT, catalase; ERK,
extracellular-signal-regulated kinase; GPx, glutathione peroxidase; HO-1 heme oxygenase 1; IL-1β,
interleukin-1β; IL-6, interleukin-6; IL-8 interleukin-8; JNK, c-Jun N-terminal kinases; LDL-C, low-
density lipoprotein cholesterol; MAPK, mitogen-activated protein kinases; NF-κβ, nuclear factor κ
light chain enhancer of activated B cells; Nrf2, nuclear factor erythroid 2 related factor 2; oxLDL,
Oxidized LDL; PAMPs, pathogen-associated molecular patterns; ROS, reactive oxygen species; SOD,
superoxide dismutase; TLRs, Toll-like receptors; TNF-α, tumor necrosis factor-α.

An important aspect concerns the different effects of polyphenols, which may have
antioxidant or pro-oxidant activity depending on the dose of administration. Specifically,
resveratrol—one of the most extensively studied polyphenols—showed mixed results in
the literature, largely due to differences in administration doses and duration of treatment.
Many of the dose-dependent responses induced by resveratrol, in vitro and in vivo, lead
to positive responses at low doses and cytotoxic responses at high doses that could be
explained by a dose-response effect [81,82]. In certain cases, resveratrol showed pro-
oxidant effects by causing DNA damage in colon cancer cells through topoisomerase II and
activation of ataxia-telangiectasia mutated kinase, triggering apoptosis [83,84].

Moreover, phenolic substances in grape pomace are involved in blood glucose control
in diabetes as they act by delaying the hydrolysis of complex sugars and promoting a
decrease in the release of glucoside units into the blood [85]. The study showed that
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grape pomace polyphenols, mainly catechin, peonidine-3-O-acetylglucoside, quercetin-3-O-
glucuronide, and isorhamnetin-3-O-glucoside, can inhibit α-amylase maintaining normal
blood glucose levels. Furthermore, while these polyphenols inhibited pancreatic and
salivary α-amylases, no inhibitory action was found on α-glucosidase levels [85]. On the
contrary, another study demonstrated inhibition of α-glucosidase levels in male diabetic
C57BLKS/6NCr mice treated with streptozocin to induce diabetes and subsequently fed
with grape pomace extract (400 mg/kg body weight). The introduction of grape pomace
resulted in a 35% suppression of postprandial hyperglycemia through the inhibition of
intestinalα-glucosidases. Thus, the hypoglycemic activities of grape pomace extract suggest
how bioactive compounds derived from grape pomace can be used in the management
of diabetes [86].

Moreover, grape pomace had a positive effect on the modulation of some metabolic
parameters associated with a high fructose content (HF) diet. Specifically, the plasma
profile of glucose, insulin, and triglycerides was evaluated in 40 rats fed both with an HF
diet and HF + grape pomace at a low level (HF + LP) or a high level (HF + HP). In the
first case, an increase in the plasma levels was observed, while in the groups treated with
grape pomace, this increase was reduced. Postprandial plasma triglyceride levels were also
higher in HF mice compared to HF + LP and HF+HP groups. In addition, the HF group
showed an increase in glucose intolerance and insulin resistance (by 25%) assessed with
the homeostatic model assessment (HOMA) index. The inclusion of a grape pomace-based
diet restored insulin sensitivity and glucose tolerance. Therefore, grape pomace, due to the
high content of polyphenols, acts not only with hypoglycemic effects but also improves the
imbalances associated with serious forms of diabetes [87].

3.3. Anti-Inflammatory Properties

Oxidative stress activates redox-sensitive inflammatory molecules that amplify the
inflammatory response of cytokines, chemokines, and lymphokines by inducing vascu-
lar inflammation [88]. Several findings reported that resveratrol—the main compound
extracted from the skin and seeds of grape varieties—has potent anti-inflammatory and
immunomodulatory properties [89,90]. Generally, the anti-inflammatory effects of grape
pomace polyphenols are achieved in several pathways, including reducing the genera-
tion of mitochondrial reactive oxygen species (ROS), tumor necrosis factor-alpha (TNF-α),
interleukin-1-beta (IL-1β), interleukin-6 (IL-6), nuclear factor kappa light chain enhancer of
activated B cells (NF-κβ) (Figure 3) [91,92].

Of particular interest is the ability to reduce obesity-related disorders through the use
of grape pomace extracts showing a reduction in inflammation and oxidative stress as a
result of gut microbiota regulation leading to potential clinical benefits. Since obesity is
associated with inflammation and oxidative stress [93], a clinical study investigated the
effects of bioactive compounds in grape pomace on the reduction of obesity through their
antioxidant and anti-inflammatory actions [79]. Specifically, Wistar rats were subjected to a
high-fat diet for 14 weeks coupled with the administration of 100 mg of grape pomace/kg
body weight. Following constant weekly monitoring of liver antioxidant and lipid status,
fat, and adipocyte size, the results obtained showed a significant reduction in body weight
and abdominal adipose area, a decrease in blood glucose, liver weight, and lipids, increase
in antioxidant status and subsequent reduction in adipocyte size by down-regulating the
NF-κB pathway.

Moreover, Merlot grape pomace extracts were tested in arthritic rat models to evaluate
the inflammation response and investigate the effect on oxidative states. Administra-
tion of 250 mg of grape pomace extract/kg body weight for 23 days reported significant
changes in inflammation-related pathways and biomarkers, suggesting its potential use as a
food additive [94].

TNF-α, IL-1, IL-6, IL-8, and C-reactive protein (CRP) are known inflammatory mark-
ers, among which IL-1 and TNF-α are the most important cytokines that induce NF-kB
expression, i.e., the potential target in inflammatory diseases [95]. In this regard, scientific
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evidence highlighted the effect of Petit Verdot grape pomace extract in reducing TNF-α and
IL-1β levels in peritoneal fluid evaluated in two models of acute inflammation [96]. The
anti-inflammatory effect of grape pomace in combination with tannase was also confirmed
in subsequent studies conducted on Caco-2 cells [97,98]. The results showed the ability of
tannase-treated grape pomace to inhibit IL-1β-induced NF-κB activation.

The anti-inflammatory effect of grape pomace extracts was evaluated in vitro by mon-
itoring the expression of inflammatory molecules (TNF-α, IL-1β, iNOS) on N13 microglia
cells stimulated with lipopolysaccharide and treated with grape pomace extracts. The
results of the experiments reported decreased mRNA levels of the above-mentioned in-
flammatory molecules [99]. Of note, the anti-inflammatory effects of grape pomace mainly
concern red grape pomace, whereas white grape pomace is less studied. Little scientific
evidence exists in the literature on the anti-inflammatory properties of white grape po-
mace. However, white grape pomace polyphenols, primarily gallic acid, procyanidin B3-4,
and epicatechin, have been reported to reduce TNF-α-induced inflammation in human
embryonic kidney HEK293 cells [100].

3.4. Anti-Cancer Properties

The anti-cancer activity of grape pomace polyphenols has been reported in the context
of their preventive effects on several diseases, which has led to the commercialization of
several polyphenol-rich food supplements [101]. The effects of grape pomace polyphe-
nols on cancer have been extensively investigated. Scientific literature reported results
obtained in different cancer models, mainly prostate cancer and colorectal cancer. Resver-
atrol was studied for the prevention and treatment of human cancer on human prostate
cancer DU145 cells. Indeed, treatment with resveratrol at different concentrations (12.5,
25, and 50 µM) in DU145 cells resulted in a dose-dependent inhibition of cell growth by
inducing morphological changes and cell death by apoptosis [102]. The apoptotic effects of
resveratrol were confirmed by protein and mRNA expression, showing inhibition of D-type
cyclins and cyclin-dependent kinase (Cdk) 4 and the increase of tumor suppressor p53 and
inhibitor of the CDk p21. In addition, increased levels of Bax were recorded [99]. Similar
results were observed in a subsequent study in colonic carcinogenesis models in mice
treated with the carcinogenic compound azoxymethane/dextran sulfate sodium. Grape
pomace treatment reduced tumor size and suppressed the expression of inflammatory
cytokines, reducing the levels of p53 and cyclin D1 [103]. Recently, the molecular mecha-
nisms underlying this effect in the same models and the microbiota-derived metabolites
that mediate the beneficial effects of grape pomace have been studied [104]. Metabolomics
analysis based on gas chromatography-mass spectrometry revealed an upregulation of
gene expression downstream of the farnesoid X receptor by decreasing fecal urease activity.
Furthermore, an upregulation of the enzyme involved in DNA repair MutS Homolog 2 and
a relative similarity of the DNA damage marker were obtained following treatment with
grape pomace.

Grape pomace also showed anti-proliferative activity in Caco-2 and SW620 cells follow-
ing fermentation processes to obtain a maximum yield of phenolic compounds [104]. The
fermented grape pomace reduced cell growth by about 60% at the different concentrations
tested by inducing changes in the cell cycle [104]. The effect of grape pomace polyphenols
subjected to in vitro gastrointestinal digestion was also studied and recognized as a method
to increase the bioaccessibility and bioavailability of polyphenols [17]. A recent study aimed
to test the phenolic compounds of grape pomace, following the in vitro gastrointestinal
digestion, previously analyzed for both antioxidant activity and phenolic composition by
UHPLC-DAD, on colon cancer cell lines at different degrees of differentiation (HT29 and
SW480) [105]. Experiments confirmed the anti-proliferative and pro-apoptotic effects of
digested grape pomace extract. Interestingly, both colorectal cancer cell lines produced a
significant increase in Bax, Bax/Bcl-2 ratio, and caspase-3 and a significant decrease in Bcl-2.
The effects of grape pomace on cell proliferation agree with previous works confirming a
dose-dependent action. In a previous study, concentrations of 10, 25, 50, and 100 µg/mL of
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grape pomace extract were tested on Caco-2 cells treated for 24, 48, and 72 h. The results
showed a significant dose-dependent cell proliferation inhibition effect at concentrations of
25, 50, and 100 µg/mL of grape pomace, with no differences between the different hours
of exposure [13]. Furthermore, the grape pomace tested on Caco-2, HT-29 cells, resulted
in the overexpression of a Ptg2 gene encoding cyclooxygenase-2—a protein involved in
inflammation related to some colorectal cancers [106].

3.5. Anti-Microbial Properties

In addition to the above-mentioned health attributes as antioxidant and anti-inflammatory
agents, grape pomace polyphenolic extracts have shown effective antimicrobial capacity. The
antimicrobial action of grape pomace polyphenols can be traced to both direct activities
against pathogens through damage to their bacterial cell and the inhibition of certain virulent
factors [107]. A previous in vitro study showed that resveratrol exerted a potent antimicrobial
activity [108]. The antimicrobial activity of grape pomace extracts makes them potentially
useful in products for the food, pharmaceutical, cosmetic, and biomedical industries. Six
different bacterial strains, including three Gram-positive bacteria (Staphylococcus aureus, En-
terococcus faecalis, and Listeria monocytogenes), three Gram-negative bacteria (Escherichia coli,
Pseudomonas aeruginosa, and Salmonella enteridis) and three yeasts (Enteritidis, Candida krusei
and Candida tropicalis) were used to evaluate the antimicrobial effect of grape pomace. The
main results confirmed their positive effect against Gram-positive compared to Gram-negative
bacteria and yeasts [108]. Further studies confirmed similar results, highlighting the inhibitory
effects of grape pomace also on other bacterial species such as Helicobacter pylori, Strepto-
coccus sanguis, and Bacillus cereus [109–111]. In addition, the antimicrobial effects of grape
pomace polyphenols were tested in combination with a probiotic to evaluate the growth of
pathogenic microorganisms such as Escherichia coli, Bacillus megaterium, and Listeria monocy-
togenes. The probiotic Lactiplantibacillus plantarum (L. plantatum) showed an increase of one
logarithmic cycle after 24 h of incubation with grape pomace; moreover, pathogenic microor-
ganisms were inhibited by the synergistic action of grape pomace and L. plantatum, reduced
by three logarithmic cycles [6]. Therefore, these results suggest the enhancement of grape
pomace also in new applications of the agri-food chain for the control of food quality and
safety parameters.

3.6. Anti-Aging Properties

Polyphenols are substances often associated with cosmetics as they possess a high
antioxidant power that counteracts the formation of free radicals, blocking the process of
premature skin aging and fighting external exogenous factors that undermine the health
and beauty of the skin [112]. By defending the skin from damage by ultraviolet rays, smog,
and the aggressive action of external weather agents such as wind, humidity, or temperature
changes, polyphenols help to keep the surface lipid barrier and protein structures of skin
cells strong. In this regard, numerous studies have been conducted on grape pomace
polyphenols to identify phytochemicals and potential applications of bioactive compounds
for skin care products, which can produce high-value ingredients useful for cosmetic
formulations. The bioactive compounds of grape pomace, as previously reported, are
mainly polyphenols such as catechin, epicatechin, gallic acid, resveratrol, fatty acids, and
vitamins. Grape pomace acts with inhibitory effects on the activity of collagenase and
elastase, proteolytic enzymes related to skin aging [27]. Wittenauer et al. (2015) conducted
a study evaluating grape pomace polyphenols for their antioxidant effects, showing high
antiradical capabilities [113]. In addition to antioxidant potential, a cosmetic application
was tested using grape pomace as an inhibitor of the activity of proteolytic enzymes such as
collagenase and elastase, which are linked to skin aging. These enzymes are responsible for
the degradation of dermal protein structures, thus confirming their suitability for anti-aging
cosmetic preparations. In this study, the best results of enzyme inactivation were obtained
with hydrophilic polyphenols, such as low molecular weight phenolic acids, particularly
gallic acid [113].
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4. Grape Pomace for Agri-Food Use

Alternative uses of grape pomace have recently been adopted, as fertilizer for fields,
composted, distilled, used to produce tartaric acid, cream of tartar (potassium bitartrate)
and dyes, added to animal feed or used for energy production, and as a colorant through
the extraction of enocyanin [18,114]. In recent years, there has been a growing interest
in specific compounds obtained from grape pomace and a growing interest by the wine
industries in reducing the impact of their products and reducing the volume of waste
and disposal costs. This has led to an increased interest in research for more efficient
utilization of these by-products rich in high-value-added substances. Several bioactive
compounds are found in grape pomace and grape seeds, including proteins, polyphenols,
and polyunsaturated fatty acids, which are used in numerous applications in various
fields, such as cosmetics and nutraceuticals. Therefore, it becomes important to develop
methods that allow these by-products to be used in a comprehensive, large-scale, and
economical way. Grape pomace can be valorized by following different strategies due
to its chemical characteristics and the presence of a wide variety of high-value-added
compounds. Different applications of grape pomace are listed and described as follows.

4.1. Biogas and Bioethanol

Grape pomace is used to produce grappa, and after distillation, their oligosaccharide
can be reused to produce bioethanol. The possibility of reusing grape pomace as a source
of energy substances has grown in recent years with a focus on low-impact energies [115].
Comparing the cellulose content of grape pomace with other agricultural biomasses, it
seems possible to use grape pomace for biogas and bioethanol production. Anaerobic
digestion for biofuel production is particularly suitable for processing grape pomace, as it
has a high content of nutrient-rich organic matter and considerable energy potential. In
producing bioenergy from grape pomace, however, it is necessary to consider the variability
of the biomass used, as different substrate characteristics lead to different results in biogas
production. Grape type, origin, and treatments undergone during the winemaking process
are factors that influence substrate variability [116]. During the anaerobic digestion process,
grape pomace undergoes biochemical reactions that lead to the production of simple
monomers, their conversion to volatile fatty acids and then to acetates, hydrogen, and
carbon dioxide, and finally to the production of biogas by methanogenic bacteria [117].
It was shown that the presence of lignin in grape pomace does not allow its degradation
under anaerobic conditions, resulting in lower methane yields [118]. In contrast, was
demonstrated a yield of 420 L methane/kg volatile solids using a continuously stirred
reactor for 20 days [119]. Anaerobic digestion of grape pomace is used as a fuel source to
produce low-cost energy. Because biogas is produced at lower temperatures than other
thermal conversion technologies, this allows for lower economic investment and improved
plant functionality. A low-voltage dynamic process simulation system produced 94 MWh
per 1000 t of crushed grapes [120]. In addition, the economic aspect related to the costs
of anaerobic digestion was examined in a subsequent study, which showed lower costs
than distillation, confirming the potential of pomace for energy valorization [121]. Another
alternative for biofuel production is the fermentation of sugars by the yeast Saccharomyces
cerevisiae. Ethanol can be obtained from the fermentation of residual sugars, and in addition,
the hydrolysis of complex polysaccharides into more digestible sugars can lead to an
improvement of the nutritional values of these by-products, making them more suitable for
use in animal feed. Grape pomace contains a considerable amount of carbohydrates, most
of which are soluble monosaccharides (glucose and fructose) and complex polysaccharides
(pectins, heteroxylans, xyloglucans, and cellulose). Soluble carbohydrates can be converted
directly to ethanol through fermentation, with yields exceeding 270 L/ton of ethanol;
alternatively, yields can be increased by subjecting grape pomace to acid pre-treatment
followed by enzymatic hydrolysis. Overall, grape pomace has the potential for bioethanol
production, with yields varying by grape pomace type, 211 L/ton and 400 L/ton of ethanol
from red and white pomace, respectively [53].
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4.2. Bio-Fertilizer

In addition to biofuel production, grape pomace is also used for compost production.
Composting is a commonly used treatment for the disposal of biological residues, and
it is a process in which organic material is decomposed by aerobic microbial activity un-
der mesophilic conditions by stabilizing organic substrates at thermophilic temperatures.
Burg et al. (2014) investigated the feasibility of targeting grape pomace for composting [122].
In this study, the composting process of compost masses consisting of different percentages
of grape pomace, waste plant material, chips, and manure was monitored. Each compost
mass was subjected to a sanitization/remediation process at 45 ◦C for 5 days. The authors
showed that the composting process represents an effective use of grape pomace, asserting
that the resulting compost is considered a high-quality organic fertilizer, comparable in
terms of chemical values to other organic composts. However, one of the limiting factors is
the acidic pH of the grape pomace, which requires adjustment before processing for com-
posting. Experiments conducted by Paradelo et al. (2013) showed a low volume of nitrogen
available for microbial activity and failure to achieve thermophilic conditions leading to a
pH toward neutrality [123]. More recently, models of co-composting grape pomace with
other organic materials have been evaluated. The results of a study by Zhang and Sun
(2016) showed the good performance of grape pomace compost added to sugarcane bagasse
and the good chemical characteristics of water content and carbon/nitrogen ratio [124].
Therefore, the compost produced had higher microbial and enzymatic activity and shorter
lignocellulosic degradation times than the control. Further work on co-composting grape
pomace was studied in combination with municipal solid waste in equal amounts [125].
The combination of the two organic materials produced a neutralization of the acidic pH
of grape pomace resulting in a product rich in nitrogen and phosphorus. In addition, the
addition of grape pomace to municipal solid waste had less impact on odor emissions
compared to composting municipal waste alone. In addition, red and white grape pomace
were evaluated for soil pest inactivation. While white grape pomace showed good soil pest
inactivation characteristics, in contrast, red grape pomace was not suitable as it induced
undesirable soil methanogenesis [126]. Because the presence of polyphenols in grape
pomace compost can cause phytotoxic effects in the soil, the vermicomposting technique
is considered a viable alternative to using pomace as a fertilizer. Vermicomposting with
grape pomace in reactors for 112 days resulted in a reduction of the polyphenolic content
by about 80% and an increase in pH to neutral values [127].

4.3. Tartaric Acid

Another interesting product recovered from grape pomace is tartaric acid. Techniques
for recovering tartaric acid from grape pomace involve the extraction by hydrochloric acid
and subsequent precipitation of tartrate with calcium salts, which is converted to tartaric
acid by sulfuric acid. The extraction efficiency of tartaric acid from grape pomace can
be affected by several factors, including the temperature conditions used, pH level, and
calcium chloride levels. Hot water provides higher yields of tartaric acid/kg grape pomace,
as well as specific pH values of 6.8 and high calcium chloride rates [115]. The recovery
yield of tartaric acid varies between 50 and 75 g of tartaric acid/kg of grape pomace [128].
Due to its antioxidant, pH regulator, and preservative properties, tartaric acid is widely
applied in various food categories, including dairy products, edible oils and fats, fish and
meat products, fruits and vegetables, and soft and alcoholic beverages. Potassium tartrates
are also used in baked goods because of their ability to react with sodium bicarbonate to
produce carbon dioxide without requiring fermentation processes [128].

4.4. Natural Dyes

A further field of application of grape pomace concerns its use as a source of natural
dyes. The use of grape pomace as a colorant in the food industry depends on several factors:
the method of extraction of the anthocyanin component and the characteristics of the food
product to which the enocyanin is to be added. A study conducted by Bechtold et al. (2007)
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evaluated the different extraction capabilities of anthocyanin dyes from grape pomace of
different grape varieties, using aqueous extraction to compensate for the consumption
of chemicals used in textile dyeing processes [129]. In addition, an optimized dyeing
procedure was used to evaluate the correlation between the concentration of anthocyanins
extracted and the intensity of the preserved color. Among the grape pomace tested, those
belonging to the Blauburger grape variety presented the highest concentration of extracted
anthocyanins (126 mg dm−3), followed by Cabernet Sauvignon (75 mg dm−3) and Blauer
Burgunder (70 mg dm−3). The amount of extracted anthocyanins was comparable to that
determined on other matrices, such as blueberries. In addition, the extracts were compared
with commercial reactive dyes to estimate the color intensity of the extracted substance.
Particularly, anthocyanins extracted from Blauburger showed comparable color intensity to
commercial reagents. Dyeing tests had not yielded promising results, as the color yield was
unsatisfactory. However, by adopting a pre-dye with 30% of tannin, intense red/purple
shades could be obtained on cotton fabrics [129]. A more recent study evaluated to define
an optimal dyeing process from anthocyanins extracted from grape pomace using an
aqueous extraction [130]. The main results showed that the optimal factors of the dyeing
process are the temperature of 100 ◦C, the duration of 55 min, and the pH of 8. Another
study evaluated the ultrasonic technique to use the anthocyanins extracted from grape
pomace, achieving a good color rendition of fabrics dyed with grape pomace compared to
conventional dyeing [130]. In addition, color changes of anthocyanins as a function of the
pH of the medium and color stability in terms of intensity and hue following acetylation,
polymerization, and condensation reactions are well known [131]. Moreover, the color
changes of anthocyanins as a function of the pH of the medium and the stability of the color
in terms of intensity and shade following acetylation, polymerization, and condensation
reactions are well known [132]. In addition, the presence of sulfites in the food can lead to
a drastic decrease in color due to anthocyanin–sulfite discoloration reactions [129]. Despite
these problems, enocyanin has always been used as a colorant in the food sector on matrices
such as milk, ice cream, beverages, juices, jams, and other food preparations, and has stable
characteristics when added at concentrations between 20 and 60 ppm [129].

4.5. Oxidative Stability and Shelf-Life Improvement

Since modern society promotes the valorization of by-products and food waste to
support human health, research focuses on the development of innovative biotechnologies
to produce new food with a higher nutritional value starting from grape pomace, enriched
with bioactive compounds displaying antioxidant, anti-inflammatory, cytoprotective, and
other important biological activities. Amendola et al. (2010) studied the chemical and
physical characteristics of a phenolic extract obtained from grape pomace of red grape
cultivars [132]. The extract was obtained by hydroalcoholic extraction and subsequent
freeze-drying and showed stable total phenolic content and antioxidant activity when
stored at 25 ◦C in a closed container protected from light for up to 300 days. Spigno et al.
(2013), taking advantage of these results, studied the ability of phenolic extract as a natural
additive to improve the shelf-life of hazelnut paste [133]. To test the protection from lipid
oxidation of the product with the addition of freeze-dried grape pomace extracts, the
hazelnut paste was stored at 60 ◦C for 5 days, thus accelerating the rancidity process of the
product. The authors demonstrated the effectiveness of a pomace extract in improving the
shelf-life of hazelnut paste by inhibiting its oxidation, despite the limited solubility of the
extract in a matrix containing a high lipid concentration.

Other scientific evidence showed the application of grape pomace powder to control
oxidative stability, such as in the production of cured meat products. The grape pomace
polyphenols play an antibacterial role and do not negatively affect the production of cured
meats [134]. In these studies, grape pomace flour was used to replace nitrites and nitrates
as a source of polyphenols in making salami. The addition of polyphenols delayed the
oxidative reactions that lead to the onset of unpleasant and altering flavors and odors of
normal fermentation, as measured by the thiobarbituric acid reactive substances index
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(TBARS) [135]. Lipid oxidation is one of the main factors contributing to the worsening
shelf-life of meat preparations. It is divided into two phases: primary oxidation, which
induces the formation of hydroperoxides, conjugated dienes, and trienes, and secondary
oxidation, which involves the release of volatile compounds. As a result, sensory quality
is significantly reduced, as are nutritional value and technological properties [136]. In
addition, phenolic extracts from grape pomace are also used as substitutes for synthetic
antioxidants in the production of processed meats, such as hamburgers, showing good
oxidative stability and color characteristics [137,138]. Positive effects of grape pomace
flour have also been obtained on the quality parameters of salmon burgers in terms of
oxidative stability, physicochemical, and sensory characteristics [139]. Moreover, grape
pomace extract has been shown to minimize changes in flavor, color, texture, and lipid
oxidation during the freezing of seafood products [140,141]. The grape pomace activity
of protecting and stabilizing oxidative processes was also confirmed in beef by feeding
animals with grape pomace for 90 days [142]. The main results showed the positive effect
of the grape pomace diet on increasing antioxidant activity and reducing coliform. In
addition, the grape pomace diet resulted in reduced oxidation of meat lipids and proteins,
with lower TBARS values. On the contrary, breadsticks fortified with different percentages
of grape pomace powder (5% and 10%) showed a decreasing trend in shelf-life probably
due to pro-oxidant molecules or the presence of polyunsaturated fatty acids, although
giving breadsticks a higher fiber content [143].

4.6. Source of Fiber

As largely investigated, grape pomace allows for increasing fiber content when added
to foods. Recently, grape pomace flour has been used to make leavened bakery products,
such as pizza bases, with high nutritional value. In the study conducted by Difonzo et al.
(2023), the authors partially replaced wheat flour with grape pomace flour in amounts
of 15, 20, and 25% [144]. The pizza bases were analyzed for polyphenol content, antiox-
idant activity, physico-chemical characteristics, and volatile compounds. Experimental
products with the addition of grape pomace flour presented higher polyphenol content
and antioxidant activity and high fiber content (6 g/100 g) already with 15% of flour sub-
stitution, allowing the nutritional claim “enriched in fiber”. From a technological point
of view, pizza bases with the addition of grape pomace flour showed different textural
aspects for hardness and chewability parameters. Moreover, since the aroma and flavor of
grape pomace can affect the acceptability of the product, a sensory analysis of the pizza
bases was conducted, showing pungent and musty notes due to the presence of some
volatile compounds determined, such as aldehydes, alcohols, and esters, correlated with
the parameters of astringency and acidity. A similar technological application of grape
pomace flour involved its use in the production of muffins with reduced fat content and
increased fiber content. The resulting muffins had good characteristics of polyphenolic
content, fiber content, and antioxidant activity [145]. Other scientific studies have focused
on the use of grape pomace flour in unleavened bakery products, such as breadsticks [146].
In this study, technological approaches were implemented to produce fortified breadsticks
by replacing wheat flour with 0.5 and 10 g 100 g−1 of grape pomace flour. The authors
characterized the experimental samples for functional attributes (fiber content and an-
tioxidant activity), rheological characteristics, and sensory attributes. The results of these
analyses, according to further study [143], showed the promising characteristics of grape
pomace flour in the production of fiber-rich and bioactive fortified breadsticks. Another
application case involving the use of grape pomace flour to produce bread evaluated the
nutritional and sensory characteristics [147]. Grape pomace used in this study belonged to
different vine cultivars and was substituted for white flour at the rate of 5% and 10%. The
fiber content of the bread was affected by the different grape pomace cultivars, showing a
significant increase in insoluble fiber with the addition of 10% Cabernet Franc and Cabernet
Sauvignon grape pomace. In addition, the sensory aspect is a key parameter for consumer
acceptability. Sensory evaluations had shown significant effects on panelists’ preferences



Sustainability 2023, 15, 9075 18 of 26

for aroma, flavor, and texture parameters of bread-related to the different grape pomace
cultivars rather than to the percentage of substitution. Overall, the grape pomace cultivar
Cabernet Sauvignon showed the best preferences in color, aroma, and texture compared to
the others, achieving similar acceptability values to those of white bread.

4.7. Source of Pectins

Among the fermentable soluble fibers of grape pomace, pectins are of particular
interest for food applications. Grape pomace is an unconventional source of pectins, which
makes it promising for use in food formulations, such as condiments, toppings, and yogurt.
In fact, the pectin content of grape pomace is about 3.92 g/100 g of pomace [148]. Therefore,
grape pomace, in addition to conferring good properties of antioxidant activity and fiber
content, is considered a good source of pectin used as an additive in the food industry
to improve texture and rheology [15]. The recovery of certain bioactive molecules from
grape pomace is a crucial aspect to better use them in the food sector. The extraction yield
of pectins from grape pomace depends on various factors, including the type of solvent
used [15]. The principal solvents used for pectin extraction are water and buffers, acids,
bases, and calcium chelators. Scientific evidence confirms that among the acids, citric acid
allows to obtain better yields [149,150]. Furthermore, the ultrasonic extraction technique
conferred higher pectin extraction yields than conventional techniques [151]. Another
aspect that influences the extraction of pectins concerns the variety of grape pomace. Red
grape pomace varieties produce a higher amount of extracted pectin than white grape
pomace [46]. Pectin is a highly perishable substance, and its activity is strongly influenced
by storage conditions. In this context, a recent study evaluated the effects of different drying
methods on the physio-chemical characteristic of extracted pectin from grape pomace [152].
Among convective drying, freeze drying, infrared radiation drying, and solar drying,
freeze-drying and convection drying reported the highest extraction yields. Freeze-drying
allowed us to obtain a higher antioxidant capacity and a high reducing sugar content,
respectively, 7238 µmol TE/100 g and 19.8%. Instead, convective drying had the best
characteristics in terms of galacturonic acid content and molecular weight.

4.8. Prebiotic Effects

Probiotics and grape pomace are a combination considered ideal for amplifying the
benefits of yogurt consumption by incorporating fiber and antioxidants. Several scientific
studies have verified the viability of this option. A recent study evaluated the enrichment
of grape pomace flour in yogurt by also testing consumer preferences [153]. Unfermented
grape pomace from three different cultivars (Chardonnay, Muscat, and Pinot Noir) was
added in amounts of 60 g/kg to a whole yogurt. Analyses conducted up to three weeks
of storage at 4 ◦C showed a significant increase in antioxidant content compared to the
control yogurt without the addition of grape pomace. In addition, microbiological analyses
reported survival in the presence of grape pomace of starter strains and Streptococcus
thermophilus and Lactiplantibacillus delbrueckii subsp. bulgaricus, without negative influences.
However, in terms of the organoleptic profile, yogurt enriched with grape pomace achieved
lower acceptability scores than the control yogurt, foreshadowing the need for further
improvement. Specifically, yogurt with grape pomace was perceived as excessively sour in
taste and grainy in texture, making it necessary to reduce the particle size of grape pomace
and change the flavor by adding sweeteners or using yogurt with lower acidity. On the
contrary, Karnopp et al. (2017) reported a 79% acceptability index for yogurt enriched with
grape pomace flour, indicating its use as a promising alternative to increase the functional
properties of yogurt [154]. In the area of dairy products, Pinot Noir pomace obtained
from white winemaking obtained good results in fermented milk in terms of viable cell
growth of L. rhamnosus, with no significant differences for S. thermophilus [155]. Although
grape pomace conferred a significant increase in antioxidant activity to fermented milk, the
samples tested were not favorable for the survival of L. acidophilus. Overall, the use of white
Pinot noir pomace in fermented milk containing L. rhamnosus imparted good flavor, color,
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and overall acceptability characteristics to the products. These results agree with those of
a later study, also conducted on different types of pomaces (Pinot Noir, Freisa, Croatina,
and Barbera). The protective effect of grape pomace phenolic extract on the survival of
lactobacilli (L. acidophilus) was principally confirmed with Freisa, Croatina, and Barbera
varieties [156]. Moreover, the prebiotic effect of grape pomace polyphenols was studied
in combination with probiotic Lactiplantibacillus sp. for its anti-inflammatory properties,
emphasizing a synergy action between prebiotics and probiotics [157]. Furthermore, grape
pomace extract has been used in food preparations not only to increase the content of
antioxidants and fibers but also as a lipid oxidation controller, monitoring and extending
the shelf-life of yogurt and salad dressings [158]. Grape pomace fermentation is recognized
as a technique to increase the functionality of polyphenolic extracts by imparting prebiotic
character. Grape pomace from the Malbec and Tannat varieties have been studied for their
prebiotic characteristics. Aqueous grape pomace extracts fermented by fungal-produced
hydrolytic enzymes have been tested on L. casei growth detecting prebiotic activity [159].
Since it is well known that encapsulation of polyphenols is a viable alternative to increase
their bioaccessibility and bioavailability [7,17], a recent study evaluated the effects of a
micro-encapsulated pomace extract added in coconut water on the growth of probiotic
bacteria [160]. The results suggested a positive effect on the growth of bifidobacteria and
lactobacilli, with no negative influence on the sensory aspect in terms of aroma and flavor.

5. Limitation: Research Gaps

In addition to the real advantages related to grape pomace reuse, such as high effi-
ciency in disposal management and enrichment of bioactive molecules and antioxidant
substances [2,25], based on experimental data, researchers have pointed to some limits as
critical points in the use of grape pomace.

Given the increasing consumption of new foods based on grape pomace waste, the
importance of ensuring food safety in the context of new and more sustainable processing
technologies is well-known. However, from a nutritional point of view, the use of novel
foods derived from grape pomace waste potential could be a limitation due to the poor
digestibility of matrices rich in fiber, polyphenols, availability of essential amino acids
that is difficult to balance [161] Another issue is the possible presence of contaminants or
other compounds such as anti-nutritional factors, toxins, biogenic amines that negatively
impact the human health [16,161]. Therefore, it is important to understand what and how
many anti-nutritional compounds are present in grape pomace and apply purification
technologies to make it optimal for new food production. Moreover, given the large
number of bioactive components in grape pomace with biological properties on human
health that can replace synthetic additives, its use as a source of functional ingredients
allows the definition of “functional foods”. Recent trends show interest in studies on
grape pomace flours rich in fiber, phenolic compounds, and minerals. Although sensory
aspects and taste are not key factors in defining a functional food, attention to consumer
satisfaction is of paramount importance. Therefore, understanding how much the consumer
is willing to compromise between the “original” taste of food and its derivative with
functional components that provide health benefits plays a key role. To date, scientific
evidence makes it possible to expand research to achieve foods with grape pomace that are
sensory acceptable. At the same time, scientific research should focus on health aspects to
demonstrate the real effect of grape pomace on various diseases and health alterations.

6. Conclusions

The scientific works considered in this review highlight the growing focus on waste
minimization in the food supply chain that aims to reuse by-products as a source of
bioactive molecules in the perspective of a circular economy. The chemical composition of
grape pomace makes it promising for various uses (i.e., biogas and bioethanol production,
bio-fertilizer, tartaric acid, natural dyes, source of pectins, fibers and oxidative stability
regulating molecules, and source of bioactive molecules with prebiotic effects). Therefore,
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grape pomace contains large amounts of bioactive components with biological properties
on human health that can replace synthetic additives, combining health benefits (e.g.,
cardiovascular health, antioxidants, and anti-inflammatory properties) and technological
use. In this scenario, the use of grape pomace as a source of functional ingredients is a
promising field for the formulation of so-called “functional foods”. The attention to the
sensory aspect and consumer satisfaction is of paramount importance. Therefore, further
studies could help define better protocols for the use of pomace in the agri-food sector.
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extraction of bioactive compounds from grape pomace. Ind. Crops Prod. 2018, 111, 379–390. [CrossRef]

5. Tikhonova, A.; Ageeva, N.; Globa, E. Grape pomace as a promising source of biologically valuable components. In BIO Web of
Conferences; EDP Sciences: Les Ulis, France, 2021; Volume 34, p. 06002.

6. Caponio, G.R.; Noviello, M.; Calabrese, F.M.; Gambacorta, G.; Giannelli, G.; De Angelis, M. Effects of grape pomace polyphenols
and in vitro gastrointestinal digestion on antimicrobial activity: Recovery of bioactive compounds. Antioxidants 2022, 11, 567.
[CrossRef] [PubMed]

7. Caponio, G.R.; Lippolis, T.; Tutino, V.; Gigante, I.; De Nunzio, V.; Milella, R.A.; Gasparro, M.; Notarnicola, M. Nutraceuticals:
Focus on anti-inflammatory, anti-cancer, antioxidant properties in gastrointestinal tract. Antioxidants 2022, 11, 1274. [CrossRef]

8. Rockenbach, I.I.; Gonzaga, L.V.; Rizelio, V.M.; Gonçalves, A.E.D.S.S.; Genovese, M.I.; Fett, R. Phenolic compounds and antioxidant
activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res. Int.
2011, 44, 897–901. [CrossRef]

9. Lo, S.; Pilkington, L.I.; Barker, D.; Fedrizzi, B. Attempts to Create Products with Increased Health-Promoting Potential Starting
with Pinot Noir Pomace: Investigations on the Process and Its Methods. Foods 2022, 11, 1999. [CrossRef]

10. Sabetta, W.; Centrone, M.; D’Agostino, M.; Difonzo, G.; Mansi, L.; Tricarico, G.; Venerito, P.; Picardi, E.; Ceci, L.R.; Tamma, G.; et al.
“Good Wine Makes Good Blood”: An Integrated Approach to Characterize Autochthonous Apulian Grapevines as Promising
Candidates for Healthy Wines. Int. J. Biol. Sci. 2022, 18, 2851. [CrossRef]

https://doi.org/10.3390/molecules26082331
https://www.ncbi.nlm.nih.gov/pubmed/33923843
https://doi.org/10.1016/j.eti.2021.101592
https://doi.org/10.3390/ijms150915638
https://doi.org/10.1016/j.indcrop.2017.10.038
https://doi.org/10.3390/antiox11030567
https://www.ncbi.nlm.nih.gov/pubmed/35326217
https://doi.org/10.3390/antiox11071274
https://doi.org/10.1016/j.foodres.2011.01.049
https://doi.org/10.3390/foods11141999
https://doi.org/10.7150/ijbs.70287


Sustainability 2023, 15, 9075 21 of 26

11. Munoz-Bernal, O.A.; Coria-Oliveros, A.J.; de la Rosa, L.A.; Rodrigo-García, J.; del Rocío Martínez-Ruiz, N.; Sayago-Ayerdi, S.G.;
Alvarez-Parrilla, E. Cardioprotective effect of red wine and grape pomace. Food Res. Int. 2021, 140, 110069. [CrossRef]

12. Yu, J.; Ahmedna, M. Functional components of grape pomace: Their composition, biological properties and potential applications.
Int. J. Food Sci. Technol. 2013, 48, 221–237. [CrossRef]

13. Jara-Palacios, M.J.; Hernanz, D.; Cifuentes-Gomez, T.; Escudero-Gilete, M.L.; Heredia, F.J.; Spencer, J.P. Assessment of white
grape pomace from winemaking as source of bioactive compounds, and its antiproliferative activity. Food Chem. 2015, 183, 78–82.
[CrossRef] [PubMed]
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