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Abstract: Natural-polymer-based antiscalants for various calcium scales have recently received
significant attention due to their prominent structural features, such as hydroxyl, amino, and organic
acids, as well as their environmental friendliness and widespread availability. In this study, a novel
green antiscalant, namely modified valonia tannin extract (MVTE), was synthesized using valonia
tannin extract (VTE), itaconic acid (IA), and 2-acrylamido-2-methylpropanesulfonic acid (AMPS). The
structure of MVTE was characterized by Fourier transform infrared spectroscopy (FT-IR). The crystal
morphology, structure, and surface elementary composition of CaCO3 were analyzed using scanning
electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS),
respectively. Results indicate that MVTE with the best anti-scale performance is prepared when the
valonia dosage is 2.5 g, the initiator dosage is 6 wt.%, the reaction temperature is 75 ◦C, and the
reaction time is 3.5 h. Moreover, MVTE shows significantly improved resistance to temperature and
alkalinity compared to VE. Results from SEM, XRD, and XPS demonstrate that MVTE can interfere
with the regular growth of CaCO3 crystals through chelation, dispersion, and lattice distortion. This
effect results in the generation of vaterite, which inhibits the deposition of CaCO3. Meanwhile, the
molecular dynamics (MD) simulation was employed to further explore the anti-scale mechanisms at
an atomistic level. The results illustrate that interaction energies originate from ionic and hydrogen
bonds between MVTE and calcite, which ultimately improve the anti-scale performance of MVTE. In
conclusion, MVTE can be an excellent antiscalant in circulating cooling water systems.

Keywords: antiscalant; calcium carbonate; valonia tannin extract; anti-scale mechanism; molecular
dynamics simulation

1. Introduction

The demand for water has significantly increased due to the growing population
and expanding industries, aggravating the existing water shortage crisis [1]. To alleviate
the shortage of water resources, circulating cooling water systems are widely employed
in industry. However, the continuous use of the cooling water can inevitably increase
the concentration of scale-forming ions (i.e., Ca2+, HCO3

−, CO3
2−, and SO4

2−), leading
to the deposition of inorganic calcium scales (i.e., CaCO3 and CaSO4) on the surface of
the equipment pipeline, which will result in lower heating transfer efficiency and higher
operation and maintenance costs [2]. Additionally, the adsorption of calcium scales on
the surface of machinery can corrode transportation equipment and even shorten its
service life [3,4]. Therefore, it is urgent to find effective methods to prevent or eliminate
calcium scales.

Currently, adding chemical antiscalants to the circulating cooling water system is one
of the most economical and effective methods [5,6]. The functions of antiscalants are to
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inhibit the formation of crystal nuclei or crystals, disrupt the growth of crystals, and thus
achieve excellent anti-scale performance [7–10]. Phosphonic-containing antiscalants, such
as amino trimethylenephosphonic acid (ATMP) and 2-phosphonobutane-1,2,4-tricarboxylic
acid (PBTCA), show outstanding inhibition abilities to prevent the formation of CaCO3
scales [11,12]. However, the use of phosphorus-containing antiscalants can lead to the
eutrophication of water bodies and the destruction of the ecological environment [13]. With
increasing environmental concerns and discharge limitations, the development and appli-
cation of new phosphorus-free and low-toxic green antiscalants are urgently necessary [14].

Polyaspartic acid (PASP) is a green polymer material that has great development
prospects owing to its phosphorus-free composition and biodegradability [15,16]. PASP
can function as an antiscalant due to its chelation and dispersion effects, attributed to the
carboxyl group in its structure [14,17,18]. However, the anti-scale performance of PASP
markedly decreased at high temperatures [19] or high Ca2+ concentrations in solution [1],
severely restricting its use. Previous studies have reported that polymerization is an effec-
tive method to produce multi-functional antiscalants that exhibit good anti-scale efficiency
in extreme environments of high salinity, high alkalinity, and high temperature [20–22].
Zhang et al. [1] synthesized a PASP/urea copolymer using polysuccinimide (PSI) and urea
as raw materials. The structure contains hydroxyl, carboxyl, and amide groups, which
results in excellent anti-scale efficiency for CaCO3, with 93% at a concentration of 10 mg/L.
Zhao et al. [23] used PASP and aminomethanesulfonic acid (ASA) to prepare an effective
antiscalant (PASP/ASA) by introducing sulfonic groups. The findings demonstrate that
PASP/ASA shows superior anti-scale performance and high-temperature resistance when
compared to PASP. As another commonly used typical green antiscalant, polyepoxysuc-
cinic acid (PESA) contains carboxyl groups in its structure, which has a good anti-scale
performance on the formation of calcium scales, but it has the disadvantages of low cal-
cium tolerance and temperature resistance [24]. To compensate for these shortcomings,
Yan et al. [25] synthesized a new type of phosphorus-free antiscalant containing carboxyl,
sulfonic, and amide groups. The results show that it exhibits better resistance to Ca2+

and temperature, as well as higher anti-scale efficiency, compared to PESA. Therefore,
introducing carboxyl, sulfonic, and amide groups through polymerization is an effective
method to prepare multi-functional green antiscalants with temperature and Ca2+ resis-
tance, as well as excellent anti-scale efficiency in circulating cooling water systems. Free
radical polymerization is a common polymerization reaction [20,26,27]. Cui et al. [21] used
maleic anhydride (MA), acrylic acid (AA), and 2-acrylamido-2-methylpropanesulfonic acid
(AMPS) to prepare a copolymer called P(MA-AA-AMPS). The copolymer contains both
sulfonic and amide groups, which greatly improves its chelating ability for Ca2+ ions and
its resistance to high temperatures and salinity.

Additionally, the development of sustainable green antiscalants is becoming the focus
of researchers in academia and industry. Natural plant extracts with abundant hydroxyl,
carboxyl, and amino functional groups (such as chitosan, inulin, starch, etc.) are another
type of potential green antiscalant candidate [28–30]. Tannin extract (TE) is a complex
secondary metabolite of higher plants, second only to lignin in biomass, and is widely
distributed in plants (such as bark, fruit, leaves, roots, etc.) [31,32]. They can be classified
into hydrolysable tannins and condensed tannins based on their composition [33]. Valonia
tannin extract (VTE) is one of the tannin extracts, and the structure is shown in Figure S1a.
VTE can be obtained through the process of extraction, filtration, washing, and drying
of acorn powder [34]. It is a typical hydrolysable tannin, which is easily hydrolyzed to
gallic acid and other phenolic acids in water [35]. Although there are other phenolic
acids present in the hydrolysate, their relative content is very small. Therefore, gallic
acid (Figure S1b) is commonly used as the smallest structure to represent VTE [35–37].
VTE contains various active groups, including phenol hydroxyl and carboxyl groups, that
exhibit chelation and adsorption abilities with metal ions [31]. It is extensively used as a
vegetable tanning agent [38], astringent agent, anticancer drug [38], corrosion inhibitor, and
mineral processing inhibitor [39,40]. However, there have been few studies on using VTE
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as an antiscalant. The hydroxyl groups in VTE are highly active [33], which enables VTE to
capture the free radicals decomposed by the initiator, transfer the active site to the benzene
ring [41], and increase the possibility of free radical polymerization. Therefore, VTE can be
regarded as a potentially sustainable starting reagent to synthesize an antiscalant.

In this study, a novel green antiscalant called modified valonia tannin extract (MVTE)
was prepared using valonia tannin extract (VTE), itaconic acid (IA), and 2-acrylamido-2-
methylpropanesulfonic acid (AMPS) as starting reagents based on the principle of free
radical polymerization. In an attempt to synthesize an excellent antiscalant, the influences
of valonia dosage, initiator dosage, reaction temperature, and reaction time on anti-scale
performance were investigated. The structure, molecular weight, and elemental composi-
tion of antiscalant were analyzed by Fourier transform infrared spectroscopy (FT-IR), an
elemental analyzer, and gel permeation chromatography (GPC), respectively. Moreover, the
anti-scale efficiency of the synthesized antiscalant for CaCO3 and Ca3(PO4)2 was estimated
using a static scale inhibition experiment. Scanning electron microscopy (SEM), X-ray
diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to explore the
anti-scale mechanisms. Additionally, molecular dynamics (MD) simulation was employed
to further investigate the interaction between the antiscalant and CaCO3 crystal at an
atomistic level [42].

2. Materials and Methods
2.1. Materials

IA and AMPS were purchased from Shanghai Maclin Biochemical Technology Co.,
Ltd., Shanghai, China. Bayberry, larch, black wattle, quebracho, chestnut, and valonia
tannin extracts were purchased from Fujian Youqiyi Pharmaceutical Trading Co., Ltd.,
Fuzhou, China, and their components are shown in Table S1. Hydrochloric acid, potas-
sium hydroxide, sodium bicarbonate, calcium chloride, potassium dihydrogen, phosphate
sodium tetraborate decahydrate, ammonium persulfate, and potassium persulfate (KPS)
were purchased from Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. Addition-
ally, EDTA was purchased from Tianjin Hengxing Chemical Preparation Co., Ltd., Tianjin,
China. A calconcarboxylic acid indicator for scale inhibition was provided by Shanghai
Aladdin Biochemical Technology Co., Ltd., Shanghai, China. Ultra-pure water was used
for all experiments.

2.2. The Preparation Method of MVTE

The preparation process of MVTE is shown in Figure 1. Briefly, 8.5 g IA and 26.5 g
AMPS were sequentially added to a four-necked round-bottom flask containing a ther-
mometer, a magnetic stirrer, and a condensation reflux device. Approximately 40 g of
ultra-pure water was then added, and the mixture was thoroughly stirred. A certain
amount of valonia tannin extract was added to the flask and stirred until the reaction
monomer was completely dissolved. The temperature was then raised to 75 ◦C. The potas-
sium persulfate solution was slowly added to the flask, with a drop time of about 0.5 h.
The reaction was maintained at 75 ◦C for 3.5 h to obtain a reddish-brown viscous liquid.
The entire reaction was carried out under a nitrogen atmosphere until the experiment was
completed. The synthesis mechanism of the MVTE is shown in Figure 2.
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Figure 2. The synthesis mechanism of MVTE.

2.3. Characterization

The structure was characterized using the Fourier transform infrared spectrometer
(FT-IR, Thermo Scientific Nicolet iS20, America) at wavelengths ranging from 400 cm−1 to
4000 cm−1. The contents of C, H, N, and S of MVTE were analyzed on an elemental analyzer
(Vario Elcube, Germany) [25], and the results are listed in Table S2. The molecular weight
of MVTE was determined by means of gel permeation chromatography (GPC, calibrated
with polyethylene glycol standards), and the results are listed in Table S3. At a flow rate
of 1.0 mL/min, water was used as the mobile phase. 13C-NMR was recorded using an
AVANCE HD 400 MHz NMR spectrometer (Bruker, Germany) with D2O as a solvent. The
surface morphology of CaCO3 crystals in the absence and presence of 35 mg/L MVTE
was observed using the scanning electron microscope (Zeiss SUPRA55, Germany) at an
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acceleration voltage of 5 kV. X-ray diffractometer (PANalytical EMPYREAN, Holland) with
Cu Kα (λ = 0.154 nm) radiation was conducted to study the crystal structures of CaCO3
scales at a voltage of 40 kV and a current of 40 mA [43]. Moreover, the chemical states of
various elements on the surface of CaCO3 crystals obtained with and without 35 mg/L
MVTE were determined via X-ray photoelectron spectroscopy (Thermo Scientific K-Alpha,
America; hυ = 1486.6 eV), with contaminated carbon (C 1s = 284.8 eV) as the reference.

2.4. The Static Scale Inhibition Tests

The static scale inhibition tests were applied according to the national standard of
P.R. China (GB/T16632-2008) [44]. The prepared calcium chloride and sodium bicarbon-
ate test solutions were added to the 500 mL conical flask until Ca2+ = 240 mg/L and
HCO3

− = 720 mg/L, respectively [45]. The 0.01 mol/L borax buffer solution was slowly
added before the required test antiscalant solution was added. At this time, a dilute hy-
drochloric acid or borax solution was used to adjust the pH of the solution to 9. The sample
solution was then placed in a constant-temperature water bath at 80 ◦C for 10 h. After
heating, the sample was allowed to cool to room temperature and filtered through medium-
speed quantitative filter paper. Next, 20 mL of the supernatant was added to a 250 mL
conical flask and diluted with pure water to a total volume of about 80 mL. Then, 5 mL of
a 200 g/L potassium hydroxide solution was slowly added. Finally, the concentration of
Ca2+ in the solution was titrated via 0.01 mol/L EDTA. The anti-scale efficiency was then
calculated based on the remaining Ca2+ concentration in the solution using formula (1):

η(%) =
C2 − C0

C1 − C0
× 100 (1)

where η is the anti-scale efficiency, C1 and C2 are the concentrations of Ca2+ in the absence
and presence of antiscalant, respectively, and C0 is the concentration of Ca2+ in the test
solution before reaction.

Calcium phosphate precipitation experiments were also carried out, similar to calcium
carbonate precipitation. The procedure for calcium phosphate prepared solutions was
changed into solutions of Ca2+ of 250 mg/L and PO4

3− of 5 mg/L according to the national
standard of P.R. China (GB/T 15452-2009) [46].

2.5. The Single Factor Method

The dosage of valonia (g), the dosage of initiator (wt.%), reaction temperature (◦C),
and reaction time (h) were found to significantly influence the molecular weight and
spatial structure of the polymer, thereby directly impacting the anti-scale efficiency of the
antiscalant [26]. Therefore, the effects of different factors on the anti-scale performance
of the synthesized MVTE were investigated using the single-factor method and static
scale inhibition experiments. During the optimization tests, a test solution with pH = 8
was used in all static scale inhibition experiments, and it contained 240 mg/L Ca2+ and
720 mg/L HCO3

−.

2.6. Molecular Dynamics Simulation

Molecular dynamics (MD) simulation was used to further investigate the mechanisms
of interaction between MVTE and CaCO3 crystals. This approach provided insights into the
microscopic interactions between molecules at an atomistic level and helped to interpret
the experimental results [47,48]. In this study, MD simulation was performed using the
Forcite module of Materials Studio (MS) software [49].

2.6.1. Simulation Parameters and Force Field

The COMPASS force field was an ab initio computational force field that was suitable
for inorganic and organic molecules [42]. It had been successfully employed in studying
the interaction between various molecules and calcite [50,51]. Therefore, the COMPASS
force field used in this study was appropriate for meeting the computational requirements.
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All MD simulations were conducted using both the canonical ensemble (NVT) and the
Berendsen thermostat with medium convergence accuracy at 353 K [52,53]. The non-bond
interaction of the system was calculated according to a cut-off radius of 1.25 nm [54]. To
ensure that the initial structure reached thermodynamic equilibrium in sufficient time, a
time step of 1 fs and a total simulation time of 300 ps were used. Trajectories were recorded
every 5000 steps during the simulation. These parameters were essential in achieving
thermal equilibrium and accurately capturing the molecular dynamics of the system.

2.6.2. Model Construction

In this study, the Visualizer module in MS was applied to establish molecular mod-
els [20]. Considering computing power, the structural unit of the polymer was selected
for MD simulation [55,56]. Three random molecular structures of MVTE were generated,
as shown in Figure S2. These structures were optimized using the molecular mechan-
ics method (MM) to determine the minimum energy [42]. Their energies were −437.11,
−424.88, and −420.26 kcal/mol, respectively. It was found that the energy of the structure
shown in Figure S3a was the smallest; thus, this structure was selected for further study in
regard to its interaction with calcite crystals.

The calcite cell belongs to a tripartite system with space group R3(-)C, and its cell
parameters are as follows: a = b = 0.4991 nm, c = 1.7061 nm, α = β = 90◦, γ = 120◦ [57].
Previous reports and experimental results indicated that the (104) surface was the main
growth plane of calcite [58,59]. Hence, the interaction between antiscalants and the calcite
(104) crystal surface was predominantly studied in this MD simulation. The interaction
model between MVTE and calcite was constructed, as shown in Figure 3.
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To construct the interaction model of antiscalants with the calcite (104) surface, the cal-
cite cell was first cut into a 2D (104) crystal plane consisting of six layers of atoms. The plane
was then geometrically optimized. Next, a vacuum layer of about 3 nm was added above
the crystal surface to obtain 4 × 4 3D periodic supercells (3.238 nm × 3.493 nm × 4.673 nm).
The atoms within the bottom five layers of the supercell were constrained using coordinate
constraints, while the top layer was left free before the entire supercell was optimized.
Similarly, the corresponding water and organic molecules were also optimized and sub-
sequently randomly added to the amorphous cell, called the solution layer. This solution
layer consisted of one antiscalant molecule and two hundred water molecules [60] and
was placed on the (104) surface at a distance of approximately 0.3 nm. To eliminate the
influence of periodic boundary conditions, a vacuum layer with a thickness of 2.5 nm was
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added above the solution layer along the Z-axis (c) direction [42]. Subsequently, geometry
optimization and MD simulation were performed for the whole system. After reaching
temperature and energy equilibrium, the interaction energy (Einter) between the antiscalant
and the crystal surface was calculated using Equation (2) [11]:

Einter = Etot − Esurf+water − Epoly+water + Ewater (2)

where Etot is the total energy of the calcite surface and solution layer, Esurf+water is the total
energy of the crystal surface and water molecules, Epoly+water is the total energy of the
solution layer, and Ewater is the total energy of water molecules. Binding energy (Ebin) is
defined as the negative of the interaction energy (Ebin = −Einter).

3. Results and Discussions
3.1. Determination of Optimum Synthesis Conditions of MVTE Antiscalant
3.1.1. Selection of the Suitable Tannin Extract and Initiator

In this study, six common tannin extracts were used to synthesize effective antiscalants.
The primary synthesis conditions were as follows: The dosage of the tannin extract was
3.5 g, the dosage of the initiator was 4% of the total mass, the reaction temperature was
80 ◦C, and the reaction time was 4 h. To select the most suitable raw material, static scale
inhibition experiments were conducted to test the anti-scale performance of six different
antiscalants synthesized from different tannin extracts against CaCO3 scales. The results
indicated that the modified valonia tannin extract (MVTE) synthesized by modifying
valonia tannin extract (VTE) showed the best anti-scale performance (Figure S3). Therefore,
VTE was chosen as the raw material for the following experiments. The 13C-NMR spectra
of VTE are shown in Figure S4, and a detailed analysis is described in Text S1.

In order to select a more suitable initiator, two initiators, namely ammonium persulfate
and potassium persulfate, were used to promote the synthesis of MTVE, respectively. The
anti-scale performance of MVTE was tested, and the results are shown in Figure S5. It
indicated that MVTE prepared using potassium persulfate as the initiator had better anti-
scale performance than MVTE prepared using ammonium persulfate. Therefore, potassium
persulfate was chosen as the initiator for the following experiments. Thus, VTE was selected
as the raw material and potassium persulfate as the initiator in this study.

3.1.2. The Effect of the Dosage of Initiator

The effect of the initiator dosage on the anti-scale performance was studied, and the
results are shown in Figure 4a. It was evident that the anti-scale efficiency for CaCO3 scales
increased with the increasing initiator ratio, reaching the best anti-scale efficiency when the
initiator dosage was 6%. A lower amount of initiators leads to insufficient production of free
radicals, which results in incomplete copolymerization and the poor anti-scale performance
of MVTE [60]. However, the anti-scale performance of the MVTE declined when the
initiator amount exceeded 6%. This is because an excessive number of initiators leads to
the generation of a large number of radicals, resulting in copolymerization occurring too
fast and leading to a small molecular weight of the copolymer [4,20,61]. This makes the
copolymer chelate fewer calcium ions, ultimately resulting in poorer anti-scale performance.
As a result, the MVTE shows the best anti-scale efficiency when the KPS dosage is 6% of
the total monomer mass.

3.1.3. The Effect of the Dosage of Valonia

The effect of the valonia dosage on the anti-scale performance was evaluated, and
the results are shown in Figure 4b. It was observed that the anti-scale efficiency improved
with increasing the valonia dosage up to 2.5 g, reaching the best anti-scale efficiency at this
dosage. However, the anti-scale performance decreased when the valonia dosage exceeded
2.5 g. The content of valonia is appropriately added to not only moderate the molecular
weight of MVTE but also result in a reasonable number and distribution of functional
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groups, which are critical to anti-scale performance [60,62]. Therefore, the dosage of 2.5 g
of valonia is determined to be optimal for this study.
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3.1.4. The Effect of the Reaction Temperature

As shown in Figure 5a, the anti-scale performance gradually increased with the
increasing reaction temperature, reaching its maximum at 75 ◦C, and decreased when the
reaction temperature exceeded 75 ◦C. This is predominantly because the temperature has an
effect on the initiator’s decomposition and the polymerization reaction. The decomposition
of initiators is an endothermic reaction that is hindered at lower temperatures, leading to an
increase in copolymer chain length and resulting in steric effects [60]. In contrast, the radical
polymerization reaction is an exothermic reaction, and excessively high temperatures can
limit the reaction [63]. Hence, a temperature of 75 ◦C is chosen for this study.
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3.1.5. The Effect of the Reaction Time

The effect of the reaction time on the anti-scale performance was studied, and the
results are displayed in Figure 5b. The analysis indicated that the anti-scale performance for
CaCO3 increased as the reaction time increased, achieving the highest anti-scale efficiency
at 3.5 h. Subsequently, the anti-scale efficiency decreased with extended reaction time.
This is mainly due to the effect of reaction time on the degree of polymerization. If the
reaction time is too short, the reaction can be incomplete, leading to a low molecular weight
of MVTE and a poor anti-scale effect. Alternatively, if the reaction time is too long, the
molecular weight of MVTE can be too large, inhibiting the anti-scale effect of MVTE on
CaCO3 scales [62]. Therefore, the optimum reaction time is determined to be 3.5 h.

As a result, the optimal conditions for preparing MVTE were obtained using the single
factor method, with the following conditions: Valonia dosage of 2.5 g, initiator dosage of
6.0%, reaction temperature of 75 ◦C, and 3.5 h reaction time. Under these conditions, the
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MVTE exhibits excellent anti-scale performance for CaCO3 scales. It is subsequently used
to study the anti-scale performance in the next experiments.

3.2. The Characterizations of MVTE

Functional groups of VTE and MVTE were characterized using FT-IR, and the results
are shown in Figure S6. It could be seen that there was a broad, strong stretching peak at
around 3144 cm−1, which was a combined effect of the stretching of O–H and N–H in the
phenolic and amide groups [35,64]. In addition, the stretching peaks of unfunctionalized
-CH3 and -CH2 were identified at 2990 and 2940 cm−1, respectively [65]. The peak at
1731 cm−1 might be assigned to the stretching vibration of C=O from aromatic esters
or -COOH groups [66,67], while the absorption peak at 1661 cm−1 was ascribed to the
stretching vibration peak of C=O in the amide group [68]. The peaks at 1557, 1510, and
797 cm−1 were inferred as the stretching vibrations of the υ(C–C)/υ(C=C) of the aromatic
ring [37,62]. The absorption peak at 1398 cm−1 was considered the characteristic absorption
peak of α-methylene in the carbonyl group. The peaks at 1308 and 1169 cm−1 corresponded
to the in-plane deformation vibration of the phenolic group dip(O-H) and the stretching
vibrations of the phenolic group υ(C–OH), respectively [37]. Additionally, the peaks at
1208 and 1039 cm−1 were attributed to the stretching vibration of C–O from the phenol or
-COOH group [69,70]. Subsequently, the peak at 523 cm−1 was ascribed to the presence of
the sulfonic acid group [71]. There were also two peaks at 1039 cm−1 and 628 cm−1, which
were attributed to the stretching vibrations of S=O and S–C, respectively [20,21]. From the
above absorption peaks of MVTE, it can be implied that VTE, AMPS, and IA participated
in the reaction.

Furthermore, the element composition of MVTE was analyzed, and the corresponding
results are listed in Table S2. The measured contents of C, N, and S in MVTE were found to
be 37.26%, 4.20%, and 10.23%, respectively, which were in agreement with the theoretical
values. This further suggested the successful introduction of sulfonic and amide groups
into MVTE.

In addition, the results for weight average molecular weight (Mw) and number av-
erage molecular weight (Mn) of MVTE are presented in Table S3. The Mw and Mn were
4776 g/mol and 3915 g/mol, respectively. And MVTE contained approximately 7 IA and
14 AMPS. The polydispersity index (PDI = Mw/Mn) was 1.22, which indicated that the
starting reagents were satisfactorily polymerized to produce a uniform polymer [25].

3.3. Analysis of Anti-Scale Performance of MVTE
3.3.1. Effect of Different MVTE Concentrations against CaCO3

The anti-scale performance of MVTE for the CaCO3 precipitates was studied and
compared with VE at various concentrations when the pH was 9, as shown in Figure 6a. It
was observed that there was a significant improvement in the anti-scale efficiency of MVTE
compared to VE, demonstrating that the addition of carboxyl, amide, and sulfonic groups
played an important role in restricting the formation of CaCO3 precipitates [46,70,71]. The
anti-scale performance increased from 5 mg/L to 35 mg/L, reaching the maximum value of
over 70% at an optimal concentration of 35 mg/L, which was comparable to the previous
literature results and better than PASP under the same conditions [72]. One of the primary
reasons for this improvement is the addition of functional groups that can chelate more
Ca2+ to directly prevent the generation of CaCO3 crystals [73,74]. Another key factor is
the ability of MVTE to adsorb on the surface of CaCO3 crystals, leading to dispersion and
lattice distortion [70]. Considering efficiency and practicality, a concentration of 35 mg/L
MVTE is selected for use in the following studies.
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3.3.2. Effect of pH on the Anti-Scale Performance

The anti-scale performance under different solution pH values was demonstrated in
Figure 6b at 80 ◦C. It was indicated that the anti-scale performance decreased as the pH
of the solution increased from 7 to 9, but was still maintained above 70%. Notably, the
anti-scale efficiency of MVTE reached up to approximately 98% at pH 7, indicating that
MVTE exhibited better effects when used in low-alkalinity water systems. To explain this
phenomenon, the following chemical equations were listed [11,62].

HCO−
3 
 H+ + CO2−

3 (3)

HCO−
3 + H2O 
 H2CO3 + OH− (4)

A previous report has shown that the pH of the solution is a key factor that affects
the anti-scale efficiency of the antiscalant [72]. Chemical reactions (3) and (4) indicate
that as pH increases, the hydrolysis of HCO3

− can be preferentially hindered, leading to
increased ionization of HCO3

− and the induction of more CO3
2− to combine with Ca2+ for

the formation of CaCO3 precipitations. This ultimately results in a poor anti-scale effect.
However, after introducing the sulfonic and amide groups, the alkaline resistance of MVTE
is significantly enhanced compared to VE.

3.3.3. Effect of Temperature on the Anti-Scale Performance

The influence of different temperatures on the anti-scale performance was investigated
and plotted in Figure 6c while maintaining the pH value of 9 in the solution. As the
temperature increased from 60 to 85 ◦C, the anti-scale performance gradually declined.
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However, compared to VE, MVTE still exhibited better anti-scale efficiency at 80 ◦C, with the
efficiency remaining above 70%. Firstly, at 80 ◦C, HCO3

− tends to dissociate into CO3
2− due

to the presence of the borax buffer [75]. Moreover, the activities of HCO3
− and Ca2+ increase

at higher temperatures, resulting in an elevated effective collision between HCO3
− and

Ca2+ and thereby facilitating the formation of CaCO3 scales [69]. However, the introduction
of sulfonic and amide groups in MVTE enhances its high-temperature resistance compared
to VE, which is crucial for the production of an effective antiscalant [21,76]. Therefore,
MVTE can be effectively applied to circulating cooling water systems.

3.3.4. Effect of the Concentration of Ca2+ on the Anti-Scale Performance

As shown in Figure 6d, it demonstrated that the anti-scale performance of MVTE
against CaCO3 deposits decreased as the concentration of Ca2+ increased. At a Ca2+

concentration of 120 mg/L, the anti-scale efficiency was 87.31%, and even when the Ca2+

concentration reached 600 mg/L, the anti-scale efficiency was still above 61.01%. This is
because as the concentration of Ca2+ increases, excessive Ca2+ can cause the accumulation of
nuclei and crystals, which accelerates the formation of CaCO3 deposits [19,21]. Compared
to VE, MVTE shows good resistance to Ca2+ due to the introduction of sulfonic and amide
groups, which enhance its chelating and dispersing abilities [77].

3.4. Anti-Scale Mechanisms
3.4.1. SEM Analysis of Scale Crystal Morphology

The changes in crystal morphology were analyzed using SEM to explore the anti-scale
mechanism. As shown in Figure 7a–c, well-defined structures with cube and strip-like
shapes were observed and found to be consistent with previous reports, identifying them
as calcite and aragonite, respectively [78,79]. However, the crystal size, morphology, and
structures of CaCO3 crystals changed after the addition of the 35 mg/L MVTE (Figure 7d,e).
This is because the carboxyl, amide, and sulfonic groups of MVTE have powerful affinities
with Ca2+, resulting in the retardation of nucleation and a reduction in the number of crystal
nuclei [54,60,80]. Furthermore, MVTE can bind to the active growth positions of the CaCO3
crystal surface through an electrostatic interaction [81], impeding the regular growth of
the crystal and distorting the crystal lattice, ultimately resulting in the inhibition of scale
formation [1,82]. As a result, CaCO3 crystals become much rougher and looser, with mainly
spherical particles of smaller size that are typical of the most thermodynamically unstable
vaterite polymorph [19,75,83].

3.4.2. XRD Analysis of Scale Crystal Structure

For further CaCO3 crystal characterization, the crystal structure in the absence and
presence of 35 mg/L MVTE was characterized using XRD. As shown in Figure S7a, it could
be seen that the diffraction peaks at 29.45◦, 36.16◦, 47.59◦, and 48.42◦ were assigned to
the (104), (110), (018), and (118) crystal planes of the calcite phase, respectively [84,85].
This indicated that the (104) plan was the main growth plane of calcite. Additionally,
the characteristic peaks of aragonite were observed in the form of diffraction peaks at
26.30◦, 42.96◦and 45.94◦, which corresponded to the (111), (122), and (221) crystal planes,
respectively [11,19,86]. However, the presence of 35 mg/L MVTE (Figure S7b) resulted in
the disappearance of the main peaks corresponding to the (111), (122), and (221) crystal
planes of aragonite. At the same time, new diffraction peaks appeared at 24.92◦, 27.08◦,
32.87◦, 43.90◦, and 50.12◦, which were attributed to the (110), (111), (112), and (114) crystal
planes of vaterite, respectively [46,79,87]. Vaterite, being the most unstable form of CaCO3
crystal, could be easily removed, as demonstrated by a previous report [88]. It is because the
presence of carboxyl, amide, and sulfonic groups in the MVTE allows it to chelate with the
Ca2+ ions and occupy growth points on the scale surface, which hinders the nucleation and
growth of calcium scale crystals and causes distortion of the crystal lattice [89–91]. Results
of SEM and XRD indicate that MVTE exhibits the ability to retard crystal nucleation by
binding to Ca2+ and to disturb the growth of crystals by attaching to the active sites of the
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crystal surface. As a result, the prepared MVTE exhibits excellent anti-scale performance
on CaCO3 precipitates.
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3.4.3. XPS Analysis of Scale Crystal

To further gain insight from the anti-scale mechanism, XPS was employed to determine
the surface elementary composition of the crystals in the absence and presence of 35 mg/L
MVTE. As shown in Figure S8, the composition of CaCO3 crystals with or without MVTE
included C, O, Ca, and N (originating from MVTE). The C 1s peak (Figure S8a) was resolved
into three component peaks, with the peak at 284.80, 285.94, and 289.60 eV corresponding
to the C–H, C=O, and C–O, respectively [80,92]. After the addition of MVTE, a new peak
(Figure S8d) emerged at 288.08 eV assigned to the N–C=O group from amide [93], which
was possibly attributed to the adsorption of the MVTE on the CaCO3 surface. The Ca 2p
peaks (Figure S8b) exhibited two distinctive peaks at 347.34 and 350.92 eV, corresponding
to Ca 2p3/2 and Ca 2p1/2 [94], respectively. However, after the addition of 35 mg/L MVTE,
the Ca 2p3/2 and Ca 2p1/2 peaks shifted to 347.11 and 350.63 eV, respectively (Figure S8e).
These shifts might be attributed to the functional groups of MVTE, such as -COOH, -OH,
and -N–C=O, which could bind calcium ions and donate electrons, leading to an increase
in the electron density of calcium ions [72]. The O 1s peaks (Figure S8c) exhibited a peak at
531.03 eV, which was ascribed to either CaCO3 or C–O, while another peak was assigned
-C=O from carboxyl or amide [93,95]. Additionally, the N 1s peak at 399.2 eV (Figure
S8f) corresponded to the N–C from the amide of MVTE [93]. The XPS, SEM, and XRD
results imply that the introduction of functional groups in MVTE can enhance the chelation
with Ca2+ ions and promote adsorption on the active sites of the CaCO3 crystal surface,
which leads to the lattice distortion of the CaCO3 crystals and contributes to the excellent
anti-scale performance of MVTE [86]. As a result, the anti-scale mechanisms of MVTE for
CaCO3 scales are presented in Figure 8.
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3.5. Analysis of MD Simulation
3.5.1. The Equilibrium Criteria of Interaction Systems

To ensure the reliability of the MD simulation results, it is important to confirm whether
the system has reached equilibrium [42]. Equilibrium criteria were applied to determine the
stability of the system, and the results are shown in Figure S9. The energy and temperature
curves fluctuated within 10% during the 150~300 ps simulation time, indicating that the
interaction system had reached equilibrium successfully [28]. The equilibrium models of
VE, MVTE, and (104) crystal surfaces after MD simulation are illustrated in Figure S10.

3.5.2. Binding Energy of Antiscalant on the Surface of Calcite

The binding energies of VE and MVTE on the (104) surface of calcite are listed in
Table 1. It could be observed that the Einter energies between antiscalants and the CaCO3
crystal surface were negative, indicating an exothermic reaction. This suggests that the
antiscalant can spontaneously adsorb on the surface of CaCO3 crystal [96], mainly due
to the interaction between the π3

4 delocalized bond in the carboxyl group and the π6
4

delocalized bond of calcite [49]. Therefore, the polar functional groups in the antiscalant
can adsorb onto the active sites on the surface of calcium scales, disrupting the regular
growth of crystals. Additionally, the Ebin value represented the strength of the interaction
between the antiscalants and crystal surface, and the higher the value of Ebin, the better
the anti-scale performance of the antiscalant [57]. It was evident that the Ebin of MVTE
was higher than that of VE, indicating that MVTE exhibited better anti-scale performance
than VE. This is due to the introduction of carboxyl, amide, and sulfonic groups in MVTE,
which can chelate with more Ca2+, effectively hindering the formation of CaCO3 crystals,
leading to improved anti-scale performance compared to VE [56,97]. These findings are
consistent with the results of the static scale inhibition experiments, further supporting the
effectiveness of MVTE as an antiscalant.
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Table 1. Interaction energies of antiscalant–calcite systems (kcal/mol).

Surface Antiscalant Etot Esur+water Epoly+water Ewater Einter Ebin

(104)
VTE −46,637.28 −46,575.47 −787.18 −759.86 −34.49 34.49

MVTE −47,010.13 −46,460.63 −1146.16 −714.71 −118.04 118.04

3.5.3. Deformation Energy of Antiscalant on the Surface of Calcite

The structure of the antiscalant was found to deform during its interaction with calcite,
and the degree of deformation was determined by the magnitude of deformation energy
(Edef), which was calculated using the following equation [42]:

Edef = Epoly−bind − Epoly−free (5)

where Epoly-bind and Epoly-free refer to the single energy of the polymer after binding with
the surface of the CaCO3 crystal and the free state of the polymer, respectively.

The results of Edef are listed in Table 2. For both VE and MVTE, the values of Epoly-bind
were positive, indicating that they underwent deformation on the crystal surface and re-
quired absorption energy. However, the absolute value of the non-bond energy (∆Enon-bond)
associated with the interaction between the antiscalant and crystal surface was much greater
than Edef, illustrating its capability of overcoming its own deformation and adsorbing onto
the crystal surface to support the normal growth of calcium scales [49]. Furthermore,
the higher absolute value of Edef indicates a greater degree of polymer deformation [49],
leading to more stable adsorption on the surface of calcium scales and better anti-scale
performance [50]. In the case of MVTE and VE, the Edef of MVTE was greater than that
of VE, indicating that MVTE had stronger deformation ability and a higher chance of
interacting with the crystal surface, hence achieving better anti-scale performance, which
was in agreement with the experimental results.

Table 2. The nonbonding interaction energies of antiscalant–calcite systems and the components of
nonbonding interaction energies (kcal/mol).

Surface Antiscalant ∆Enon-bond ∆Eelectrostatic ∆Evdw Edef

(104)
VTE −47,240.41 −51,737.61 4502.92 15.03

MVTE −47,685.23 −52,318,069 4640.26 58.49

3.5.4. Radial Distribution Function of Antiscalant with Calcite Surface

To further elucidate the relationship between the antiscalant and the calcium scale
crystal, the radial distribution function (RDF) was utilized to analyze the trajectories
obtained from the MD simulation. RDF represents the ratio between the regional density
and the global density of another type of atom found within a certain range centered on
one type of atom [47]. Generally, in the g(r)~r curve, the peak at r < 3.5 Å is primarily
formed by chemical bonds and hydrogen bonds, while the peak at 3.5 Å < r < 5.0 Å mainly
consists of Coulomb and van der Waals forces [98,99].

In this study, the g(r)~r curves were plotted for H atoms, O atoms in the antiscalant,
and O atoms and Ca atoms on the (104) surface of calcite, as shown in Figure 9. The g(r)O-Ca
curve of O atoms in the antiscalant and Ca ions in calcite exhibited a sharp peak value
of around 2.40 Å that matched the length of the Ca–O electrovalent bond (2.39 Å) [49].
This indicates that chemisorption occurs between the negatively charged O atoms and the
positively charged calcium ions through ionic bonds [52]. Moreover, the peak value of
g(r)O-Ca of MVTE was larger than that of VE, agreeing with the results of binding energy.
Additionally, a strong peak appeared around 1.4 Å in the curve of g(r)H-O, slightly larger
than the sum of the covalent radius (0.11 nm) of O and H atoms. This demonstrates the
formation of hydrogen bonds between H atoms of the antiscalant and O atoms of calcite,
which helps the antiscalant absorb onto the surface of crystals, improving the anti-scale
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performance [100,101]. Therefore, the RDF results suggest that the interaction energy
between MVTE and calcite mainly originates from ionic and hydrogen bonds.
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Additionally, to gain intuitive insight into the interaction mechanisms between MVTE
and the calcite surface, a detailed analysis of intermolecular interactions was conducted
and presented in Figure 10. The analysis revealed that the distance between the O atoms of
MVTE and the Ca atoms on the calcite surface ranged from 2.3 to 2.4 Å, while the distance
between the H atoms of MVTE and the O atoms of the calcite surface ranged from 1.3
to 1.5 Å. Therefore, it can be inferred that the interactions between the MVTE and calcite
surfaces primarily consist of ionic and hydrogen bonds, which is consistent with the results
of RDF analysis.

Sustainability 2023, 15, x FOR PEER REVIEW 16 of 21 
 

 
Figure 10. Distance between MVTE and calcite (104) surface: (a) between Ca2+ of calcite and O atom 
of MVTE; (b) between O of calcite and H of MVTE. 

3.6. The Anti-Scale Performance of MVTE on Calcium Phosphate 
To expand the range of applications, the anti-scale performance of MVTE on 

Ca3(PO4)2 was also investigated in this study. Under conditions of C(Ca2+) = 250 mg/L, 
C(PO43−) = 5 mg/L, pH = 9, and heating at 80 °C for 10 h, the anti-scale performance of 
different dosages of VE and MVTE was tested, with the results shown in Figure S11. At a 
concentration of 25 mg/L, the anti-scale efficiency of VE and MVTE on Ca3(PO4)2 was 
50.52% and 89.51%, respectively. In comparison to VE, MVTE demonstrated a significant 
improvement in anti-scale efficiency on Ca3(PO4)2, illustrating the essential role played by 
the introduction of carboxyl, amide, and sulfonic groups [25]. These groups can enhance 
the chelating ability of Ca2+, inhibiting the regular growth of calcium scales [21]. These 
findings suggest that MVTE shows excellent anti-scale performance on Ca3(PO4)2, thereby 
emphasizing its potential as an antiscalant for Ca3(PO4)2 in circulating cooling water sys-
tems. 

4. Conclusions 
In this study, optimal conditions for preparing MVTE were determined as follows: a 

valonia dosage of 2.5 g, an initiator dosage of 6% (ratio of the total mass of monomers), a 
reaction temperature of 75 °C, and a reaction time of 3.5 h. Results of FT-IR, GPC, and 
element composition analysis suggest that sulfonic and amide groups were successfully 
introduced into MVTE. At pH 7 and a temperature of 80 °C, MVTE shows an anti-scale 
efficiency of 98% for CaCO3 scales at 35 mg/L. Furthermore, at a concentration of 25 mg/L, 
MVTE exhibits an anti-scale efficiency of 90.51% on Ca3(PO4)2, which is superior to that of 
VE. Moreover, SEM, XRD, and XPS analyses indicated that MVTE can chelate calcium 
ions and adsorb onto active sites of calcium scale crystals, interfering with the regular 
growth of CaCO3 scales by chelation, dispersion, and lattice distortion. Furthermore, MD 
simulation analyses demonstrate that MVTE molecules deform on the surface of calcium 
scales and release energy. Additionally, the analysis of RDFs reveals that interaction en-
ergies originate from ionic and hydrogen bonds between MVTE and calcite. This allows 
MVTE to combine with CaCO3 crystals and hinder the regular growth of CaCO3, resulting 
in crystalline lattice distortion. Compared to VE, MVTE shows significantly better 

Figure 10. Distance between MVTE and calcite (104) surface: (a) between Ca2+ of calcite and O atom
of MVTE; (b) between O of calcite and H of MVTE.



Sustainability 2023, 15, 8811 16 of 20

3.6. The Anti-Scale Performance of MVTE on Calcium Phosphate

To expand the range of applications, the anti-scale performance of MVTE on Ca3(PO4)2 was
also investigated in this study. Under conditions of C(Ca2+) = 250 mg/L, C(PO4

3−) = 5 mg/L,
pH = 9, and heating at 80 ◦C for 10 h, the anti-scale performance of different dosages of
VE and MVTE was tested, with the results shown in Figure S11. At a concentration of
25 mg/L, the anti-scale efficiency of VE and MVTE on Ca3(PO4)2 was 50.52% and 89.51%,
respectively. In comparison to VE, MVTE demonstrated a significant improvement in
anti-scale efficiency on Ca3(PO4)2, illustrating the essential role played by the introduction
of carboxyl, amide, and sulfonic groups [25]. These groups can enhance the chelating
ability of Ca2+, inhibiting the regular growth of calcium scales [21]. These findings suggest
that MVTE shows excellent anti-scale performance on Ca3(PO4)2, thereby emphasizing its
potential as an antiscalant for Ca3(PO4)2 in circulating cooling water systems.

4. Conclusions

In this study, optimal conditions for preparing MVTE were determined as follows: a
valonia dosage of 2.5 g, an initiator dosage of 6% (ratio of the total mass of monomers),
a reaction temperature of 75 ◦C, and a reaction time of 3.5 h. Results of FT-IR, GPC, and
element composition analysis suggest that sulfonic and amide groups were successfully
introduced into MVTE. At pH 7 and a temperature of 80 ◦C, MVTE shows an anti-scale
efficiency of 98% for CaCO3 scales at 35 mg/L. Furthermore, at a concentration of 25 mg/L,
MVTE exhibits an anti-scale efficiency of 90.51% on Ca3(PO4)2, which is superior to that of
VE. Moreover, SEM, XRD, and XPS analyses indicated that MVTE can chelate calcium ions
and adsorb onto active sites of calcium scale crystals, interfering with the regular growth of
CaCO3 scales by chelation, dispersion, and lattice distortion. Furthermore, MD simulation
analyses demonstrate that MVTE molecules deform on the surface of calcium scales and
release energy. Additionally, the analysis of RDFs reveals that interaction energies originate
from ionic and hydrogen bonds between MVTE and calcite. This allows MVTE to combine
with CaCO3 crystals and hinder the regular growth of CaCO3, resulting in crystalline
lattice distortion. Compared to VE, MVTE shows significantly better tolerance to changes
in temperature, alkalinity, and Ca2+ concentration, attributed to the presence of carboxyl,
sulfonic, and amide groups. These improvements are crucial for the application of MVTE
in circulating cooling water systems.
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