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Abstract: The comparative analysis of the effect of economic policy uncertainty on environmental
sustainability is imperious as it can provide critical insights into the link between economic poli-
cies and environmental sustainability. Economic policy uncertainty may have different impacts in
different economies. The present study provides a comparative analysis of the effect of economic
policy uncertainty on environmental sustainability in developed and emerging economies. The study
employs pooled ordinary least squares and panel quantile regression to analyze data from 2001 to
2019. Moreover, the study also compares the impact of economic policy uncertainty on environmental
sustainability across two different econometric methods. It also compares the results across different
quantiles of the distribution of variables. Moreover, the study includes the agriculture output, renew-
able energy consumption, and foreign direct investment in the model. The results show that economic
policy uncertainty negatively and significantly impacts environmental sustainability as it increases
GHG emissions. Moreover, agriculture output increases GHG emissions in developed economies
at higher quantiles. Furthermore, the results also confirm the pollution haven hypothesis, while
renewable energy consumption has a positive effect on environmental sustainability as it significantly
reduces GHG emissions. The study stresses that governments should take measures to minimize
economic policy uncertainty to improve environmental sustainability. In addition, effective policies
to enhance openness in the policymaking process and offer long-term policy certainty and foster
more stable investment conditions would encourage renewable energy and reduce GHG emissions.

Keywords: policy uncertainty; environmental degradation; agriculture production; renewable energy;
climate change; quantile regression

1. Introduction

The significance of economic policy uncertainty (EPU) on economic growth and
sustainability has been well-established [1]. Governments all over the globe are trying
to balance economic development and environmental protection [2]. In this regard, the
relevance of the impact of EPU on environmental sustainability (ES) has increased. EPU
refers to a lack of confidence in economic policy among businesses and households and its
impact on the economy as a whole. EPU can stem from various factors such as political
instability, regulatory modifications, and trade disputes [3]. These uncertainties can lead to
market risks and volatility, which can adversely affect the performance of various economic
sectors. Policymakers need to understand how EPU affects ES and the implementation of
effective policies and initiatives to ensure ES. Nevertheless, a comparative analysis of the
impact of EPU on ES can provide valuable insights for policymakers.
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Policymakers, economists, and governments across the globe, are increasingly con-
cerned about EPU. The rising level of EPU has significant effects on stability and economic
growth. Some studies have also focused on exploring how EPU affects environmental
quality. Given the necessity of environmental preservation and sustainable development
on a global scale, the paucity of study on this subject is particularly concerning. EPU has
the potential to have a substantial influence on ES [4,5]. EPU may result in less investment
in renewable energy (RE) and less adoption of energy-efficient technology [4,6,7]. EPU may
also cause delays in the execution of environmental regulations [8], which might hinder
the advancement of sustainable development. A comparative examination of the impact of
EPU on ES in both developed and emerging economies is pivotal to comprehending how
the former influences the implementation of environmental policies and ES.

The conservation of natural resources and innovation plays a crucial role in promoting
eco-efficiency in developed and developing economies [9]. However, increased EPU can
have adverse impacts on environmental innovation [10]. Moreover, the stability of economic
conditions is indispensable for firm-level decisions. Governance quality contributes to
better investment decisions for the corporation. However, increased EPU has adverse
impacts on corporate investments [11], whereas Ren et al. [12] find different impacts of EPU
on corporate investments at different ranges of EPU. EPU also has negative impacts on ES
and climate change mitigation by increasing CO2 emissions [13–15]. EPU may have varying
effects on ES in developed and emerging economies [15]. Some studies have also shown
that EPU and economic growth contribute to carbon emissions [16]. In industrialized
economies, there are more solid environmental policies, institutions, and laws that support
sustainable growth. On the other hand, emerging economies may have major challenges
in passing and implementing environmental laws due to lower financial resources and
institutional capacity [17]. Moreover, EPU also can have negative but different impacts
across different regions within an economy [18]. Some studies have examined the impacts
of EPU on Chinese companies [18], BRICS economies [19], the EPU-green innovation
relationship in Chinese cities, the EPU-RE relationship in the US [20], the EPU-energy
efficiency association in Chinese cities [21], EPU impacts in G7 economies [22] and South
Africa [23], and EPU-CO2 relationship in South East-Asia [24], China [25], and BRICST
nations [26]. However, the authors still believe there is a need to deeply examine the
impacts of EPU on ES to better understand how EPU affects GHG emissions in developed
and emerging economies. The authors find a strong motivation to analyze how EPU affects
ES, since EPU may affect ES differently in different economies. Moreover, there is a dire
need for a comparative analysis of the EPU-ES relationship in these economies. The present
study extends the analysis of the impact of EPU on ES in a larger panel of countries.

Since EPU significantly impacts the trajectory of environmental sustainability ini-
tiatives, adopting environmentally friendly practices and a lack of clear and consistent
rules might hamper cleaner technology innovation and its adoption [19–21,27]. The lack
of evidence in the existing literature on how EPU impacts ES provides the authors with
motivations to shed light on the relevance of stable and predictable policy frameworks for
encouraging sustainable practices and RE uptake by investigating the influence of policy
uncertainty. Furthermore, agriculture contributes significantly to environmental issues
such as deforestation, GHG emissions, and soil deterioration [22]. Agriculture, on the
other hand, has enormous potential to foster long-term growth. Investigating the link
between agricultural production and environmental sustainability can provide valuable
insights into optimizing agricultural practices, lowering environmental footprints, and
encouraging regenerative farming strategies. In addition, RE sources are gaining traction
as critical alternatives for mitigating climate change and reducing dependency on fossil
fuels [23,24]. Analyzing the effects of RE deployment on environmental sustainability
can give a thorough knowledge of their effectiveness in lowering carbon emissions and
promoting a transition to greener energy systems [2,5,19,20,25,28]. Identifying the hur-
dles and enablers of RE adoption can also aid in developing policies that expedite the
deployment of renewable technology [29]. The current study primarily focusses on the
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investigation of the research question on whether EPU affects the environmental sustain-
ability in developed and emerging economics. Furthermore, the authors find it imperative
to explore whether EPU affects the environmental sustainability in developed and emerging
economies differently. Furthermore, a comparative approach to determine the relative
contributions of policy uncertainty, agricultural production, and RE to environmental
sustainability would provide a deeper insight into the issues on the way to sustainable
development. Comparisons across various economies might show effective policies and
practices in fostering sustainable development. A comparative method also allows for
discovering distinct contextual factors that impact the connection between these vari-
ables, resulting in nuanced policy suggestions customized to individual circumstances.
The findings of this study would have important implications for policymakers, stake-
holders, and practitioners involved in environmental sustainability initiatives. The study
findings may be used to inform policy formation, resource allocation, and strategic decision-
making. This research aims to contribute to developing effective policies and interventions
that foster a harmonious relationship between economic development, agricultural pro-
ductivity, RE, and environmental preservation by addressing the key factors influencing
environmental sustainability.

This study is primarily focused on analyzing the influence of EPU, agricultural output,
foreign direct investment (FDI), and REC on ES in developed and emerging economies.
The contributions of the study are:

• The study contributes to the empirical literature on how EPU affects ES in developed
and emerging economies.

• The study assesses the impacts of agricultural output per worker (AGRPW) growth,
FDI, and REC on ES in these economies.

• To these objectives, data from 12 developed and 7 emerging economies were obtained,
and multiple econometric methods are used to assess this relationship. This study
employs pooled ordinary least squares (OLS) and quantile regression to assess the
impacts of these variables on ES measured by GHG emissions.

• Moreover, the study also provides a comparative analysis of the EPU-ES association in
the total panel, developed, and emerging economies. Further, the quantile regression,
at different quantiles of the distribution of these variables, also provides profound
insight into how the EPU along with other variables affects ES at different quintiles of
their distribution. Pooled regression estimates the model with the conditional mean of
the response variable across values of the predictor variables whereas quantile regres-
sion calculates the conditional median (or other quantiles) of the response variable
across those values. Compared to pooled regression, quantile regression offers various
advantages, including being more resistant to outliers in the response measurements
and making no assumptions about the distribution of the target variable [30,31]. Since
EPU may have different impacts at its different ranges [12], the quantile regression
could be helpful to understand the impact of EPU at its different levels.

This study adds to the literature related to EPU-ES by providing a comparative analysis
of the group of developed and emerging economies. It also provides an examination of
how EPU affects ES across different quantiles. The policymakers might benefit from
the findings of this study that show the influence of EPU on ES in both industrialized
and emerging nations and it would be productive to establish effective strategies for
sustainable development. Policymakers may be able to develop more specialized and
effective responses if they have a better grasp of the similarities and differences in the
impact of EPU on ES.

This paper is structured into 5 sections. Section 2, following the introduction, repre-
sents the literature review. Section 3 comprises the methodology section which explains
the model, description of variables, and data sources. In addition, it also represents the
econometric methodologies used for the estimations of the model(s). Section 4 comprises
the summary statistics, correlation matrix, results, and discussion on the results of the
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econometric estimates. Section 5 consists of the conclusion(s), implications, and prospects
of research.

2. Literature Review

In recent years, the impact of EPU on macroeconomic variables has been widely
studied. One of the strands of empirical studies focused on the analysis of how EPU impacts
renewable energy consumption (REC). Table 1 provides a summary of these studies. Kong
et al. [32] explore the impact of EPU on the investment decisions of Chinese A-share listed
companies from 2007 to 2019. The results show that macro EPU decreases investment scale
and efficiency while increasing the risk of overinvestment or underinvestment. On the other
hand, local EPU increases investment scale but also increases the risk of overinvestment or
underinvestment, hindering investment efficiency. The study also found that macro EPU
boosts R&D investment but hinders green investment, while local EPU has the opposite
effect. Moreover, macro EPU negatively affects firms’ business performance while local
EPU has a smaller effect. The authors suggest that the government should stabilize the
macroeconomic environment and firms should optimize investment structures and improve
risk prevention mechanisms in an uncertain environment.

Table 1. Summary of literature review.

Study Objective Findings

Kong et al. [32]
Analysis of the impact of EPU on firms’

investment decisions in Chinese A-share
listed companies in China.

Macro EPU promotes R&D investment, but it
inhibits green investment.

Xu and Yang [33] Examination of the impact of EPU on
green innovation in Chinese cities.

EPU promotes green innovation within a
threshold.

Zhang et al. [34] The analysis of the nexus between EPU
and RE in BRIC economies.

Asymmetric impacts run from EPU, FDI, and
FD to REC, especially in the long run.

Shafiullah et al. [35] Analysis of EPU and REC relationship in
the USA. Higher levels of EPU reduce REC.

Wei et al. [36]
Investigation of the distributional

impacts of EPU on energy efficiency in
Chinese cities.

EPU reduces energy efficiency.

Chu and Le [21]

Examination of the relationship between
EPU, economic complexity, RE, energy

intensity and CO2 emissions, and
ecological footprint in G7 economies.

The EKC of economic complexity and
environmental quality holds for G7 countries.

Furthermore, EPU strongly moderates the
environmental effect of RE, economic

complexity, and energy intensity.

Udeagha and Muchapondwa [37] Analysis of the moderating role of EPU in
EKC in South African economy.

The study confirms the EKC in South Africa.
EPU increases environmental degradation in

the short and long run.

Khan et al. [38] Investigation of the relationship between
CO2 and EPU for East Asian countries.

There is 2-way causality between CO2
emissions and EPU.

Syed et al. [39]
Examination of the impact of EPU and
geo-political risk (GPR) impedes CO2

emissions in BRICST economies.

EPU adversely affects CO2 emissions at lower
and middle quantiles, while it surges the CO2
emissions at higher quantiles, whereas GPR

surges CO2 emissions at lower quartiles.

Huang et al. [5]
Exploring the impact of EPU on GHG
emission in developed and developing

economies.
EPU increases GHG emissions.

Xu and Yang [33] fills a knowledge gap about how EPU influences green innova-
tion. The paper examines the moderating influence of resource endowment. The findings
indicate that EPU can encourage green innovation up to a certain extent but afterward
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has a negative inhibitory effect. The study emphasizes the need for governments and
businesses collaborating to encourage innovation and mitigate the negative consequences
of uncertainty, as well as update economic development models to promote green innova-
tion and reduce resource dependency in Chinese resource-based cities. Zhang et al. [34]
provide a piece of new evidence on the relationship between EPU, REC, FDI, and financial
development (FD) in BRIC nations. The study using multiple econometric techniques
shows the long-run relationship between EPU, FD, FD, and REC in BRIC nations. The
ARDL estimation shows the negative impacts of EPU on REC. The positive and significant
relationship between FDI and FD with REC implies that the integration of clean energy can
be increased through continuous inflows of FDI and the financial sector. The asymmetric
assumption model showed asymmetric effects of EPU, FDI, and FD on REC, particularly
in the long run. The results also showed unidirectional causality between REC and EPU,
while FDI and FD have a feedback relationship with REC.

Utilizing monthly data, Shafiullah et al. [35] examine how EPU affects the use of RE in
the USA. The results demonstrate that the model variables are non-stationary and feature
nonlinear co-integration, utilizing sophisticated nonparametric econometric approaches.
The use of RE has been proven to have a negative long-term connection with policy
uncertainty, indicating that reduced EPU causes lower RE usage. The findings emphasize
the significance of consistent economic policies for encouraging the use of RE in the
USA. Wei et al. [36] investigate the distributional impacts of EPU on energy efficiency in
39 Chinese cities from 2003 to 2019. The findings reveal that EPU has a detrimental impact
on energy efficiency in cities with medium and high efficiency, with higher EPU resulting in
even poorer energy efficiency performance. The negative impacts are more in central and
western cities and weaker in eastern cities, showing that cities with a better economic basis
and higher technological development can more readily deal with EPU’s effects on energy
efficiency. Overall, the analysis reveals the diverse effects of EPU on energy efficiency in
Chinese cities at various quantiles of the distribution.

In the Group of Seven (G7) countries, Chu and Le [21] examine the connections be-
tween EPU, economic complexity, RE, energy intensity, and CO2 emissions and ecological
footprint. The paper uses robust fixed effects models and completely modified OLS to
analyze panel data from 1997 to 2015. The findings indicate a sustained association between
the factors and environmental quality. The results show that while significant EPU and
RE assist in slowing down environmental deterioration, high energy intensity leads to
environmental damage. The environmental Kuznets curve (EKC) for economic complexity
and environmental quality in G7 nations is also supported by the study. The study also
discovers the influence of EPU on economic complexity, energy intensity, and the envi-
ronmental impact of RE. EPU intensifies the detrimental impacts of energy intensity on
environmental quality while enhancing the favorable environmental benefits of RE and
economic complexity. For governments looking to lessen environmental damage, these
studies offer insightful information. In another study, Udeagha and Muchapondwa [37]
investigate the effects of trade openness, economic uncertainty, energy intensity, and use of
renewable and non-RE sources on environmental quality in South Africa from 1960 to 2020.
The findings demonstrate that EPU has an unfavorable effect on the environment over
the long and short terms. Economic expansion accelerates environmental deterioration,
while the square of growth slows it down, supporting the EKC concept. Environmental
quality is negatively impacted by energy intensity, the use of non-RE, and trade openness,
while positively impacted by technical innovation and RE. Uncertainty in economic policy
enhances the environmental effects of economic complexity while exacerbating the negative
effects of energy intensity. These findings offer crucial policy suggestions for raising South
Africa’s environmental standards.

A strand of empirical literature primarily attempted to explore the impact of EPU on
CO2 emissions. For instance, Khan et al. [38] examined the link between CO2 emissions
and economic policy uncertainties in East Asia from 1997 to 2020. The study makes use of
sophisticated econometric techniques to examine connections between the chosen variables,



Sustainability 2023, 15, 8787 6 of 17

such as trade, RE, FDI, and EPU. The findings indicate that GDP, trade, and EPU all
have a positive effect on carbon emissions, but usage of RE and FDI are linked to better
environmental quality. Additionally, the study discovered two-way causal links between
carbon emissions and commerce, energy consumption, economic growth, and EPU. The
results show that decision-makers should take into account the adverse consequences of
EPU. The results imply that decision-makers should take into account the detrimental
effects of EPU on policies addressing CO2 emissions and look for alternative means of
reducing both EPU and carbon emissions, such as investing in green technology, foreign
capital, and RE. The influence of EPU on the cost of China’s carbon emissions trading
market from 2013 to 2021 is examined [40]. The findings indicate that although exchange
rate policy uncertainty has a negative influence on the price of the carbon emissions trading
market, trade policy and monetary policy uncertainty have a favorable impact. The study
also reveals that the price of the carbon emissions trading market is more affected by
rising trade policy uncertainty, monetary policy uncertainty, and exchange rate policy
uncertainty. The findings are in line with the hypothesis that uncertainty unequally affects
financial assets. Policymakers should take steps to lessen volatility and be cognizant of
how economic policies affect the price of carbon emissions trading.

Some studies looked into how geopolitical risk and EPU affect CO2 emissions. In
this regard, Syed et al. [39] concluded that EPU and GPR both have a heterogeneous
impact on CO2 emissions over various quantiles in the BRICST economies. EPU has a
negative impact on CO2 emissions at the lower and middle quantiles but raises them at
the higher quantiles, whereas GPR causes CO2 emissions to rise at the lower quantiles
and fall at the middle and higher quantiles. The study also discovers that the influence
of urbanization, GDP per capita, RE and non-RE, and other variables on CO2 emissions
varies. The study makes policy recommendations to address these concerns in light of the
findings. In conclusion, research indicates that uncertainty in economic policy can have a
big influence on attempts to mitigate climate change. Investments in alternative energy and
other mitigation measures may be lessened by uncertainty, but policy predictability and
stability may encourage such investments. The conclusions of this research emphasize the
significance of policy predictability and stability for encouraging investment in initiatives
to mitigate climate change. In a recent study, Huang et al. [5] examined the effects of EPU
on GHG emissions and climate change in 19 industrialized and developing nations. The
authors tested the EKC and pollution halo/haven hypotheses using panel data analysis
techniques, including PCSE and GLS. The analysis also discovers a U-shaped EKC and the
pollution haven theory in the chosen nations.

3. Research Methodology
3.1. The Model

Since the study is primarily focused on the examination of the influence of EPU [3] on
ES, GHG emissions are taken as an indicator of ES in the model. GHG gas emissions are
major contributors to climate change, resulting in an adverse impact on ES, whereas some
previous studies considered carbon emissions as a dependent variable while exploring the
impact of EPU on ES [13,14,16,18,41]. Some studies also included agriculture output growth
as an independent variable to assess its impact on GHG and ES [42]. Since the FDI inflows
play a pivotal role in economic growth, innovation [10], industrial development [43], and
thereby affecting environmental quality [43–45] in host economies, the present study also
includes FDI as an independent variable in the model to assess the pollution haven/halo
hypothesis. Moreover, RE has its core importance in climate change mitigation efforts
and achieving the carbon peak and carbon neutrality [2,30], this study also considers RE
as one of the response variables in the model. This study proposes and estimates the
following model for the comparative analysis of EPU-ES association in developed and
emerging economies.

LGHGit = α1LEPUit + α2LAGRPWit + α3LFDIit + α4LRECit + εit (1)
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In model (1), EPU, AGRPW, FDI, and REC are the economic policy uncertainty index,
agriculture output per worker, FDI, and REC, respectively, whereas LGHG, LEPU, LAGRPW,
LFDI, and LREC are the natural log values of EPU, AGRPW, FDI, and REC, respectively. ε is
the error term and subscripts i and t show the panel group and time (i.e., year), respectively.
The expected sign of α1 is expected to be positive. The expected signs of the coefficients of
the independent variables are summarized in Table 2.

Table 2. Expected signs of estimated parameters.

Variable Symbol Expected Sign(s)

Economic policy uncertainty EPU α2 > 0
Agriculture output per worker AGRPW α2 > 0 or α2 < 0

Foreign direct investment FDI α3 > 0 or α3 < 0
Renewable energy consumption REC α4 < 0

Various previous studies [21,34,38,39] provide strong reasons to expect a positive
association between EPU and GHG emissions. For agriculture output, α2 > 0 or α2 < 0
is expected. There is enough evidence of α2 > 0, as the studies such as [42,46–48] show
that agricultural sector growth causes an increase in GHG emissions. However, there is
also some evidence of α2 > 0, as agricultural growth can reduce GHG emissions [49,50].
The coefficient of FDI can be α3 > 0 or α3 < 0. α3 > 0 implies that FDI inflows are
related to higher levels of CO2 emissions. FDI-CO2 is acknowledged as the pollution haven
hypothesis (PHH) in literature regarding FDI-environmental linkage. It may be due to
the motivation of developed economies to maximize profit and invest in developing and
emerging economies with less stringent environmental policies, relaxed environmental
regulation, or lower environmental tax systems. In such cases, the developed economies
shift polluting industries to such economies [51]. There is also an empirical evidence on
the confirmation of PHH [44,52]. However, on the other side, some studies put forward
the argument that the FDI flows have the potential to be the conduit of cleaner and more
efficient technologies to the host economies which are helpful in climate change mitigation.
The FDI-GHG association is named the pollution halo hypothesis [53]. When it comes
to RE, α4 < 0 is expected. REC has a pivotal role to play and has the potential to add to
climate change mitigation efforts by reducing GHG emissions [30,34,35,37].

3.2. Description of Variables and Data Source

The study utilized data from 12 developed economies (Canada, France, Germany,
Greece, Ireland, Italy, Japan, Netherlands, Spain, the United Kingdom, the United States,
and Sweden) and 12 emerging economies (Brazil, China, Chile, Colombia, India, Russia,
and Mexico). The sampled period for data has been collected from 2001 to 2019. The data for
all the variables except EPU has been obtained from the World Development Indicators [54].
Moreover, the data for EPU has been taken from economic policy uncertainty [55]. The
details and descriptions of the variables are summarized in Table 3.

Table 3. Variables and data source.

Variable Description Source

GHG Total greenhouse gas emissions (kt of CO2 equivalent) World Bank [54]
EPU Environmental Policy Uncertainty Index EPU [55]

AGRPW Agriculture, forestry, and fishing, value added per worker
(constant 2015 US$) World Bank [54]

FDI Foreign direct investment, net inflows (BoP, US$ million) World Bank [54]

REC Renewable energy consumption (% of total final energy
consumption) World Bank [54]
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3.3. Econometric Methodology

The present study has used pooled regression and quantile regression methods to esti-
mate the model (1). The statistical distribution of data might exhibit uneven variance and
shifting interactions between variables at different locations on the conditional distribution
of the regression. Estimates based on mean values, such as pooled OLS, might produce
inaccurate results [30,31]. Quantile regression is a statistical method used to model the
conditional quantile of a response variable, given a set of predictor variables. The method
allows for the estimation of the quantile of interest, rather than just the mean or median,
making it useful for modeling non-symmetric distributions and exploring the heterogeneity
of the response variable [31]. Moreover, quantile regression helps address the heterogeneity
problem in panel data by estimating heterogeneous effects across the conditional distribu-
tion of the response variable while adjusting for individual and time-specific variables [56].
The average effect produced from pooled regression must adequately capture this diverse
effect. Quantile regression can also manage non-normal response variable distributions
and resist the impact of outliers [57].

Quantile regressions entail splitting the dependent variable’s conditional distribution
into quantiles, with the 50th quantile indicating the median [31,58]. Quantile regressions are
less susceptible to outliers than mean-based estimate approaches [58]. Moreover, metrics
such as GHG and EPU might have significant differences between the median and mean.
Due to its capacity to estimate different slopes for different quantiles, quantile regression is
an appealing approach for evaluating the EPU-GHG association.

The first step in starting a quantile regression is identifying the target quantile, which
is commonly indicated by the parameter τ(0 < τ < 1). With the τ = 0.5, the regression
concentrates on modeling the response variable’s median. With τ = 0.9, the regression
attempts to represent the 90th percentile. Similarly, with τ values 0.25 and 0.75, the
regression provides the estimates for the lowest and highest quartiles [31,58].

Given Xi, the conditional quantile of Yi can be estimated as:

QYit(τ|Xit) = Xτ
itBτ (2)

In Equation (2), QYit(τ|Xit) indicates the τth quantile of the regressor and Xτ
it is the

vector of dependent variables for each country i at year t for the τth quantile, whereas, Bτ

indicate the slopes of the response variables at the τth quantile [6,30]. In the present study,
the regression coefficients have been estimated at the 10th, 20th, 25th, 30th, 40th, 50th, 60th,
70th, 75th, 80th, and 90th quantiles. Moreover, for the robustness of the estimated results,
following [30], we have used balanced panel data. In the present study, the panel quantile
method is used to capture the heterogeneous makeup of groups with varying amounts of
GHG emissions and EPU.

4. Results
4.1. Summary Statistics and Correlation Matrix

The summary statistics are in Table 4. The mean value of GHG emissions in the total
panel is 1,486,568 with mean values of 958,593 and 2,318,148 for a group of developed
and emerging economies, respectively. It is notable that on average, GHG emissions are
higher in developing economies as compared to those of developed economies. It may
be because, in the panel of emerging economies, the major contributors to global GHG
such as China, India, and Brazil are included in the model. The highest GHG emissions
of 12,700,000 for the Chinese economy is the highest value of GHG emissions in the total
panel and the panel of emerging economies. The EPU in the total panel averaged 119.87
as compared to 126.76 and 108.05 in developed and emerging economies respectively. It
shows that, on average, developed economies have been experiencing higher levels of
policy uncertainty as compared to emerging economies. It can also be observed with
the fact that the maximum value of EPU of 497.54 shows the indication of higher lev-
els of EPU in developed economies, whereas in emerging economies, the EPU ranged
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from a minimum value of 25.23 to a maximum EPU of 350.92. Moreover, the standard
deviation of EPU in developed economies is also higher as compared to that in emerg-
ing economies. The agriculture output per worker (AGRPW) averaged 30,805.26 in the
full panel as compared to 45,522.78 and 5575.23 in developed and emerging economies.
It shows that agricultural productivity is higher in developed economies as compared
to emerging economies. The FDI levels in developed countries, on average, have been
higher with a mean value of 70,108.98 as compared to the mean value of FDI of 47,993.77.
When it comes to REC, the developed economies showed an average of 12.81 percent
with minimum and maximum levels of REC of 0.85 percent and 52.88 percent, respec-
tively, whereas in emerging economies, the levels of REC are higher with an average of
24.56 percent with minimum and maximum values of 3.18 percent and 48.92 percent, which
is also higher than the average of the total panel of countries. The skewness and kurtosis
values of the variable show that most of the variables are not normally distributed.

Table 4. Summary statistics.

Variable GHG EPU AGRPW FDI REC

Total Panel

Mean 1,486,568.00 119.87 30,805.26 61,961.27 17.14
Std. Dev. 2,529,330.00 63.32 27,115.52 92,569.78 13.78

Min 46,190.00 25.23 964.78 2.00 0.85
Max 12,700,000.00 497.54 113,112.70 733,826.50 52.88

Median 557,230.00 106.36 21,399.15 28,909.42 11.61
Skewness 2.76 2.38 0.85 2.90 0.96
Kurtosis 10.41 11.25 2.81 14.01 2.76

Developed Economies

GHG EPU AGRPW FDI REC
Mean 958,593.40 126.76 45,522.78 70,108.98 12.81

Std. Dev. 1,669,299.00 66.40 23,864.99 105,724.80 11.24
Min 46,190.00 47.52 12,280.51 2.00 0.85
Max 6,767,470.00 497.54 113,112.70 733,826.50 52.88

Median 461,440.00 110.31 42,708.31 31,375.28 9.03
Skewness 2.81 2.57 0.63 2.66 1.96
Kurtosis 9.38 11.89 2.65 11.79 6.64

Emerging Economies

GHG EPU AGRPW FDI REC
Mean 2,318,148.00 108.05 5575.23 47,993.77 24.56

Std. Dev. 3,256,567.00 55.94 3207.03 61,942.84 14.60
Min 67,800.00 25.23 964.78 1720.49 3.18
Max 12,700,000.00 350.92 14,201.45 290,928.40 48.92

Median 991,490.00 98.22 5017.53 25,564.94 28.80
Skewness 2.04 1.75 0.62 2.37 −0.03
Kurtosis 6.11 7.20 2.65 8.14 1.69

Note: The number of observations to total panel, developed, and developing economies are 361, 228, and
133, respectively.

4.2. The Pairwise Correlation

The pairwise correlation matrices for the total panel of developed and emerging
economies are summarized in Table 5, showing that the correlation coefficients between
EPU and GHG are positive in the total panel and group of emerging economies. The
EPU-GHG correlation in emerging economies is statistically significant with p-value < 0.01.
The AGRPW-GHG correlation is negative but weak for the total panel of countries and
a group of emerging economies. However, it is positive in developed economies. The
FDI-GHG correlations in all groups of countries are positive and statistically significant
with p-value < 0.01. However, this correlation is strong in a group of emerging economies.
It is also noteworthy that the REC-GHG correlation has an expected negative sign, and



Sustainability 2023, 15, 8787 10 of 17

it is statistically significant for all groups of countries. However, the correlation between
REC and GHG is weak. The correlation coefficients between the independent variables are
lower which rules out the multicollinearity issues. Moreover, it is also confirmed by the
mean VIF < 5 for all groups of panels (Table 5).

Table 5. Pairwise correlation.

Variable(s)
GHG EPU AGRPW FDI REC VIF

Total Panel

GHG 1.0000 -
EPU 0.0343 1.0000 1.25

AGRPW −0.0335 0.2559 *** 1.0000 1.13
FDI 0.5250 *** 0.0601 0.3488 *** 1.0000 1.02
REC −0.1168 ** −0.0420 −0.1100 ** −0.2471 *** 1.0000 1.12

Mean VIF 1.13

Developed Economies

GHG 1.0000 -
EPU −0.0006 1.0000 1.08

AGRPW 0.4618 *** 0.2389 *** 1.0000 2.09
FDI 0.5445 *** −0.0034 0.4281 *** 1.0000 1.77
REC −0.2036 *** 0.0063 0.4306 *** −0.2409 *** 1.0000 1.37

Mean VIF 1.58

Emerging Economies

GHG 1.0000 -
EPU 0.1697 * 1.0000 1.24

AGRPW −0.3039 *** 0.3982 *** 1.0000 1.42
FDI 0.8952 *** 0.2133 ** −0.1623 * 1.0000 1.09
REC −0.3034 *** 0.0390 −0.2565 *** −0.2237 *** 1.0000 1.25

Mean VIF 1.25
* shows p-value(s) < 0.10, ** shows p-value(s) < 0.05, and *** shows p-value(s) < 0.01.

4.3. Economic Policy Uncertainty-GHG Model Results

Table 6 summarizes the results of the pooled regression and quantile regression
analyses. They show that the EPU coefficient is positive and statistically significant
(p-value < 0.01) for all groups of countries—total panel, developed economies, and emerg-
ing economies. This is consistent with the results of [5]. The quantile regression results
also show positive LEPU elasticities of LGHG emissions for all panels and quantiles. How-
ever, the LEPU coefficients are only significant at higher quantiles in the total panel. The
LEPU coefficients vary across different quantiles, indicating that EPU affects GHG emission
changes at different levels. The LEPU coefficients are insignificant at higher quantiles in
the total panel and developed economies. The LEPU coefficients generally increase and are
significant at higher quantiles in emerging economies. EPU can affect ES through various
direct and indirect pathways. An important channel through which EPU impacts ES is
investment [8] and innovation [33]. Moreover, EPU also has negative impacts on energy
efficiency [36]. EPU can reduce investment and innovation in ES. Companies may delay
investment in environmentally sustainable practices and technologies, as they may be
uncertain about the future economic policy environment [8,32]. Another channel is policy
coordination as EPU can result in a lack of coordination between policies and ambiguity
in environmental policy, which makes it challenging for businesses to make long-term
investment choices and prepare for the future. Pirgaip et al. [7] showed that EPU has
negative impacts on energy conservation policies. The extended prevalence of EPU also
has its impacts on consumer behavior regarding the use of eco-friendly goods and services.
Uncertainty in economic policy can influence consumer behavior, with customers poten-
tially limiting their desire for environmentally friendly products and services. However, a
reduction in EPU can help increase REC [35]. Moreover, EPU might cause governments
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to reverse or reduce environmental restrictions to support economic development, which
could result in environmental deterioration.

Table 6. Econometric analyses results.

Variables Pooled OLS
Quantiles

10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th

Total Panel

LEPU 0.5345 ***
(0.1303)

0.6019 ***
(0.1746)

0.8370 ***
(0.2210)

0.8686 ***
(0.1725)

0.7061 ***
(0.1573)

0.6879 ***
(0.1506)

0.6669 ***
(0.1793)

0.5378 **
(0.2675)

0.2324
(0.2786)

0.2071
(0.2439)

0.1045
(0.2078)

−0.0018
(0.1514)

LAGRPW −0.5228 ***
(0.5054)

−0.4104 ***
(0.0564)

−0.4635 ***
(0.0791)

−0.5856 ***
(0.0997)

−0.6216 ***
(0.0833)

−0.6285 ***
(0.0781)

−0.6416 ***
(0.07820

−0.6625 ***
(0.0884)

−0.5343 ***
(0.0728)

−0.5052 ***
(0.0723)

−0.4636 ***
(0.0720)

−0.3425 ***
(0.0693)

LFDI 0.4667 ***
(0.0309)

0.3197 ***
(0.0418)

0.4234 ***
(0.0682)

0.4971 ***
(0.0648)

0.5470 ***
(0.0469)

0.5549 ***
(0.0441)

0.5680 ***
(0.0628)

0.5374 ***
(0.0788

0.5814 ***
(0.0931)

0.5581 ***
(0.0909)

0.5345 ***
(0.0820)

0.5095 ***
(0.0697)

LREC −0.3891 ***
(0.0638)

−0.2378 ***
(0.0661)

−0.4119 ***
(0.0784)

−0.4316 ***
(0.0795)

−0.4051 ***
(0.0875)

−0.4005 ***
(0.0851)

−0.4147 ***
(0.0794)

−0.4267 ***
(0.0926)

−0.3572 ***
(0.1048)

−0.4169 ***
(0.0967)

−0.5106 ***
(−0.0922)

−0.5457 ***
(0.1459)

Constant 12.1097 ***
(0.7240)

10.4118 ***
(1.1346)

9.6658 ***
(1.2589)

10.2709 ***
(1.0033)

10.9888 ***
(0.7574)

11.2572 ***
(1.2179)

11.6126 ***
(1.2179)

12.9885 ***
(1.6494)

12.9674 ***
(1.6002)

13.3482 ***
(1.3380)

14.1299 ***
(1.1515)

14.2076 ***
(1.1093)

Developed Economies

10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th

LEPU 0.5024 ***
(0.0640)

0.5611 **
(0.2438)

1.0473 ***
(0.1757)

1.0200 ***
(0.2222)

0.8244 ***
(0.2709)

0.4596
(0.3148)

0.2237
(0.4942)

0.3237
(0.2778)

−0.0017
(0.2115)

0.0764
(0.1893)

−0.0295
(0.1849)

0.0764
(0.1810)

LAGRPW 0.3484 **
(0.1370)

−0.0835
(0.2344)

−0.2129
(0.1567)

−0.3083 *
(0.1716)

−0.1969
(0.2149)

0.0762
(0.2739)

0.3956
(0.2714)

0.4917
(0.3121)

0.9920 ***
(0.2548)

1.1023 ***
(0.1972)

1.1549 ***
(0.1836)

1.2207 ***
(0.1667)

LFDI 0.2659 ***
(0.0376)

0.2311 ***
(0.0621)

0.2965 ***
(0.0584)

0.3339 ***
(0.0723)

0.3823 ***
(0.0715)

0.3851 ***
(0.0649)

0.3574 ***
(0.0812)

0.3387
(0.0974)

0.2841 ***
(0.0919)

0.2112 **
(0.0810)

0.2064 ***
(0.0695)

0.1535 ***
(0.0510)

LREC −0.4585 ***
(0.0728)

−0.2581 ***
(0.8169)

−0.2092 ***
(0.0798)

−0.2172 ***
(0.0989)

−0.3330 ***
(0.1081)

−0.1969 *
(0.1163)

−0.3368 *
(0.2022)

−0.5834
(0.3401)

−1.2950 ***
(0.2932)

−1.3905 ***
(0.1682)

−1.4018 ***
(0.1282)

−1.5522 ***
(0.1406)

Constant 5.2172 ***
(0.9952))

8.1146 ***
(1.4294)

6.7682 ***
(1.4294)

7.6800 ***
(1.4740)

7.4622 ***
(1.6333

6.2396 ***
(1.8310)

4.8533 ***
(1.5495)

4.3087
(1.5672

3.2142 **
(1.6197)

2.7627 *
(1.6017)

2.8755 *
(1.6689)

2.7844 *
(1.6233)

Emerging Economies

10th 20th 25th 30th 40th 50th 60th 70th 75th 80th 90th

LEPU 0.6637 ***
(0.1263)

0.2979
(0.1731)

0.3400 *
(0.1986

0.3176
(0.2061)

0.5900 ***
(0.2010)

0.5747 ***
(0.1667)

0.6994 ***
(0.1531)

0.7899 ***
(0.1335)

0.7677 ***
(0.1248)

0.7612 ***
(0.1452)

0.7424 ***
(0.1756)

0.5934 **
(0.2312)

LAGRPW −1.4845 ***
(0.0941)

−1.4381 ***
(0.1240)

−1.4539 ***
(0.1448)

−1.5266 ***
(0.1530)

−1.4701 ***
(0.1565)

−1.4807 ***
(0.1356)

−1.4863 ***
(0.1225)

−1.5479 ***
(0.1110)

−1.4644 ***
(0.1136)

−1.4708 ***
(0.1272)

−1.5012 ***
(0.1564)

−1.2059 ***
(0.1917)

LFDI 0.7254 ***
(0.0491)

0.9229 ***
(0.0921)

0.8534 ***
(0.1017)

0.8284 ***
(0.1054)

0.8266 ***
(0.1031)

0.8374 ***
(0.0905)

0.8499 ***
(0.0769)

0.7706 ***
(0.0672)

0.7439 ***
(0.0724)

0.7344 ***
(0.0809)

0.6451 ***
(0.0917)

0.5168 ***
(0.0701)

LREC −0.8769 ***
(0.0693)

−0.7924 ***
(0.1200)

−0.7797 ***
(0.1635)

−0.7778 ***
(0.1710)

−0.8081 ***
(0.1662)

−0.6995 ***
(0.1387)

−0.7081 ***
(0.1208)

−0.7145 ***
(0.1232)

−0.7885 ***
(0.1020)

−0.7847 ***
(0.0948)

−0.8114 ***
(0.0978)

−0.9214 ***
(0.1097)

Constant 18.3751 ***
(1.0147)

16.6849 ***
(1.8315)

17.4592 ***
(2.2572)

18.4865 ***
(2.4303)

17.0086 ***
(2.4533)

16.9400 ***
(2.1827)

16.4346 ***
(1.8217)

17.5282 ***
(1.4783)

17.6311 ***
(1.3517)

17.8228 ***
(1.3539)

19.3118 ***
(1.2824)

19.4755 ***
(1.1476)

The values in ( ) are bootstrap standard errors. * shows p-value(s) < 0.10, ** shows p-value(s) < 0.05, and *** shows
p-value(s) < 0.01.

The coefficients of agricultural output per worker are negative and significant in the
total panel and emerging economies. In developed economies, they are negative and signifi-
cant from the 10th to 25th quantiles but insignificant at the 30th quantile (Table 6). However,
they become positive and significant from the 40th to 90th quantile. The coefficient values
increase at higher quantiles, indicating that agricultural output per worker adversely affects
ES in developed economies at higher distribution levels. This GHG emission increasing
impact on agriculture output in developed economies might be due to the reliance of these
economies on fossil fuels to meet the energy demands in the agriculture sector [46]. More-
over, increased agriculture production warrants extended land use, more use of fertilizers
and aquaculture production, and investments in road infrastructures. These factors cause
an increase in the carbon footprints of the agriculture sector growth. The findings are
supported by the findings of [42] who find a negative impact of non-organic agricultural
output growth in the European region. However, the same study asserted that organic
agriculture contributes to a reduction in the carbon footprints of the agriculture sector.
Interestingly, our results show that agriculture sector output growth has negative and
highly significant signs in pooled regression and quantile regressions and the value of
coefficients for a group of emerging economies is higher than that for the total group of
countries. Depending on the methods and technology used, the increasing agricultural
output can have various implications on GHG emissions in developing nations. While
certain agricultural methods can result in higher emissions, others can help to mitigate and
reduce emissions. Sustainable agricultural intensification can reduce GHG emissions in
emerging economies. According to the study, sustainable intensification may enhance crop
yields while decreasing the amount of land required for agriculture, lowering deforestation
and emissions related to land-use change [47]. Smallholder farmers in developing nations
may cut emissions while increasing output by adopting climate-smart farming techniques.
According to the research, various approaches, such as agroforestry and conservation agri-
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culture, can contribute to sustainable intensification by reducing the demand for fertilizers
and pesticides, both of which can cause emissions [48]. Moreover, the use of RE also reduces
the carbon footprints of the agriculture sector [49]. For instance, developing solar irrigation
systems can help reduce carbon emissions in agricultural production [50].

The pooled and quantile regressions support the PHH for all the groups of countries.
FDI elasticities of GHG emissions are significant at 0.01 level and are 0.4667, 0.2659, and
0.7254 (Table 6) for the total panel, developed, and emerging economies, respectively.
The FDI elasticity is higher in emerging economies than in the total panel and developed
economies, indicating a more substantial FDI impact on GHG in emerging economies. The
quantile regression analysis also shows higher FDI elasticities for emerging economies
than for the total panel and developed countries. The elasticity values decrease at higher
distribution quantiles for developed and emerging economies. The results of the present
analyses corroborate with the findings in previous studies including [44,51,52]. FDI can
raise greenhouse gas (GHG) emissions in developed economies via a variety of avenues, in-
cluding increased industrial activity, energy consumption, and transportation. FDI inflows
can stimulate economic activity and output, leading to a rise in GHG emissions. However,
there may be multiple source reasons for this positive association between FDI and GHG
emissions in developed economies. It might be due to the reason that FDI in the duration
of EPU has a negative impact on environmental quality due to relaxed environmental
standards. Cole [59] provides strong reasons to believe that FDI inflows might enhance
the production of carbon-intensive commodities as well as energy consumption. It is also
notable that FDI inflows increase economic growth which in turn enhances energy con-
sumption and thereby GHG emissions. This might be one of the reasons for GHG emissions
increasing the impact of FDI in developed economies. Huang et al. [43] also explored
the positive association between FDI and carbon emission in G20 economies. Another
reason for a positive association between FDI and GHG could be the role of the former in
stimulating industrial activity and the surge in energy consumption leading to an increase
in the latter. FDI has an adverse effect on ES by affecting carbon emission efficiency [60,61].

REC affects GHG emissions in different economies at different stages. According
to a study, REC has a negative and significant impact on GHG emissions for all panel
groups, meaning that more REC leads to less GHG emissions. However, the strength of this
impact varies across different quantiles, representing different levels of GHG emissions.
The study found that REC elasticities, which measure the responsiveness of GHG emissions
to changes in REC, are higher for emerging economies than for the total panel from the
10th to 60th quantile. REC reduces GHG emissions more effectively in emerging economies
at lower GHG emissions than in developed economies. However, the study also found
that REC elasticities are higher for developed economies than for emerging economies
from the 70th to 90th quantile. REC reduces GHG emissions more effectively in developed
economies at higher GHG emissions than in emerging economies. The study suggests that
REC has a more significant role in lowering GHG emissions in developed economies at
higher stages than in emerging economies. Different degrees of development result in
various effects of RE on GHG emissions. Contrary to fossil fuels, the leading cause of global
climate change, RE sources, including wind and solar, release little to no GHGs or other air
pollutants. In addition to being more affordable and available than fossil fuels, RE sources
may assist nations in diversifying their economy and lowering their reliance on imports.
Nevertheless, depending on the area and economic level, different RE sources have varying
effects on GHG emissions. The results of our analyses corroborate with the results of
Allard et al. [30], who show that the coefficients of RE are higher for lower-middle-income
countries as compared to those for upper-middle and high-income countries. This confirms
that in lower-middle-income countries, RE plays a pivotal role in the reduction of CO2
emissions. The positive role of RE in reducing GHG emissions and promoting ES has been
asserted in [34,35,37].
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5. Conclusions

This study aims to conduct a comparative analysis of the impact of EPU on ES mea-
sured by GHG emissions in 19 developed emerging economies. For this analysis, the
study employed pooled OLS and quantile regression to scrutinize the insinuations of EPU
on GHG emissions across the different panels of developed and emerging economies.
Moreover, it also examined these impacts at different quantiles of EPU, GHG, and other
variables in the model. The findings reveal that EPU has a significant positive impact on
GHG emissions. The quantile regression analysis reinforces these results by demonstrating
positive elasticities of GHG emissions in all panels and quantiles. However, the influence
of EPU on GHG emissions varies at different quantiles. In the overall panel, the EPU
coefficients decrease and become insignificant at higher quantiles, indicating a diminishing
impact on GHG emissions. Similarly, for developed economies, the EPU coefficients decline
at higher quantiles. Conversely, in emerging economies, the impact of EPU increases up
to the 80th quantile but declines at the 90th quantile. Importantly, the EPU coefficients
in quantile regression estimates are higher for emerging economies compared to the total
panel and developed economies, indicating a stronger GHG emission-increasing effect
in these economies. These findings highlight the negative impact of EPU on ES through
increased GHG emissions. Therefore, it is crucial to prioritize clarity and stability in policy-
making to reduce EPU. Policymakers should focus on implementing clear, transparent, and
stable policy-making procedures and standards. Businesses and investors can contribute
by providing clear guidance and long-term planning, enabling them to better understand
the consequences of policy choices and reducing uncertainty related to economic policy
changes. Furthermore, policymakers and governments should encourage openness and
information sharing to minimize the uncertainty and unexpected nature of policy deci-
sions. By promoting transparency and facilitating knowledge dissemination, they can
foster an environment conducive to sustainable decision-making and reduce the adverse
environmental effects associated with policy uncertainty.

The coefficients of agricultural output are negative and significant for the entire panel
and emerging economies. In developed economies, the coefficients are negative and signifi-
cant from the 10th to 25th quantiles, shifting to positive and significant between the 40th
and 90th quantiles. It suggests that agricultural output per worker negatively influences de-
veloped countries at higher quantiles. To address this, policymakers in developed nations
should promote sustainable farming methods such as soil carbon sequestration, reduced
animal protein use, and optimized crop management. Conservation initiatives should
incentivize carbon sinks, lower methane emissions, and boost RE in the agricultural sector.
Livestock and manure management strategies, including improved feed quality and biogas
collection, are also essential. Quantifying and reducing emissions from fertilizers, pesti-
cides, and animal manure using nuclear and isotopic methods is crucial for environmental
sustainability. Both pooled and quantile regression analyses support the PHH across all
panels. The FDI elasticities of GHG emissions are significant. Notably, the FDI elasticity is
higher in emerging economies than in the total panel and developed economies, indicating
a more substantial impact of FDI on GHG emissions in emerging economies. The quantile
regression analysis also reveals higher FDI elasticity values for emerging economies than
developed ones. However, these values decrease at higher quantiles for developed and
emerging economies. The study provides substantial evidence supporting the notion that
FDI significantly affects GHG emissions, aligning with the PHH. To address this, emerging
economies should develop policy frameworks that attract low-carbon technology transfers
and enhance the environmental performance of businesses. Additionally, attracting FDIs
for energy-efficient and low-carbon footprint Greenfield projects is crucial. The govern-
ments in host economies should prioritize implementing emission reduction policies and
programs. For example, FDI can contribute to ES by promoting RE use, phasing out coal,
implementing carbon pricing, and electrifying transportation sectors.

The results indicate that REC significantly negatively impacts GHG emissions across
all panel groups. The REC elasticities are higher for emerging economies from the 10th
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to 60th quantiles than the total panel, suggesting a more significant contribution of REC
to GHG emissions reduction in emerging economies within this range. However, from
the 70th to 90th quantiles, the coefficients of REC are higher for developed economies,
indicating a more vital role in reducing GHG emissions at higher quantiles in developed
economies. Policymakers should prioritize efforts to decrease energy output and con-
sumption per unit of GDP, particularly in emerging economies where EPU significantly
influences GHG emissions. It can be achieved by implementing laws and regulations that
promote the adoption of cleaner and more efficient technologies and supporting RE sources.
The findings suggest that REC can help reduce GHG emissions, particularly in developing
countries. Governments should encourage using REC in all nations, focusing on emerging
economies with the most significant impact. Similarly, efforts should be directed towards
boosting REC in developed economies, with a more significant potential to cut GHG emis-
sions. Given the increased economic globalization, international collaboration is essential
in dealing with policy uncertainty. Governments should open avenues for international
collaboration to address policy uncertainty and ES challenges. Adopting innovative and
evidence-based approaches, such as circular economy models that minimize waste and
encourage reuse and recycling, can reduce uncertainty and foster sustainable economic
growth. Policymakers should prioritize sustainability and avoid conventional models
contributing to policy uncertainty.

Current comparative analysis of the linkage between EPU, agriculture output, FDI,
and RE provides a foundation for future research. Future research can look into additional
variables, such as technical innovation, and trade dynamics, to thoroughly understand
the complicated interaction between policy uncertainty, agricultural output, RE, and ES.
Furthermore, longitudinal studies can give insights into the dynamics and trends, pro-
viding a more in-depth knowledge of the connections under consideration. Longitudinal
research can capture the effects of policy changes and technical advances on environmental
sustainability in industrialized and emerging economies. The findings may be used to
assess the efficacy of current policies and indicate areas for improvement. Future studies
would also contribute to the continuing policy debate on environmental sustainability by
directing policymakers to develop evidence-based solutions and promoting a continuous
feedback loop between research and policy implementation.
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