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Abstract: In this study, Fourier-transform infrared (FTIR) spectroscopy coupled with machine learn-
ing (ML) approaches were applied to detect and quantify wheat flour (WF) contamination in gluten-
free cornbread. Samples of corn flour (CF) were contaminated with WF in the range of 0–10% with a
0.5% increment. The flour samples were baked into bread using basic bread formulation and ground
into a fine particle size for homogeneity, and FTIR spectra of the ground samples were obtained and
standardized before modeling. For constructing the classification model, majority voting-based en-
semble learning (stack of k-nearest neighbor [KNN], random forest, and support vector classifier) was
implemented to detect and quantify WF in the cornbread samples. KNN regressor was determined
to be the best predictive model to quantify wheat contaminants based on the majority-vote ensemble.
The optimal classification model for the test set showed an F1 score, true positive rate (TPR), and false
negative rate (FNR) of 1.0, 1.0, and 0.0, respectively. For the quantification models, the coefficient
of determination and root mean square error for the prediction set (R2

P and RMSEP) were 0.99 and
0.34, respectively. These results show the feasibility of utilizing FTIR along with supervised learning
algorithms for the rapid offline evaluation of wheat flour contamination in gluten-free products.

Keywords: celiac disease; cornbread; ensemble learning; gluten; machine learning; wheat flour; FTIR

1. Introduction

Sustainable food production has become a global need for the current and future
generations to lessen the need for pollution-generating, traditional food production. Food
allergy is reported to affect 3–5% of adults and 8% of children worldwide [1]. The medical
and caregiving cost of food allergies in 2013 in the US was estimated between $19 billion
and $25 billion USD [2]. Gluten-free products have a vast number of customers, some of
which cannot tolerate the presence of gluten in foods. Gluten proteins including gliadin
and glutenin in wheat and whole wheat are the major allergens in wheat. Celiac disease
and gluten intolerance or sensitivity are examples of the immunological or physiological
consequences of consuming such allergens [3]. In 2012, it was estimated that 0.3–0.9% of
the US population suffers from celiac disease [4]. For people with gluten-related disorders,
a strict gluten-free diet is essential to properly manage their reactions. The United States
Food and Drug Administration (FDA) identified a gluten-free diet as any food containing
less than or equal to 20 ppm of gluten [5]. Cross-contamination in the food industry is
not an unusual matter. The severity of such incidents can cause a further collapse of food
businesses through product recalls and even legal disputes. Cross-contamination does
occur in gluten-free production lines, which leads to the gluten ratio being higher than
20 ppm in the final products. One of the common incidents of cross-contamination is
caused by the inadequacy of the cleaning of processing lines that are used to manufacture
gluten-containing (i.e., wheat, barley, rye, and their crossbred varieties) and gluten-free
products [6,7]. Cross-contamination in food factories can be identified as the accidental
mixing of one or more ingredients of a food product [7]. The baking process is a general
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example of where cross-contamination develops through the undeliberate mixing of raw
materials with gluten-contained flours such as wheat, barley, or rye, or through the in-
adequate cleaning of processing lines that handle both gluten-containing and gluten-free
products. In bakeries where bread is made, different gluten and gluten-free flours may be
processed in the same factory where the same equipment (e.g., milling machine, knead-
ing rolls, fermenting drum, etc.) or kitchen utensils are used for both. The likelihood
of cross-contamination exists if proper cleaning is not followed or measures are taken to
ascertain the gluten-free nature of the ingredients or processing lines. Food losses and/or
food waste originating from cross-contaminated food represent a major problem for food
businesses as well as the environment and healthcare considering the need to hospitalize
patients suffering from food allergens as well as foodborne and other diseases resulting
from food products that are adulterated or contaminated. Therefore, the detection of cross-
contamination in food processing lines is a key factor to ensure that products labeled as
gluten-free are suitable for consumption by consumers with gluten-related disorders.

Enzyme-linked immunosorbent assay (ELISA) is the most common analytical tech-
nique for identifying gluten in contaminated food products [8]. However, such a method
is cumbersome and requires highly skilled personnel to conduct. The global market size
value of gluten-free bakeries was estimated to be USD 1.81 billion, and the total revenue is
expected to reach USD 4.15 billion by 2030. The US share of such a market in 2022 was USD
449.0 million [9]. Thus, considering the relatively large production as well as the demand
for gluten-free baked products, ensuring safety through fast and accurate inspection is
crucial in all processing steps, which achieves the targets of quality control.

Nondestructive methods based on optical sensors have been successfully applied for
the quality evaluation of perishable and processed food products [10]. Several studies
researched the applications of optical sensing for determining the quality characteristics
and/or gluten content of grains’ flour and bread. Sørensen [11] investigated the evaluation
of nutrients in a wide range of commercially produced bread varieties using near-infrared
spectroscopy (NIRS) which yielded results with coefficient of determination (R2) values
ranging from 0.76 to 0.99 for the different food constituents analyzed. The identifica-
tion of low gluten concentrations (<4.5%, w/w) in gluten-free flour and the batter was
conducted via NIRS (1100–2500 nm) and modified partial least squares (MPLS), and the
validation models yielded validation models with R2 values of up to 0.967 for the flour
and 82.5% for the batter [12]. Ahmad, Nache [13] studied the application of fluorescence
spectroscopy with an excitation parameter (λExcitation) of 270–550 nm and an emission
parameter (λEmission) of 310–590 nm to detect low gluten levels (<5%, w/w) in commercial
gluten-free flour. The partial least squares regression (PLSR) prediction models had R2

values of 0.90 and a root mean square error of prediction (RMSEP) of as low as 0.46%.
Quantifying the total protein and wet gluten in wheat flour was investigated by utilizing
NIRS (800–3030 nm) and synergy interval support vector regression (siSVR) and siPLSR
along with different spectral preprocessing methods [14]. The deduced prediction models
had an R2 as high as 0.906 for total protein and 0.850 for gluten, and an RMSEP as low as
0.925 for total protein and 1.024 for gluten.

Among optical noninvasive sensors, Fourier-transform infrared (FTIR) spectroscopy
provides rapid, accurate, and comprehensive identification and a presenting fingerprint of
the chemical composition of the food material with minimal sample preparation [15]. FTIR
surpasses other optical systems by replacing the prism with an interferometer, which helps
resolve overlapping infrared bandwidth for complex samples [15,16]. Fourier-transform
near-infrared (FT-NIR) (835–2502 nm) resulted in comparable results to NIRS instrumenta-
tion (450–2498 nm) for reliable the prediction of the quality attributes of wheat grain (pro-
tein, moisture, and hardness index) and flour (protein, ash, and amylose) with R2 ranging
from 0.80 to 0.99 for NIRS and 0.83 for FT-NIR [17]. Raman spectroscopy (300–3700 cm−1),
diffuse reflectance-FT-NIR (3700–9000 cm−1), and attenuated total reflectance (ATR) FTIR
(400–4000 cm−1) coupled with PLSR were compared to develop prediction models for
gluten in wheat flour [18]. The models developed by cross-validation showed higher corre-
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lation coefficient (r) values obtained from FTIR (0.962) compared with diffuse reflectance
FR-NIR (0.937) and Raman (0.9058) sensors. However, the relative standard error of pre-
diction (RSEP) for the independent test set was higher for the FTIR (5.69); whereas the
RSEP values were 3.54 for the diffuse reflectance FT-NIR and 3.24 for the Raman. Appli-
cations of FTIR in the food domain also included assessing cholesterol [19], calcium [20],
and lactose [21] in powdered milk; the authentication of tea varieties [22]; assessing the
quality of green tea [23], black tea [24], talcum [25], and polyphenols [26] in tea powder;
determining antioxidant capacity of cocoa beans and chocolate [27], assessing cocoa beans
adulteration [28], and evaluating the adulteration [29] and defects [30] in ground and/or
roasted coffee. To our knowledge, no previous study searched the utilization of FTIR
for determining gluten in gluten-free bread. Therefore, the objective of this study was
to develop an FTIR spectroscopy methodology that utilizes supervised machine learning
algorithms to detect and quantify wheat flour contamination in gluten-free cornbread.
Advanced machine learning algorithms that include ensemble learning were explored in
this study.

2. Materials and Methods
2.1. Ingredients for Breadmaking

Corn flour (CF) and wheat flour (WF) used in this study were purchased from Bob’s
Red Mill Natural Foods (Milwaukie, OR, USA). The formulation used with the basic bread
ingredient was adopted from [31]. The cornbread formulations included corn flour (100%)
and the following ingredients were added based on the weight of the corn flour: water
(70%), dried yeast (2%), salt (2%), sugar (2%), and vegetable fat (3%), and 0–10% wheat
flour was used for contamination at 0.5% increment up to 1.5% and then at 1% increments
afterwards until the 10% contamination level, which resulted in 13 different formulations.

2.2. Cornbread Baking

The CF was mixed with the aforementioned formulated ingredients at the WF contam-
ination levels. A kitchen mixer (KitchenAid, Model KV25G0X, Benton Harbor, MI, USA)
was used for mixing bread dough at two speed levels. The first level had a 60 rpm speed
and the mixing was performed for 1 min. The second level had a speed of 95 rpm and
a mixing time of 6 min. The dough was scrapped every 2 min. The dough was poured
into aluminum baking pans and proofed for 35 min at 40 ◦C, and then baked for 1 h at
190.6 ◦C in a convection oven (HR202, Hobart, Troy, OH, USA). This was conducted as a
result of the batter-like system of the dough due to its consistency. The baked bread loaves
were kept for 1 h at room temperature (24 ◦C) to cool, and then ground to a fine particle
size (<150 µm) using a commercial laboratory blender (Waring Commercial 7010BU Lab
Blender) for 40 s to obtain a homogenous mixture. In the end, 13 different bread samples
(20 g each) were obtained based on the WF addition levels.

2.3. FTIR Spectra Data Pre-Processing

FTIR spectra measurements were carried out on the ground cornbread samples using
Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectrometer (Nicolet
iS50, ThermoFisher Scientific, Waltham, MA, USA). The spectra were acquired in the range
of 4000–450 cm−1 with a spectral resolution of 4 cm−1 comprising 887 wavenumbers. Each
sample was scanned 32 times and the average spectrum was recorded. The data obtained
were then pre-processed using the standard scaling (SC) method or standardization [32].
The SC is obtained by subtracting the mean of the feature vectors (µ) from every data point
(X) and then dividing each column by the corresponding element in the vector’s standard
deviation (σ). Generally, standard scaling makes the data increasingly interpretable because
the normal estimation of Y when x (the mean or centered X) is zero represents the expected
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value of Y when X is at its mean with a standard deviation of 1. This transforms the data to
have a resulting distribution of a mean of 0 and a standard deviation of 1 [33].

xij =
(Xij − µij)

σij
(1)

For the classification and prediction approaches, the data were split into a training set
(70%) and a test set (30%).

2.4. Development of Machine Learning Models

Classification and regression models were developed using scikit learn 0.22.2 (machine
learning module in Python) which is an open-source robust library that provides a range
of Python-based supervised and unsupervised learning algorithms with the capability to
deploy machine learning models from prototypes to production systems.

2.4.1. Feature Engineering

The spectra data obtained from the ATR-FTIR is considered a high-dimensional dataset
where the number of features is relatively larger than the number of samples. Such data
also contain redundant features, which increases the propensity of overfitting the model.
Therefore, feature reduction was implemented using principal component analysis (PCA).
PCA as a dimensional reduction algorithm is based on mapping the original domain of
the features into a new set of uncorrelated features called principal components (PCs).
The number of PCs is then selected based on the desired maximum amount of variance
explained which was chosen to be 100% of the total variance [33,34].

2.4.2. Classification Analysis

To detect whether a bread sample is contaminated with wheat flour during the baking
process, a classification model was developed by training different individual classifiers and
applying an ensemble learning technique. The ensemble learning method incorporates a
combination of different learning algorithms, usually weak, to obtain a higher-performance
meta-model. Experimental evidence indicates that ensemble learning often yields more
accurate classification than a single learning algorithm [35]. In this study, majority voting-
based ensemble learning was utilized. Different supervised learning algorithms were
stacked including random forest (RF), support vector machine (SVM), and k-nearest neigh-
bor (KNN). Each individual classifier model was trained using 70% of the dataset and
then made a classification (vote) on the test (30% of the dataset) instances. The sample
was assigned to the class that received more than half of the votes. This was similar to
the method used by Bouziane, Messabih [36] to predict protein secondary structure and
was found to outperform individual classifiers. The model was evaluated based on the
confusion matrix parameters obtained with emphasis on the true positive rate (TPR), false
negative rate (FNR), and the F1 score [33]. These parameters are defined as:

TPR =
TP

(TP + FN)
(2)

FNR =
FN

(TP + FN)
(3)

F1 score = 2
P ∗ R

P + R
(4)

where TP = true positive, FN = false positive, P = precision, and R = recall.

P =
TP

(TP + FP)
(5)
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TNR =
TN

(TN + FP)
(6)

FPR =
FN

(TP + FN)
(7)

2.4.3. Prediction of Gluten Level in Contaminated Cornbread

Prediction models were developed using the ensemble learning concept mentioned
in Section 2.4.2 but for the regression analysis. Several individual regression models were
merged, and the best-performing model was selected as in Section 2.4.2 using regression
metrics stated later in this section. The supervised learning models for regression used in
this project included k-nearest neighbors (KNN) regressor, random forest (RF) regressor, de-
cision tree (dct) regressor, SVM regressor, and partial least square regressor (PLSR) [33]. The
efficiency of prediction models was evaluated by assessing the coefficient of determination
and root mean square error for the training set (R2

T, RMSET), and the test or prediction set
(R2

P, RMSEP). Thus, the best training model was characterized by higher R2
T and the lower

root means square error RMSET. Cross-validation was performed to tune and determine
the optimal hyper-parameter values of the training models, and their learning curves were
obtained [33]. This was to ensure that the models were not under- or overfitting the data.
The optimized training model was then applied to the test or prediction set, and the values
of R2

P and RMSEP were reported.

2.5. ELISA Test to Determine Gluten Level in Bread Samples

A RIDASCREEN® Gliadin (R7001) ELISA test kit (AOAC international approved)
from R-Biopharm (Darmstadt, Germany) was used for the ELISA analysis. The detection
limit of the kit is 0.5 ppm gliadin or 1 ppm gluten based on the matrix and a quantification
limit of 2.5 ppm gliadin or 5 ppm gluten. The method described by Okeke [33] for gluten
detection using the ELISA kit was followed.

Approximately 0.5 g of each sample was placed into a 50 mL centrifuge tube and
incubated for 40 min at 50 ◦C by adding 2.5 mL of the cocktail solution. Then, 80% ethanol
(7.5 mL) was added and mixed for 60 min to extract gluten. The samples were centrifuged
for 10 min at 2500× g at 25 ◦C. Next, 100 µL of each blank, standard, and sample solution
was added into the wells and incubated for 30 min at room temperature, after which, the
standard and the sample solutions were removed from the wells. All wells were washed
with a wash buffer three times. After that, 100 µL of the conjugate was added to the wells
and incubated for 30 min. The conjugate was then removed, and the wells were washed.
Following this, 50 µL of chromogen and 50 µL of the substrate were added to individual
wells and incubated for 30 min in the dark. Finally, 100 µL of the stop solution was added
to measure the absorbance at 450 nm.

3. Results and Discussion
3.1. FTIR Spectra Characteristics of the Ground Cornbread Samples

An example of a spectrum of pure corn flour is shown in Figure 1A. Figure 1B,C
display the FTIR spectra of the samples contaminated with 0.5% wheat flour when it is
in raw form (flour), 1B, and after being baked (bread), 1C. It is noted that there were
evident differences in the absorbance values when comparing the figures at the region
of 1860–1480 cm−1, which includes most of the amide I (1690–1600 cm−1) and amide II
(1580–1480 cm−1) characteristic bands that are sensitive to the secondary structure content
of proteins. These regions maintain a smooth formation with unique peaks due to CO-
and NH+ bonds or other potential (CC and CN) stretching vibrations in Figure 1B [37].
However, in Figure 1C, the spectra have noisy deformation within the aforementioned
regions, and this may be due to protein denaturation due to heat application during the
baking process and other conversion processes such as mixing with other ingredients
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(e.g., salt) [38]. Other differences could be seen in the intensities of the peak and trough.
Figure 1D shows the spectra of baked cornbread contaminated with different levels of
wheat flour (0.5–10%), which is similar to the baked cornbread spectra in Figure 1C.
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Figure 1. Examples of (A) FTIR-spectra of pure corn flour; (B) FTIR-spectra of the corn flour contami-
nated with 0.5% wheat flour (raw sample); (C) FTIR-spectra of baked cornbread contaminated with
0.5% wheat flour; (D) FTIR-spectra of baked cornbread mixed with different levels of wheat flour
(0.5–10% at 0.5% increment).

3.2. Classification Analyses Results

The application of PCA reduced the number of features from 887 to 20 principal
components (PCs), which explained all (100%) of the variance in the data (Figure 2). The
reduced features (i.e., PCs) were utilized to develop a binary classification model that
included two classes: class 1 (pure cornbread) and class 2 (contaminated cornbread with
wheat). Among all the classifier methods used including RF classifier, SVM classifier, KNN
classifier, and majority voting-based ensemble learning (that involves stacking the individ-
ual learning algorithms), the ensemble method outperformed individual classifiers, which
is clearly illustrated by the confusion matrix applied to assess the predictive capabilities of
classification models [33,39,40].

Tables 1 and 2 present the confusion matrix and its parameters obtained for the training
dataset (70% of the dataset). The false negative rate (0), true positive rate (1), and F1-score
(1) values obtained indicate a perfect performance of the model to identify the contaminated
samples. Tables 3 and 4 present the confusion matrix parameters obtained after the model
was applied to the separate test data that contributed to 30% of all the samples. The model
was able to accurately classify samples belonging to each of the classes with TPR, FNR, and
F1 scores of 1, 0, and 1, respectively [33]. One possible reason for the perfect classification
for both the training and test set data is the fewer classes (two) in this study. However, the
result shows the ability of the ensemble classifiers to learn every feature in the binary classes
of the samples used; additionally, when subjected to the test set data, the performance
was reliable and consistent. There is empirical evidence in the literature that ensemble
learning methods adjust for the deficiencies of individual classifiers delivering improved
and more accurate results in most of the cases they are applied [41]. Kim et al. [42] reported
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that the ensemble learning improved the performance of machine learning in predicting
the sugar content in various citrus species. Additionally, Oztuk et al. [43] reported that
the application of the voting-based ensemble learning method improved the detection of
19 classes of grain flours studied under rotational motion.
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Table 1. Confusion matrix parameters for the majority voting-based learning classification training model.

Class|Metric TPR FPR TNR FNR Err P F1_Score

Class 1 1.0 0.0 1.0 0.0 0.0 1.0 1.0
Class 2 1.0 0.0 1.0 0.0 0.0 1.0 1.0

TPR: true positive rate, FPR: false positive rate, TNR: true negative rate, FNR: false negative rate, Err: error,
P: precision, F1: scores for a measure of accuracy. Class 1: no contamination, Class 2: contaminated with wheat.

Table 2. Confusion matrix for the majority voting-based ensemble learning. classification training model.

Actual Class Class 1 Class 2

Classified as Class 1 138 0
Classified as Class 2 0 142
Classified as Unassigned 0 0

Class 1: no contamination, Class 2: contaminated with wheat.

Table 3. Confusion matrix parameters for the classification test model.

Class|Metric TPR FPR TNR FNR Err P F1_Score

Class 1 1.0 0.0 1.0 0.0 0.0 1.0 1.0
Class 2 1.0 0.0 1.0 0.0 0.0 1.0 1.0

TPR: true positive rate, FPR: false positive rate, TNR: true negative rate, FNR: false negative rate, Err: error,
P: precision, F1: scores for a measure of accuracy. Class 1: no contamination, Class 2: contaminated with wheat.

Table 4. Confusion matrix for the majority voting-based ensemble learning classification test model.

Actual Class Class 1 Class 2

Classified as Class 1 62 0
Classified as Class 2 0 58
Classified as Unassigned 0 0

Class 1: no contamination, Class 2: contaminated with wheat.
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3.3. Prediction of Wheat Level in Cornbread

Table 5 presents the evaluation parameters for the predictive learning algorithm used
including RF regressor, KNN regressor, decision trees, SVM regressor, PLSR, and ensemble
learning. The results for KNN and PLSR are very close in performance with vales of
R2

T = 0.98 (KNN), 0.99 (PLSR), R2
P = 0.99 (KNN), 0.97 (PLSR), and RMSET = 0.41 (KNN),

0.08 (PLSR), and RMSEP = 0.34 (KNN), 0.52 (PLSR), respectively [33]. The results indicate
that both learning algorithms have the potential to quantify the level of the wheat flour
contaminant in the cornbread samples within the percentage levels used. It is worth stating
that KNN regressor resulted in lower error values for the prediction set compared with the
PLSR model. Thus, based on both the values of R2

P (0.99) and RMSEP (0.34), KNN was
selected as the best-performing learning algorithm for predicting wheat flour contamination
levels in baked cornbread. Figure 3A–E show the learning curves obtained as a function of
the number of the hyper-parameters tuned for the individual algorithms [33].

Table 5. Prediction analysis on a different learning algorithm.

Learning Algorithm Hyper-Parameters Training Prediction

R2
T RMSET R2

P RMSEP

Random Forest (rf) n_estimators = 991 1.00 0.00 0.516 2.064

K-Nearest Neighbors (KNN) neighbors = 4,
metric = ‘manhattan’ 0.98 0.41 0.99 0.34

Decision Tree (dct) max_depth = 6 0.99 0.29 0.57 1.93
Support Vector Machine (svr) gamma = 0.03 0.90 0.98 0.75 1.47

Partial Least Square
Regression (PLSR) n_components = 30 0.99 0.08 0.97 0.52

Ensemble Method (voting) (rf, KNN, dct, svr,
wt = none) 0.99 1.29 0.81 1.29

Wt: weight, n_estimators: no. of estimators, n_components: no. of components, R2
T: R2 of training, R2

P: R2 of
prediction, RMSET: root mean square error of training, RMSEP: root mean square error of prediction.

The aim of such a function was to choose the optimal hyper-parameters that yield
a balance between the bias and variance in other to prevent overfitting [33]. As seen
in Figure 3 for the best learning algorithm (KNN), the learning gap between the scores
measured on the training and the cross-validation set is minimized and insignificant. It
was observed that as the number of neighbors in the KNN algorithm increases, the changes
remain constant until approaching the value of six where the scores started dropping
leading to a lower prediction accuracy of the model [33]. Therefore, we can conclude
from this that the number of neighbors ranging from one to five is more effective for the
KNN model to predict or quantify the percentage contamination of the wheat flour in
the cornbread [33].

The learning gap between the scores measured on the training and cross-validation set
reached the minimum or optimum level. It was observed that as we increase the number of
neighbors for the algorithm, the changes remain constant until approaching the value of
six, where the scores started dropping, leading to a lower accuracy of the model. Therefore,
we can conclude that the number of neighbors ranging from one to five is more effective
for the KNN model to predict or quantify the percentage contamination of the wheat
flour in the cornbread [33]. Cui et al. [44] followed a similar approach for optimizing the
hyperparameters (i.e., gagging fraction and frequency) for the gradient-boosting decision
tree ensemble learning to enhance regression models based on FTIR data to predict the
decontamination rate of cold plasma-treated Chitosan DNA films.
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Table 6 provides the results of the ELISA test for the 12 wheat-contaminated cornbread
samples. There is a clear indication and validation that gluten is detectable in the bread
even after baking, though the structure of the protein has been disrupted due to heat
treatment during baking, and the spectra formation that matched the actual measurements
based on the inclusion level were correct. The threshold for gluten content was observed to
be at 3.5% wheat addition level (Table 6), which indicated gluten content below the 20 ppm
for a product to be considered gluten-contaminated.
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Table 6. ELISA test results for gluten quantification in the cornbread samples contaminated with
wheat flour (WF).

Selected WF Contaminated
Bread Samples Level (%) Gluten Level (ppm) Label

0 0 Gluten-free
0.5 3.04 Gluten-free
1 4.89 Gluten-free

1.5 10.54 Gluten-free
2.5 14.81 Gluten-free
3.5 19.84 Gluten-free
4.5 *** ***
5.5 38.20 Gluten-contaminated
6.5 - -
7.5 40.96 Gluten-contaminated
8.5 - -
9.5 47.43 Gluten-contaminated
10 60.75 Gluten-contaminated

*** Indicates threshold for higher values than 20 ppm. - missing data due to error.

4. Conclusions

FTIR spectroscopy has always played an important role in the food industry with
regard to food safety inspection and quality assessment. In this study, we used FTIR
spectroscopy coupled with supervised machine learning approaches to detect and quantify
wheat flour (gluten) contamination in the range of 0.5–10% in gluten-free cornbread that
falls within the threshold of 20 ppm of containment that elicits an allergenic reaction in
wheat/gluten sensitive individual. This study shows that the ensemble learning method
performed best than the rest of the individual supervised ML algorithms in detecting
wheat/gluten contaminants in gluten-free cornbread. The KNN regressor emerged as the
most promising technique in quantifying the level of WF contamination with a prediction
coefficient of determination and root mean squared error of 0.99 and 0.34, respectively.
Therefore, the results obtained from this study indicate the potential and the effectiveness
of FTIR spectroscopy with supervised learning techniques for rapid authentication of
cornbread contaminated with what flour. More generally, the study can indeed help
develop a protocol for quality assurance in bakery product factories. This helps to reduce
cross-contamination in the baking industry and consequently provides less food waste
for the currently critical food supply chain that dramatically suffers from high prices of
energy, a lack of water resources, domestic disputes, and migration. A future research
consideration is the development of a handheld system and/or a mobile phone application
that would allow stakeholders to obtain a fast and accurate decision about their foods by
analyzing the FTIR spectra, which requires minimal skills of machine learning and leads to
the possibility of running a quick test for wheat/gluten allergen contamination. Moreover,
future research should consider testing other glycoproteins (milk, nuts, egg, fish, and soy).
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