
Citation: Qin, Y.; Cao, L.; Li, W.;

Darvishi Boloorani, A.; Li, Y.; Ke, X.;

Soleimani, M.; Yu, Q.; Zhou, C.

Suitability Assessment Method of

Red Tourism Development Using

Geospatial and Social Humanity

Data: A Case Study of Ruijin City,

East China. Sustainability 2023, 15,

8582. https://doi.org/10.3390/

su15118582

Academic Editors: Colin

Michael Hall, Nicholas Wise and

Takamitsu Jimura

Received: 15 April 2023

Revised: 15 May 2023

Accepted: 23 May 2023

Published: 25 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Suitability Assessment Method of Red Tourism Development
Using Geospatial and Social Humanity Data: A Case Study of
Ruijin City, East China
Yaozu Qin 1,2,* , Li Cao 3,*, Wenjing Li 2, Ali Darvishi Boloorani 4 , Yuan Li 2, Xinxin Ke 2, Masoud Soleimani 4 ,
Qian Yu 2 and Cuimin Zhou 2

1 The Key Laboratory of Digital Land and Resources, East China University of Technology,
Nanchang 330013, China

2 Faculty of Earth Sciences, East China University of Technology, Nanchang 330013, China;
2020110085@ecut.cn (W.L.); 2020110084@ecut.edu.cn (Y.L.); 2020120009@ecut.edu.cn (X.K.);
jiangxi_shangrao@sina.cn (Q.Y.); 2020110012@ecut.edu.cn (C.Z.)

3 Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region, Ministry of
Natural Resources, Changsha 430103, China

4 Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran,
Tehran 14178-53933, Iran; ali.darvishi@ut.ac.ir (A.D.B.); masoud.soleimani@ut.ac.ir (M.S.)

* Correspondence: yzqin60010@ecut.edu.cn (Y.Q.); cl@img.net (L.C.)

Abstract: It is important to analyze the trend in land use changes and assess the suitability of
resource development for protecting natural resources, developing ecological industries, and land
use planning issues. Ruijin City is located in South Jiangxi and has abundant resources for red
tourism development. By analyzing the landscape changes in land use and the spatial distribution
characteristics of local red culture resources, a supervised machine learning-based prediction model
was constructed to quantitatively assess the suitability of red tourism development in a geographic
information system (GIS) and the R language environment using geographical, economical, and
human-related datasets. The results revealed that: (i) the increasing of human activities and economic
vitality provide a beneficial social environment for the development of tourism resources; (ii) highly
concentrated red resources, or those with special significance, are conducive to developing red
tourism resources; (iii) preferentially, central–eastern Ruijin was followed by the extension areas
to peripheral towns, which are potentially suitable areas for the development of red scenic spots.
Generally, the findings of this study were consistent with the conventional cognitions and lessons
on tourism development, and the constructed evaluation system is expected to be promoted to
similar research.

Keywords: suitability assessment; machine learning; landscape changes; red tourism; Ruijin City

1. Introduction

Tourism resource development plays a key and positive role in urbanization, and it
can not only promote the economic development of existing cities but also accelerate the
expansion and construction of cities. To obtain a clear vision of future tourism development,
it is essential to understand the land use pattern changes in tourist development areas
based on the characteristics and connotations of the local culture [1–4]. Red tourism, which
is a special kind of tourism industry that integrates tourism visits, cultural features study,
and political education with Chinese characteristics, represents the traditional culture of
the Chinese nation and the revolutionary spirit of the Chinese people, which brings the
multiple benefits of culture, economy, and society [5,6], especially for maintaining a national
communist identity and developing a socialist country with Chinese characteristics in a
rapidly changing China [7]. The red culture, which is consistent with the spirit of the
Chinese nation, includes striving for self-improvement, unity of knowledge and action,
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being people oriented, pursuing truth, and being willing to dedicate oneself, and it is
the continuation of traditional Chinese culture. Consequently, it is a critical prerequisite
to assess the suitability of red tourism development to the prosperity of the ecotourism
industry [8,9].

The land use pattern indicates the spatial–temporal characteristics of human and
economic activities that directly impact the landscape and ecosystem functionality [10–12].
Conversely, the development of human activities and social structure will actively promote
the changes in land use and ecological services [13–16]. In order to analyze the development
trend in human activities and socio-economic conditions, the land use pattern (LUP)
in consecutive years should be identified [17–19]. Various development indices about
landscape changes are usually used for analyzing the spatial–temporal characteristics of
landscape ecological effects on urban development [20,21]. The interaction of urbanization
and ecosystem services are explored in the literature. For instance, Ou-Yang et al. [20,21]
used hot spot and spatial autocorrelation analysis to discover the long-term correlation
between urbanization and ecosystem services in several urban agglomeration areas [20].
Alphan et al. (2022) [22] determined the relationships of residential development with the
spatial–temporal dynamics of land use in southern coast of Turkey by analyzing multi-level
pattern metrics [22]. Duan et al. [23] predicted the trend in land use/cover by analyzing the
evolution of landscape pattern in Sanjiangyuan region of the Qinghai–Tibet Plateau. They
concluded that the dramatic changes in land use/cover will impact ecosystem services,
especially in the ecologically fragile areas.

Tourism development is closely related to many disciplines such as geography, culture,
policy, business, and economy. The tourism suitability assessment is usually carried out
by qualitatively analyzing the spatial distribution of tourism resources and developing
(semi-)quantitative environmental indices [24–26]. For example, Fadafan et al. [27] used
four categories of evaluation factors including environment, economy, socio-culture, and
managerial to assess the suitability of the area for intensive tourism development. We
need to mention that the evaluation factors have relatively different importance in tourism
suitability assessment methods [28]. Accordingly, different methods such as information
value (IV) [29], weight of evidence (WofE) [30], and analytic hierarchy process (AHP) [31]
have been introduced in geographical information system (GIS) by integrating various
indices to suitability assessment of tourism development [15,32–35].

Various machine learning algorithms, especially support vector machine (SVM) [36],
random forests (RF) [37], extreme gradient boosting (XGB) [38], logistic regression (LR) [39],
and convolutional neural network (CNN) [40], are widely used in many research fields of geo-
science. Remote sensing (RS) image classification is a common tool for land use survey, which
has become more robust with the introduction of machine learning algorithms [41–46]. Super-
vised machine learning algorithms have obtained promising results in mineral prospectivity
mapping [47–50], geo-hazard mapping and geo-risk assessment [51–54], biomass estima-
tion [55–58], and dust source susceptibility mapping [59,60].

In this paper, to promote sustainable tourism development in Ruijin City, the Landsat
8-OLI images are used for land use classification and landscape pattern analysis. The RF-
based regression model is constructed by integrating multiple data from natural geography,
human economy, and ecological environment to quantitatively assess the suitability of red
tourism resources development and then provide recommendations for further land use
planning and ecological protection.

2. Materials and Methods
2.1. Study Area

Ruijin City, located in the climate transition zone of Central and southern China
(Figure 1), is characterized by humid climate, abundant rainfall, sufficient sunshine, and
four distinctive seasons. The southeast of Ruijin is rolling vein of the Mount Wuyi, and the
northwest is surrounded by mountains. There is a notable variety of landforms in Ruijin,
and denuded hills, eroded mountains, karst areas, and river valley accumulation terraces
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are widely distributed. In total, 17 townships in Ruijin jurisdiction are the main residences
of the Hakka people and the important birthplaces of the Hakka culture. Well known as one
of the important birthplaces of the Hakka culture and the “cradle of the People’s Republic”,
Ruijin is the famous “Red Capital”, with numerous revolutionary sites and profound red
culture.
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2.2. Dataset

As shown in Table 1, in this study, three datasets including remote-sensing-based land
use change maps (2013 to 2021), spatial distribution of local red culture resources (RCRs),
and tourism development index based on environmental factors such as geography, culture,
policy, business, and economy were used.

The study area was about 2432 km2 and was divided into a total of about 2.7 million
grids with the mesh size of 30 m × 30 m, according to resolution of Landsat image and
survey density of multi-source data, which could meet the accuracy requirements of LUP
analysis and tourism development assessment.
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Table 1. Specifications of parameters used for suitability assessment of tourism development.

Data Type Source Purpose

Remote sensing data Landsat 8 OLI images of 2013, 2017, and 2021
DEM of 30 m resolution from GDEM V3

land use classification,
landscape pattern analysis

Development data of scenic spot
Total annual income
Total annual tourist numbers
Scenic spot score

Dependent variable of sample for
evaluation model

Environmental factors

Revolutionary sites
Cultural relics
Population density
Land price
Slope
Elevation
Roads
Hotel classes

Independent variable of dataset for
evaluation model

2.3. Methodology

On the basis of the field survey and RS data acquisition, image pre-processing, infor-
mation extraction, and land use classification were carried out using ENVI 5.3 (The Envi-
ronment for Visualizing Images, https://envi.geoscene.cn/) and its QGIS plugin EnMAP-
Box [61]. The trend in LUP was analyzed by calculating landscape pattern index in Fragstats
4.2 [62,63]. Various environmental factors were explored and integrated. The distribution
characteristics of RCRs were described in ArcGIS 10.2 (https://support.esri.com/). Finally,
the RF-based regression model was constructed for suita-bility assessment of tourism
development in R programming environment. The research methodology is schematically
illustrated in Figure 2.
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2.3.1. RF Classification and Regression

The RF is a supervised ensemble learning algorithm, based on decision tree [64],
constructing a series of weak learner (tree) by training sample data. The learners were
integrated to generate an optimized model. It predicted by adopting a method similar to
“democratic voting”, meaning that the minority was subordinate to the majority when in
the face of classification problems. It took the arithmetical average of weak learners as the
final prediction result while it dealt with continuous problem [65].

https://envi.geoscene.cn/
https://support.esri.com/
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There are two random processes in RF: one is Bagging and the other is random
subspace of feature variables. The Bagging (namely bootstrap aggregating) is the base
algorithm for RF construction [65], which builds a new sample set by randomly sampling
with replacement from the original data. The process that randomly chooses several of the
variables from all the features to generate every decision tree is conductive to solving the
problems of under-or over-fitting.

Gini impurity (Gini index) is the basis of node splitting for the binary classification tree.
It measures the probability that a randomly selected sub-item from a dataset is incorrectly
divided into other class. To a feature A in node n, which has K classes, the occurrence
probability of class k is pk, and the Gini index of A (Gini(An)) is defined as:

Gini(An) =
K

∑
k=1

pk(1− pk) = 1−
K

∑
k=1

pk
2 (1)

Suppose D is sample number of feature A in node n, and it is divided into two parts,
left and right. The Gini impurity of parent node (to n) Gini(D, An) is expressed as:

Gini(D, An) =
DL
D

Gini(AL) +
DR
D

Gini(AR) (2)

where the DL and DR, respectively, are the sample number of left and right part, and
Gini(AL) and Gini(AR) are the left and right Gini index in node n. To the construction of
RF, the node n with the smallest Gini is the optimal splitting point for a certain feature A in
the process pf regression tree.

Minimum Mean Square Error (MMSE) is used as splitting principle in constructing
binary RF regression model. At the splitting node n, D is the sample number of its parent
node for feature A, being divided into right and left parts. The expression of the MMSE in
this node is written as:

MMSE(D, An) = min

min ∑
yi∈AL

(yi −
¯

yL)
2
+ min ∑

yi∈AR

(yi −
¯

yR)
2
 (3)

where AL and AR are the feature values of left and right parts at the node n; yi is the value

of feature; and Ai,
¯

yL, and
¯

yR are the mean value of feature AL and AR. The node, which
has the MMSE in AL and AR and the smallest sum of the MSE for feature A, is the optimal
splitting node.

2.3.2. Model Construction

The step-wise procedure for RF construction is as follows:

(i) Divide samples into training and validation sets according to the ratio of 7:3, and a
new training set will be generated by using the Bagging method;

(ii) Randomly select m features form M. Usually, m is equal to
√

M. Construct a decision
tree by using Gini index or MMSE method;

(iii) Create a series of trees to construct RF model;
(iv) Use the RF model to classification and regression if it acquires the required perfor-

mance in validation step, or it will be revised and optimized.

2.3.3. Performance Evaluation

The performance of classification model is evaluated using confusion matrix [66].
The true positive rate (TPR), true negatives rate (TNR), and overall accuracy (OA) can
indicate the model performance to a certain extent. The Kappa coefficient (KC) and receiver
operating characteristic (ROC) curve would be more appropriate when the samples are in
a smaller size or unbalanced structure. The higher KC and AUC (namely area under the
ROC curve) that are all close to 1 mean the better performance of a classifier [48].
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To evaluate the performance of regression models, several metrics such as R-square
(R2), mean absolute error (MAE), and root mean square error (RMSE) can be used. R2

reflects the overall matching of the prediction and observation results. MAE is the mean of
absolute error, which can well describe the actual prediction error. RMSE directly compares
the deviation of prediction and observation: the lower value shows the better the prediction
accuracy. These metrics are calculated using the Equations (4)–(6):

R2 = 1− ∑
(
yi − ŷi)

2

∑
(

yi −
–
yi)

2
(4)

MAE =
1
N

N

∑
i=1
|yi − ŷi| (5)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (6)

where, N is the total number of samples, yi is observed value, ŷi is predicted value, and
–
yi

is average value of samples.

2.3.4. Landscape Pattern Index

The landscape was composed of relatively homogeneous ecological elements on the
ground, which generally were divided into patch, corridor, and matrix. Landscape pattern
index referred to two aspects, namely, landscape pattern and landscape index. Landscape
pattern expressed the spatial structure characteristics of the landscape, including the type,
number, and spatial distribution form of landscape components. The landscape index was
a simple quantitative indicator, usually reflecting the composition and characteristics of the
landscape structure [67,68].

With the help of ArcGIS and Fragstats, the structural and functional pattern index
could be calculated based on the classification images. The patch-based indexes indicated
the characteristics of a single patch, the class-based indexes reflected the characteristics of
the same patches, and the landscape-based indexes showed the overall structural charac-
teristics of different patches combination. In this study, five pattern indices, proportion
of patches in landscape (PLAND), largest patch index (LPI), fractal dimension (FRAC),
Shannon diversity index (SHDI), and dynamic degree (DE) were calculated to analyze
the distribution characteristics and spatial change in land use types. More details on the
derivation of the formulae for calculating these indexes were given in Mcgarigal [62].

3. Results and Discussion
3.1. Land Use Change Analysis

The Landsat 8-OLI images of April 2013, April 2017, and March 2021 were used for land
use classification based on the China National Standard of Current land use classification
(GB/T 21010-2017). According to the local knowledge about land use in Ruijin and the
separability of sample classes, five land use types, including water bodies, farmlands,
woodlands, built-up areas, and roads/ground, were classified by using the RF classifier.
The samples for constructing and testing classifier were obtained from Gaofen satellite
images, Google Earth high resolution imagery (2013 and 2017), and a field survey (2021).
Nine spectral indices, including soil-adjusted atmospherically-resistant vegetation index
(SARVI) [69], normalized difference water index (NDWI) [70], normalized difference build-
up soil index (NDBSI) [71], brightness–greenness–wetness from Tasseled Cap Transform
(TCT) [72], and hue–saturation-value from HSV transformation [53] were used as classifier
feature variables. Table 2 shows the parameters of the RF classifier and corresponding
validation metrics for three investigation years (2013, 2017, and 2021).
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Table 2. Parameters of the RF based classification models.

Parameters

Year
2013 2017 2021

RF classifier construction
No. of trees 95 105 100
No. of feature variables 3 3 3

RF classifier performance Overall accuracy 96.25 96.58 97.99
Kappa coefficient 87.86 88.23 90.21

Visual interpretation of the land use maps (Figure 3) revealed that (i) although the
woodlands showed a decreasing trend, it was still the dominant land use type in the study
area; (ii) the built-up areas were mainly concentrated in central Ruijin in 2013 and then
gradually expanded and dispersed to nearby areas along the urban roads, showing that
the municipal construction of Ruijin was continuously expanding with rapidly economic
growth; (iii) the farmlands and roads/ground intricately expanded from 2013 to 2021,
and it was anomalous that the expansion of roads/ground was faster than farmlands
(Figure 3b,c).
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3.2. Landscape Pattern Analysis

The following pattern indices were analyzed to show the spatial changes in landscape
patterns. Where LPI and PAFRAC represented the characteristics of individual units, LPI
and CONTAG expressed the spatial configurations of landscape components, and DE
showed the overall diversity of the landscape.

The consistent trend in PLAND and LPI (Figure 4a,b) showed (i) the coverage rate of
woodlands dropped from 94.15% in 2013 to 61.31% in 2021; (ii) the proportion of built-up
areas and roads/ground increased from 2013 to 2021, but the farmland increased first and
then sharply decreased, which may have been due to the misclassification farmlands in
fallowing in March 2021; (iii) these two indices were scarcely changed for water bodies.
The mean FRAC (Figure 4c) of the inherited land use types such as water bodies and
woodlands showed a steady downward trend. Nevertheless, the farmlands, built-up areas,
and roads/ground that were related to human activities changed sharply. For the DE
(Figure 4d), woodlands increased with a range of 4.98%, and other land use types increased
as well; the 4-year periods’ growth of water was 4.91%; the change range of roads/ground
should have been far less than 450.10%, and, of the farmlands, it should have been more
than 45.01%; it was acceptable that the built-up areas increased by 45.96%.
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It could be argued that the continuous diffusion of built-up areas, farmlands, and
roads/ground squeezed and dispersed the forest lands. The built-up areas and roads/ground
were gradually concentrated in large areas, and, on the contrary, the water bodies dispersed.

The trend in landscape changes based on the landscape indices from 2013 to 2021 is
shown in Figure 5. Hence, LPI decreased from 90.03% to 22.47% and CONTAG decreased
from 87.27% to 52.43%, which indicated that the dominant land use types significantly
reduced. Meanwhile, the fragmentation degree of all land use types increased. The
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downward trend in SHDI and FRAC_ MN showed that the fragmentation degree of all
land use types was getting higher with the increment of human activities. Landscape
pattern analysis in both land use and landscape levels revealed that the land use became
more abundant, and the landscape spatial pattern became more complex.
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changes usually promote economic growth and are beneficial for tourism development.

3.3. Analysis of Red Culture Resources
3.3.1. Spatial Distribution of the RCRs

As the famous “Red Capital”, Ruijin has more than 180 former sites of revolution-
ary [73]. A total of 125 revolutionary sites have been acquired from points of interest (POI)
and other public data on the internet by coordinate picking. Most of the RCRs (~77.6%)
are centrally distributed in six townships in central Ruijin (Figure 6a). There are 24 sites in
Yeping, 23 in Huangbai, 17 in Jiubao, 13 in Shazhouba, 11 in Rentian, and 9 in Yunshishan.
Xianghu, which is the seat of the government of Ruijin, has 6 sites, while the other 10
townships have 22 sites.

To intuitively visualize the spatial aggregation of the RCRs, the kernel density distri-
bution was generated with a grid resolution of 30 m and a radius of 5 km (Figure 6b). It
showed that the RCRs were distributed in two different zones: one was the strip zoning
of Jiubao–Yunshishan, and the other was an annular belt consisting of Rentian–Yeping–
Xianghu–Shazhouba–Huangbai. In addition, a few sites were clustered in Dabaidi and
Ridong, while other individual sites were scattered in peripheral towns.
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3.3.2. Relationship of RCRs and Red Tourism Scenic-Spot (RTS)

The construction scale of RTS is highly positively correlated with the spatial density
of RCRs. For example, the Yeping tourism areas, which is one of the most well-preserved
red tourism scenic areas in China, includes multiple scenic spots, such as the former sites
of the 1st Soviet Congress and Central Bureau of the Communist Party of China (CPC)
Soviet Region, Bosheng Fortress, Gonglue Pavilion, and the Red Army Martyrs Monument,
covering an area of more than 106,600 m2. The RTSs mentioned in this study are built on
the basis of the RCRs. They indicate that the high concentration of RCRS is conducive to
spatial expansion and cost reduction in the scenic spot construction.

The zonal aggregation of RCRs is in favor of construction of red scenic areas, for
instance, the Cradle Scenic group of the Republic, including Yeping, Hongjing, and the
Chinese Soviet Memorial Garden, is located in the annular belt mentioned above. The
occurrence of this tourism construction mode greatly improves the development quality of
tourism scenic spots and their downstream industries. The red scenic spots, which are built
on single red resource, such as the Former Residence of Mao Zedong in Wuyang and the
Martyrs Cemetery of Mao Zeqin in Zeqin, also have special educational significance and
positive social benefits. The townships lacking revolutionary sites or cultural relics, such
as Wantian and Dingpi, are still possible to explore local distinctive cultures related to red
resources for developing tourism scenic spots and ecological tourism industries.

3.4. Suitability Assessment of Red Tourism Development
3.4.1. Assessment Factors

The analysis based on LUP and RCRs shows that Ruijin has the required conditions
to develop red tourism resources. To a certain extent, the planning and construction of
red scenic spots depends on the spatial distribution of RCRs. Accordingly, nine factors,
including the slope, altitude, land use, population density, land price, distance to road,
distance to hotel, distance to cultural–relic/historic sites, and distance to revolutionary
sites, were acquired from Internet POI and a recent Statistical Yearbook as the assessment
factors (feature variables). The data of the factors about the socio-economy and humanity
are the annual averages of year 2021, published by the government.

According to the influence of these factors, buffer zones for the distance to revolution-
ary sites, distance to cultural–relic/historic sites, distance to hotel, and distance to road
were analyzed (see Figure 7). For the distances from infrastructures to roads and hotels, a
maximum buffer radius of 1000 m was generated, with an interval of 200 m. The distances
from the key evaluation targets to revolutionary sites and cultural–relic/historic sites were
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buffered within 2500 m, with a 500-m interval. The spaces that exceeded the maximum
buffer radius were set to an extra-large value, for example, 999,999.
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to revolutionary sites).

3.4.2. Response Variables

Qin et al. [48] argued the critical role of response variables in supervised prediction
models. Ten typical scenic spots samples, which covered an area of about 14 km2, were
selected for suitability assessment from existing red tourism scenic areas (Figure 8 and
Table 3). A new index, named development suitability index (DSI), which measured the de-
velopment scale and income level of the tourism scenic spot, was developed (Equation (7))
as response variable (target label) of the samples for constructing the regression model.
The estimated DSI by regression represented the degree of development suitability of red
tourism resources.

DSI = w1 × Rnorm + w2 × Nnorm + w3 × Snorm (7)

where Rnorm, Nnorm, and Snorm are the normalized values of the indexes of the annual
overall revenues R, annual tourist number N, and scenic spot score S, respectively, for
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each sample scenic spot, and w1, w2, and w3 are the corresponding weights of these three
factors. Here, according to the conventional understanding to scenic spot development, the
weights of R, N, and S were set to 0.5, 0.3, and 0.2, respectively. R and N are the proportion
of the annual tourism revenues and tourist number for every sample scenic spot in total of
Ruijin City, and S is their respective grade ratio, namely, the proportion of rating level in
the highest.
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Figure 8. Development suitability index (DSI) of the sample scenic spots of red tourism.

Table 3. Development suitability index (DSI) of sample scenic spot in Ruijin.

Code Scenic Spot Area Covered (ha) DSI (100%)

01 Polar Ocean Park 5.53 71.66
02 Wooden Fish Mountain 19.95 71.46
03 Hongjing 6.21 67.94
04 Cradle of the Republic 2.80 67.72
05 2nd Soviet Congress of the Soviet Republic of China 9.74 60.45
06 Yeping 0.67 53.98
07 Arhat Rock 869.39 44.18
08 Happy Flower Sea of Red Capital 5.80 40.41
09 Historical Museum of Central Base 19.95 33.53

10 Former Site of the Central Revolutionary Military
Commission 4.40 10.92

No Non-Scenic Space 456.92 0

Table 3 shows the DSI of the selected ten typical scenic spots and several non-scenic
sites. Non-scenic sites covered the areas where the forest was dense and inaccessible, traffic
was inconvenient, or the land was protected as the main farmland. These were improper
or not allowed for tourism development. The DSIs of the non-scenic sites were set to zero
(i.e., the minimum for regression). In addition, the areas of the sample spots were roughly
determined according to their approximate outline. The DSI was calculated using the
average of annual overall revenues, annual tourist number, and scenic spot score/grade in
2020 and 2021 for all the samples.
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3.4.3. Construction and Evaluation of Regression Model

The samples were randomly divided into training and validation sets at a ratio of
7:3. The RF regression algorithm was used to construct a suitability assessment model,
containing 600 decision trees by using a training set. The mean of the squared residuals
and the goodness-of-fit (namely var explained in R) of the constructed model were 0.13
and 99.97%, respectively, which meant an excellent regression performance. With applying
the constructed model to the validation set, R2, MAE, MSE, and RMSE were 99.98%, 0.14,
0.10, and 0.32, respectively. These statistics indicated that the constructed regression model
had reliable performance.

The importance ranking of feature variables indicated the contribution of assessment
factors to the constructed model. A higher importance ranking of a feature variable
indicated a higher correlation between it and the response variable. As shown in Figure 9,
the results of the performed importance ranking using %incMSE and IncNodePurity were
similar to each other. Our result revealed that the land price was the most important
factor for suitability assessment of tourism development since it was closely related to
the geographical environment, land use types, and human activities. Population density,
revolutionary sites, altitude, and cultural–relic/historic sites were the less important factors.
However, these factors indicated that human activities, geographical conditions, and red
cultural resources were related to the development of red tourism. On the other hand,
road/traffic, hotels, and slope were not closely related to tourism development. For the
land use types, a combination of multiple classes was important to tourism development.
It is worth mentioning that these findings were consistent with the conventional cognition
of tourism development in Ruijin.
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3.4.4. Red Tourism Suitability Mapping

The development suitability index (DSI) of red tourism resources was predicted by
applying the RF-based regression model (Figure 10a). The DSI map was graded into
extremely high, high, medium, low, and extremely low areas by using Jenks natural
breaks [74] clustering method (Table 4, Figure 10b).
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Table 4. Five grades of development suitability index (DSI) zoning for red tourism resources in Ruijin.

Grade Interval of DSI
(%) Area Covered (km2)

Percentage of Land Occupied
(%)

Extremely high 0.72–1.00 254.25 10.45
High 0.52–0.72 388.92 15.99
Medium 0.32–0.52 431.70 17.75
Low 0.13–0.32 624.73 25.68
Extremely low 0.00–0.13 733.17 30.14

The results revealed that the extremely high suitability areas that covered 10.45% of
the study area were mainly distributed in central Ruijin, where the terrain was flat, mostly,
on the west, and northeast of the downtown area, excluding Xianghu. They showed that
the highly clustered red resources were more conducive to the planning and construction
of red tourism scenic spots. High land price and the large population density were not
beneficial to tourism development. The high suitability areas covered 15.99% of Ruijin
and were mainly located on the east and west sides of the extremely high suitable areas,
while others were located in the township centers of north and south Ruijin. This indicated
the possibility of developing tourism relying on individual red resources. The medium
suitability areas were basically distributed along main roads of towns, indicating that
the planning and development of red tourism could still be carried out in a favorable
geographical and economic environment. The low and extremely low suitability areas
covered 55.82% of Ruijin, which were mainly distributed in the northwest and south of
the study area. These areas were heavily covered by forest in mountainous areas without
convenient transportation systems.

4. Conclusions

Using remote-sensing-based land use pattern analysis and practical red culture re-
sources, in combination with geospatial environmental factors such as humanity, economy,
and geography in a random forest-based model, a suitability assessment procedure was
implemented for red tourism resources development in Ruijin City, South China. According
to our results, it can be concluded that:



Sustainability 2023, 15, 8582 15 of 18

(i) Increasing the scope and intensity of human activities with continuously improved
economic vitality provides a benign social environment for developing tourism re-
sources.

(ii) Highly concentrated red culture resources are conducive to the large-scale devel-
opment of red tourism scenic spots. This can be developed relying on a single red
resource or by exploring local characteristic culture related to red resources.

(iii) Environmental factors such as altitude, land price, population density, revolutionary
sites, and cultural–relic/historic sites contribute significantly to the construction of
the suitability assessment model, meaning that their feature variables are more closely
related to the development of red tourism resources.

(iv) The further development potential areas of red tourism resources are preferentially
located in the central and eastern Ruijin, including the northeast and west of the
downtown area, followed by the areas distributed around the high potential sites or
along the main roads.

(v) The importance ranking of the environmental factors and assessment results based on
developed suitability model are consistent with the local knowledge on red tourism
in Ruijin.

(vi) From a local perspective, in the last eight years, the landscape pattern of Ruijin has
experienced significant changes, showing that the intensity and influence of human
activities is gradually increasing, and the economic vitality is constantly improving.

In addition, the supervised machine learning used in this study RF classification and
regression performed excellently on development suitability evaluation. The generated suit-
ability zoning map was generally consistent with the qualitative understanding to tourism
development. This meant that this study is also expected to constitute a methodological
system suitable for such research in urbanization processes.
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