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Abstract: Understanding the spatial distribution of soil organic matter (SOM) is important for land use
management, but conventional sampling methods require significant human and financial resources.
How to map SOM and monitor its changes using a limited number of sample points combined with
remote sensing techniques that provide long-time series data is crucial. This study aimed to generate
a regional-scale near-surface SOM map using 70 soil samples and covariate environmental factors
extracted mainly from Landsat 8 OLI. Firstly, the sensitivity of each environmental factor to SOM
was tested using a geographic detector model (GDM). Secondly, the tested factors were selected for
modeling and mapping by ordinary least squares (OLS) and geographically weighted regression
kriging (GWRK). The performance of these two models was compared. Finally, the mapping results
of the better model (GWRK) were compared and analyzed with the traditional interpolation results
based solely on sampling points to verify the rationality of the proposed method. The results show
that three environmental factors, ratio vegetation index (RVI), differential vegetation index (DVI),
and terrain roughness (TR), have a strong influence on the spatial variability of SOM. Using these
three factors in combination with the GWRK method, a more accurate and refined spatial distribution
map of SOM can be obtained. Comparing the SOM maps of GWRK and the traditional interpolation
method, the results show that the accuracy of GWRK (R2 = 0.405; mean absolute error = 0.637, and
root mean square error = 0.813) is higher than that of traditional interpolation methods (R2 = 0.291,
MAE = 0.609, and RMSE = 0.863). The spatial recognition rate (fineness) of SOM patches at all levels
using the GWRK method increased by more than 73 times compared to the traditional kriging. We
conclude that the combination of limited SOM samples, environmental variables, GDM, and GWRK
is a pragmatic approach for estimating regional-scale SOM.

Keywords: digital soil organic matter mapping; influencing factors; geostatistics; geodetector; remote
sensing; arenosols

1. Introduction

Soil organic matter (SOM) is an important indicator of soil fertility and it exhibits
strong spatial heterogeneity under the same natural conditions because of the influence of
various environmental components, e.g., land use, topography, and vegetation cover [1–3].
This is especially true for agricultural land facing a high frequency of human intervention,
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e.g., nitrogen application, tillage, seeding, crop harvest, and crop residue removal [4,5].
Therefore, mapping its spatial distribution is of great significance for understanding the
spatial distribution patterns of soil fertility, managing land degradation, and soil carbon
cycle research [6,7].

Conventional geostatistical interpolation, primarily ordinary kriging (OK) interpo-
lation [8,9] and simple kriging interpolation [10], have been widely used to derive SOM
maps from soil sampling points in the past decades. Previous studies, such as those by
Wu et al. [11] and Zhang et al. [12], have shown that regression kriging (RK) and ordinary
kriging (OK) were accurate to derive SOM maps, and the accuracy of SOM estimation using
RK was better than that of OK. However, these interpolation methods are typically used to
interpolate geographical characteristics with significant spatial autocorrelation and a lot of
samples are needed to obtain good results [13,14]. Moreover, these traditional methods do
not consider geographical landscape factors that cause high uncertainty in SOM maps [15].

The development of remote sensing technology provides powerful data and technical
support for SOM prediction and mapping. It has been recognized that SOM has a great
influence on soil reflectance [16–18]. Some researchers conducted a correlation analysis
between soil spectral reflectance properties and SOM [19,20], and others used multispectral
remote sensing data (satellite, airborne, and UAV) to predict and map regional SOM
content (SOMC) [17,21,22]. Since the 1990s, some researchers have used hyperspectral
remote sensing data to establish a relationship with SOM, and the results show that it
can improve the correlation between them [23,24]. In general, the estimation of SOMC
using remote sensing images is mainly divided into two methods. The first one is the
direct estimation method, which directly uses the reflectance spectral features of remote
sensing images to establish a relationship with SOM in those places where there is no
vegetation or very sparse vegetation. The second is the indirect method, which uses remote
sensing images to extract environmental factors and then model their relations with SOM
to estimate SOMC spatial distribution on a single vegetation type [25]. However, the spatial
distribution mapping of SOM is rarely studied at a regional scale when the underlying
surface is covered with different land use types.

The Landsat series of satellites has been freely available to the public since 1972 and
has a good temporal and spatial resolution for regional-scale SOM estimation. It has
sensitive bands for SOM and its rich band information can be used to calculate numerous
environmental variables (e.g., land surface temperature (LST), vegetation indices); it has
a 16-day temporal resolution, which enables dynamic monitoring of SOM. Incorporating
Landsat-derived variables for the modeling of SOM has been acknowledged by the scientific
community [26,27]. For example, Piccini [1] and Boubehziz [14] used Landsat imagery,
digital elevation model (DEM) data, and soil auxiliary data (e.g., lithology, soil type) to
predict SOM. Piccini [1] found that DEM-derived parameters and soil type were strongly
correlated with SOC. Boubehziz [14] revealed that SOC in Northeast Algeria had a strong
relationship with topography and other landscape features derived from Landsat. Paul [28]
and Zhou [29] adopted random forest regression to map SOM, focusing on exploring the
impact of land use and climate variability on SOC. Both studies showed an improved SOC
map when vegetation information derived from satellite data was integrated.

In recent years, the variable importance of different environmental factors on SOM
has been mostly based on mathematical models to obtain the global correlation coeffi-
cients [30,31]. However, the distribution of SOM is closely related to local variables, and
the global correlation coefficient may miss vital local influencing factors. This could affect
the performance of subsequent models. Moreover, these mathematical models rarely detect
the interaction effect of multiple environmental factors on SOM. The geographical detector
model (GDM) requires fewer assumptions, indicates spatial causality, and has a clear physi-
cal meaning. It consists of four detectors, which not only have Q values for the explanatory
power of each single environmental factor on the dependent variable (SOM), but also
provide Q values for the interaction of the two environmental factors. We can use these
four detectors to fully explore how environmental factors influence the spatial distribution
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of SOM. Therefore, it is more powerful and rational than mathematical-statistical models in
screening out variables that better explain the distribution of SOM.

It is also important to choose the appropriate model to establish the relationship be-
tween environmental factors and SOMC. Compared with the traditional methods, various
new data mining approaches, e.g., geographically weighted regression (GWR) and ma-
chine learning, can be more effective in exploring the response of SOM to environmental
factors. In particular, GWR has gained popularity for soil property mapping [26,32,33].
It considers local smoothing and relationships among different environmental variables
within a local distance. It is capable of embedding the spatial location of samples into a
regression through the locally weighted least squares method [34]. It can also describe
the spatial distribution of soil properties more accurately. In addition, hybrid approaches
and machine learning have been exploited recently in mapping soil properties, such as
partial least square–support vector machine [35], random forest [36], and artificial neural
networks [37].

The research problem of this paper is how to scientifically screen out the environmen-
tal variables that have a spatial influence on SOM for regional-scale areas with different
underlying surfaces using a limited number of sampling points, and environmental vari-
ables to model SOM and draw its spatial distribution maps. The objectives are: (1) to
explore the detailed impact of each geographic landscape factor on SOM variability using
the GDM, and thereby to select significant factors for modeling; (2) to draw a near-surface
regional SOM map based on variables using GWRK. To understand how we can improve
the rationality and accuracy of SOM distribution, the GWRK result was compared with
SOM maps using a conventional interpolation approach.

2. Materials and Methods
2.1. Study Area

Pingtan Island (119◦32′–120◦10′ E, Figure 1), located in eastern Fuzhou of Fujian
Province, is the principal island in Pingtan County. Pingtan has an area of around
267.13 km2 and is mainly characterized by low, flat terrain, and a middle section of hilly
plains. The climate type is subtropical monsoon with long summers but short winters. The
average annual temperature and rainfall are 19.8 ◦C and 1200 mm, respectively [38]. The
soil types are primarily arenosols, ferralsols, and gleysols.

2.2. Soil Sample Collection
2.2.1. Sampling Design

Environmental factors including land patches, land cover, field accessibility, and soil
texture were considered in designing the sampling scheme, which is based on the Technical
Specification for Soil Environmental monitoring issued by the Ministry of Ecology and
Environment in the People’s Republic of China [39]. For each sampling site (representing
the typical land patch), quad-sampling was used for mixed soil samples of around 1 kg
from 5 points distributed on the 4 corners and the center with the surface soil at 0–20 cm
depth. A total of 70 mixed soil samples was collected by soil shovel (Figure 1c).

Among the 70 samples, 70% of the samples (n = 49) were randomly selected as the
training set, and the remaining 30% of the samples (n = 21) were used as the test set to
evaluate the prediction performance of the model. Figure 1c shows the spatial distribution
of samples used for model calibration (training) and validation (testing).

2.2.2. Soil Sample Collection and Lab Analysis

Soil samples were collected from July 2013 and placed in labeled plastic bags, and the
sampling process was all done on sunny days. The geographic coordinates of the center
of each sampling site were recorded using a hand-held global positioning system (GPS)
receiver. In the laboratory, the soil samples were air-dried for at least 48 h in a soil air-drying
box; then, crushed stones, animal material, and plant residues were removed. The samples
were then ground with an agate mortar and passed through a 100-mesh nylon sieve. Each
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soil sample’s total carbon (TC) was measured using an automated carbon and nitrogen
elemental analyzer (Vario EL III CN). Inorganic carbon was measured by chemical method
(neutralization titration method with 0.5 mol/L HCl, and 0.5 mol/L NaOH) [40]. Total
organic carbon (TOC) was gained through the TC subtracting inorganic carbon. Finally,
SOM was determined as 1.724 times TOC [41].
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2.3. Environmental Variables

Optical satellite imagery and other ancillary data were collected to support the estima-
tion of SOM (Figure 2).
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Figure 2. Spatial distribution of environmental factors. Vegetation indices include the normalized
deviation vegetation index (NDVI), differential vegetation index (DVI), ratio vegetation index (RVI),
and modified soil adjusted vegetation index (MSAVI); topographical indices include the compound
topographic index (CTI), stream power index (SPI), topographic roughness and topographic relief.

2.3.1. Remote Sensing Variables

A Level-1 Landsat 8 (OLI/TIRS) image (12 July 2013, Path 118/Row 42) was down-
loaded from USGS (https://earthexplorer.usgs.gov/, accessed on 13 September 2020). The
time of this image acquisition was the same as that of soil sampling. The image prepro-
cessing techniques, including geometric correction, topographic correction, radiometric
calibration, and FLAASH atmospheric correction, were applied using ENVI 5.5. Vegetation
indices (VIs) including normalized deviation vegetation index (NDVI), differential veg-
etation index (DVI), ratio vegetation index (RVI), and modified soil adjusted vegetation
index (MSAVI) were calculated from the Landsat surface reflectance (Table 1). These VIs
are highly correlated with canopy structure (e.g., leaf area index and biomass), which are
the indicators of crop growing conditions. SOM can indirectly influence the changes of
environmental variables affecting crop growth, thus resulting in the difference in VIs [22,42].

https://earthexplorer.usgs.gov/
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Therefore, considering the advantages and limitations (e.g., different vegetation indices
have different sensitivity to vegetation coverage and soil background) of each vegetation
index, we selected four of the most common VIs and explored their sensitivity to soil
organic matter content (SOMC). Then, the sensitivity index was selected as a proxy of
SOMC in the model to retrieve the final spatial distribution map.

Table 1. Details of the vegetation and topographic indices.

Indices Formulas References

Normalized deviation vegetation index (NDVI) NDVI = (ρNIR − ρred)/(ρNIR + ρred) [43]
Differential vegetation index (DVI) DVI = ρNIR − ρred [44]

Ratio vegetation index (RVI) RVI = ρNIR/ρred [45]
Modified soil adjusted vegetation index (MSAVI) MSAVI = (2ρNIR + 1−

√
(2ρNIR + 1)2 − 8(ρNIR − ρred))/2 [46]

Roughness Roughness = 1/ cos(slope ∗ π /180) [47]
Relief Relie f = Zmax − Zmin [48]

Compound topographic index (CTI) CTI = ln( Ac
tan β ) [49]

Stream power index (SPI) SPI = ln(Ac + tan β ∗ 100) [49]

In addition, the variability of SOM is affected by soil temperature [50]. In this study,
land surface temperature (LST) derived from the Landsat 8 Thermal Infrared Sensor (TIRS)
was considered in the SOM modeling. The single-window algorithm developed by Qin
et al. [51] was used to calculate LST as follows:

Ts = [a(1− C− D) + (b(1− C− D) + C + D) ∗ T10 − DTa]/C (1)

C = ετ (2)

D = (1− ε) ∗ [1 + (1− ε) ∗ τ] (3)

where Ts is the true surface temperature in K; a (67.355351) and b (0.458606) are con-
stants, [51]; C and D are intermediate variables; ε is the surface emissivity; τ is the atmo-
spheric transmittance; T10 is the pixel brightness temperature detected by the sensor at
the altitude of the satellite; Ta is the atmospheric mean temperature. According to the
image acquisition time and location, the mid-latitude summer atmosphere estimation
equation Ta = 16.0110 + 0.92621 × T0 was used [52]; ε was calculated by mixed pixel
separation method [53]; τ was obtained by entering the transit time and center coordinates
of the image on the National Aeronautics and Space Administration (NASA) website
(https://atmcorr.gsfc.nasa.gov/, accessed on 21 September 2020).

2.3.2. Ancillary Data Collection

Ancillary datasets include soil type, land cover type, and DEM. Soil types (vector
format) were obtained from Pingtan Nature Fund data by fieldwork. There were 9 soil types,
but the main soil types were arenosols, ferralsols, and gleysols. Land cover information was
extracted from Landsat 8 using the random forest method (Breiman 2001). The classified
land cover types were forest, grassland, farmland, construction land, water body, and
unused land. After classification, we randomly generated 420 test points, and carried out
visual interpretation of land use types against Google Earth, taking them as true surface
classes to evaluate the accuracy of classification (Table 2). The result showed that the overall
accuracy of classification was 87.60% and the KAPPA coefficient was 0.84.

https://atmcorr.gsfc.nasa.gov/
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Table 2. Error matrix of random forest classification results of land use map.

Indices Forest Grassland Farmland Construction Water Body Unused
Land Sum User’s

Accuracy

Forest 120 5 3 2 0 0 130 92.31%
Grassland 4 48 2 1 0 0 55 87.27%
Farmland 5 6 80 9 0 0 100 80.00%
Construction 0 2 5 55 0 0 62 88.71%
Waterbody 1 0 0 0 35 0 36 97.22%
Unused land 1 0 2 3 1 30 37 81.08%
Sum 131 61 92 70 36 30 420 -
Producer’s Accuracy 91.60% 78.69% 86.96% 78.57% 97.22% 1 - -

The ASTER Global Digital Elevation Model (DEM) data were downloaded from the
Geospatial Data Cloud Platform, operated by the Chinese Academy of Sciences (http://
www.gscloud.cn, accessed on 16 November 2020). The DEM has a spatial resolution of 30 m.
Topography is an important factor in the spatial variation of soil properties [54]. Topography
plays an important role in the redistribution of hydrothermal conditions and thus affects
SOM, while climate and soil parent materials are relatively consistent on a regional scale [55].
Therefore, topographic factors are often considered model-independent variables in the
prediction of the spatial distribution of many soil attributes. Here, topographic indices
(roughness, relief, CTI, and SPI) were calculated using the spatial analyst tool in ArcGIS
10.6 as environmental factors (Table 1).

2.4. Analysis Methods

In general, the overall flowchart of the study was illustrated in Figure 3.
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2.4.1. Sensitivity of Environmental Variables to SOM

The geographical detector model (GDM) is developed based on spatial variance
analysis (SVA). It is a statistical method for assessing spatially stratified heterogeneity and
revealing the driving factors behind spatial differentiation [56]. The GDM includes four

http://www.gscloud.cn
http://www.gscloud.cn
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geographical detectors named factor, interaction, risk, and ecological detectors. Factor
detector, which is expressed by q statistic (Equation (4)), indicates that the X (environmental
factors) can explain q × 100% spatial variation of Y (SOM). The range of q (0 to 1) increases
as the strength of the stratified heterogeneity of Y caused by X increases.

q = 1− SSW
SST

(4)

SSW = ∑L
h=1 Nhσh

2, SST = Nσ2 (5)

where SSW and SST are the sums of the variances within the layer (class) and the total
variance of the entire region, respectively; h = 1, L is the stratification of variable Y or factor
X; Nh and N are the numbers of objects in each layer and the entire region, respectively.

The interaction detector detects interactions between factors to determine if two factors
work together or independently to increase or decrease the explanatory power of the depen-
dent variable. The risk detector is used to assess if the mean value of the attributes between
two subregions is significantly different using a student t-test [56]. The ecological detector
determines whether the influence of two factors on the spatial distribution of attribute Y is
significantly different. The relevant calculations were made using the GeogDetector_2015
software (www.sssampling.org/geogdetector, accessed on 17 May 2020) [57]. These four
detectors were used to identify the sensitive environment variables and thus predict SOM.

2.4.2. SOM Model Using Geostatistical Interpolation

Geostatistics, a branch of spatial statistics, has been widely used in soil science [58,59].
Geostatistics are statistical models that are based on regionalized variables and use a
variable function to study random, structural, or spatially correlated and dependent natural
phenomena [13]. The advantages of geostatistics are that they incorporate spatial and
temporal coordinates of observations in data processing and can assess the uncertainty
about the unsampled points [60].

The original SOM data must be converted if they do not conform to the normal dis-
tribution (the premise of applied geostatistics). Therefore, logarithmic transformation
was implemented in the SOM dataset. The optimal model was selected from the ordi-
nary kriging, simple kriging, and universal kriging methods through cross-validation
to maximize the accuracy of the interpolation results. The best interpolation result was
compared with the remote sensing inversion method. Kriging interpolation was done in
ArcGIS 10.6 software.

2.4.3. SOM Modeling Using Remote Sensing

Geographically weighted regression kriging (GWRK) is a two-step hybrid approach
integrating a geographically weighted regression (GWR) obtained from the estimation of
the residuals with geostatistics by traditional kriging [61]. GWR is a spatial extension of
Ordinary Least Squares (OLS). It considers the influence of spatial variability for regionally
estimating regression parameters when establishing the regression equation. GWR and
OLS were first analyzed to see whether SOM data of the study area has spatial heterogeneity.
If GWR had better performance, heterogeneity would have existed. Then, GWRK was
applied for mapping SOM.

GWRK has been proven to be more accurate and efficient for spatial prediction than
regression kriging (RK) [61]. It includes two components, deterministic and stochastic. The
deterministic component locally establishes the regression between a target variable and
environmental factors to predict the trend of the target variable. The stochastic component
is the residual term that can be interpolated by the kriging method. Prediction of the target
variable was made by combining the residual term with the estimated results (Equation (6)).

YGWRK = β0(ui, vi) +
k

∑
j=1

βk(ui, vi)xij + ε̂OK(ui, vi) (6)

www.sssampling.org/geogdetector
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where (ui, vi) is the coordinate of the i-th sampling point, βk(ui, vi) is the k-th regression
parameter at the i-th sampling point, ε̂OK(ui, vi) is the interpolation of residual term, xij is
the influence factor, and is the target variable. The regression part was performed in GWR
4.0 software, and interpolation of residuals was implemented in ArcGIS 10.6 software.

2.4.4. Assessment of SOM Model Performance

The coefficient of determination (R2), residual sum of squares (RSS), and Akaike
information criterion (AIC) were used to evaluate the performance of SOM models using
OLS and GWR. R2, mean absolute error (MAE), and the root mean square error (RMSE)
values were employed to assess the performance of SOM models using optimal kriging
and GWRK. They were calculated as follows:

R2 =

n
∑

i=1
(ŷi − y)2

n
∑

i=1
(yi − y)2

(7)

RSS =
n

∑
i=1

(ŷi − yi)
2 (8)

AIC = −2 ln(L) + 2k (9)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (10)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (11)

where ŷi and yi represent the predicted and measured values at sampling point i; y repre-
sents the average value of measured value at sampling sites. L is the maximum likelihood
under the model, and k is the number of variables in the model.

3. Results and Discussion
3.1. Statistical Characteristics of SOM

The measured SOM was found at a low level (1.03% on average, Table 3). The
original data did not follow the normal distribution well. The positive skewness was
concentrated on the left side of the mean, and the kurtosis was 4.69, indicating that the
frequency distribution of the sampled data was steep. This was due to the high deviation
of a few SOM samples from the mean, which was illustrated with a high coefficient of
variation (0.91). After a logarithmic transformation, however, the data well followed the
normal distribution.

Table 3. Statistical characters of soil organic matter (SOM).

Item Max Min Mean Std. Dev Kurtosis Skewness Coefficient of Variance Distribution Type

SOM (%) 4.35 0.07 1.03 0.95 4.69 2.12 0.91 NN
LOG (SOM) 0.64 −1.14 −0.13 0.374 0.47 −0.18 0.14 ND

“LOG” means logarithmic transformation, “NN” means non-normal distribution, and “ND” means normal distribution.

3.2. Spatial Characteristics of Environmental Variables

The environmental variables considered were vegetation indices, terrain indices, LST,
soil types, and land use. These variables had clear spatial variability (Figure 2). The spatial
pattern of vegetation indices was close to that of land cover type and LST. LAI value was
different as the phenological stage of various vegetation types differs among land cover
types. LST has a close relationship with LAI or vegetation growth. Therefore, LST showed
a similar spatial pattern with the four vegetation indices.
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In addition, the spatial pattern of topographic indices was also related to the vegetation
indices and land use type. The reason was that the higher the terrain, the lower the
interference of human activities, the less threatened the vegetation growth, and generally,
the better it grows.

3.3. Sensitivity of Environmental Variables on SOM

The soil sampling points were used to extract the values of environmental variables
from the corresponding locations. SOM was the dependent variable and environmental
factors were the independent variables. The sample points with their environmental
variables were put into the GDM for analysis.

3.3.1. Comparative Analysis of Explanatory Power

The q value of all environmental factors varied from 0.110 to 0.557 (Figure 4a). RVI
had the highest q value (0.605), followed by NDVI (0.351), relief (0.317), MSAVI (0.314),
and DVI (0.288). This t-test result implies the significant influence of RVI and DVI on SOM
distribution. The remaining environmental factors, such as LST, terrain roughness, SPI, soil
type, land use type, and CTI, had a weaker influence on SOM. The higher response of SOM
to vegetation indices than other factors could be due to the direct relationship of higher
vegetation indices with abundant plant residues that finally converted into SOM.
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Figure 4. Effects of different factors on the explanatory power of soil organic matter with the q value
(a). SOM difference of RVI (b) and DVI (c) at different levels. q values of interaction between different
influencing factors on soil organic matter (d). Black points indicate double-factor enhancement
interaction. The red symbols indicate that the interaction q value is greater than 0.85.



Sustainability 2023, 15, 8511 11 of 18

3.3.2. The Influence of Environmental Factors on SOM

The influence of environmental factors on SOM was either antagonistic or synergistic,
which can be identified by the q values of the interaction detection results (Figure 4d). Any
two-factor interaction that can explain SOM more than a single factor was explored. The
double-factor enhanced interactions were soil type∩RVI, land use∩RVI, roughness∩relief,
roughness∩RVI, relief∩RVI, CTI∩RVI, SPI∩RVI, LST∩RVI, NDVI∩MSAVI, and NDVI∩RVI.
We noticed that RVI frequently showed in double-factor enhanced interactions. The nonlin-
ear enhanced interactions were roughness∩DVI (the highest q value of interaction, 0.916),
roughness∩SPI, relief∩NDVI, and SPI∩NDVI, indicating that the interaction between veg-
etation factors (NDVI, DVI) and topographic factors (relief, roughness, SPI) could improve
the ability of a single factor to explain SOM.

3.3.3. Risk and Ecological Analysis of SOM

The impact of environmental factors on SOM can be expressed by the results of the
risk detector. The essence of risk detection was to compare the significance of the average
SOM at different levels of environmental factors. The risk detector result showed that
there was no significant difference (t-test) in SOM between different levels of land use,
roughness, relief, NDVI, and MSAVI. Only one pair of levels in soil type, CTI, SPI, and LST
factors showed a significant difference in SOM. However, DVI and RVI revealed obvious
differences in SOM between different levels. The result was consistent with the analysis of
factor detection that SOM had the highest response to both RVI and DVI.

Because of inadequate sampling points, only the top levels of RVI had the correspond-
ing values. The risk detector showed paired levels with a very significant difference in
SOM (for RVI, the following levels showed significant differences: 1–4, 2–4, 3–4 (Figure 4b);
for DVI, the corresponding levers were 2–3, 2–8, 3–6, 6–7, 6–8 (Figure 4c). The SOM of the
fourth level of DVI (1.35%) and the sixth level of the RVI (1.98%) showed a sharp increase.
Both levels frequently occurred in the pairs of significant differences.

Ecological analysis using the F test at the level of 0.05 revealed that RVI was more
sensitive to SOM than all the other factors. However, the explanatory power among
other factors was not significant, which is consistent with the finding of the q values of
comparative analysis. RVI was confirmed to have the best explanatory power for SOM in
the study area.

3.4. SOM Estimation Model
3.4.1. Accuracy of SOM Estimation Using Interpolation

Semivariogram analysis was performed on the SOM to obtain the semivariogram
parameters of the Gaussian, linear, exponential, and spherical models at isotropic and
anisotropic (Table 4). The best Gaussian model was determined by the metrics includ-
ing the decision coefficients (R2) and residuals (RSS). The estimated parameters of the
semivariogram for each model showed that the nugget effect C0/(C0 + C) of Gaussian
was 0.1% (between 0 and 25%), indicating that SOM in the study area has strong spatial
autocorrelation. Kriging interpolation can be used to map the spatial distribution of SOM.

Table 4. Semivariance model and parameters of soil organic matter.

Model Nugget s(C0) Sill s(C0 + C) Range (km) Nugget
Effect (%)

Coefficients of
Determination (R2)

Residual Sum of
Squares (RSS)

Gaussian 0.0001 0.1382 0.0294 0.1 0.622 8.103 × 10−3

linear 0.082 0.155 0.104 52.8 0.242 0.0161
exponential 0.0001 0.1442 0.057 0.1 0.565 9.525 × 10−3

spherical 0.0001 0.1402 0.0430 0.1 0.590 8.760 × 10−3

Trend analysis was performed on SOM. The spatial interpolations using ordinary
kriging, simple kriging, and universal kriging were cross-validated. There was no obvious
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SOM distribution trend. Ordinary kriging showed the best interpolation results, with
the mean standardized error (MSE) closest to 0, small root mean square standardized
error (RMSSE), mean error (ME) close to the root mean square error (RMSE), and average
standard error (ASE) close to 1 (Figure 5).
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3.4.2. Accuracy of SOM Estimation Using Remote Sensing

OLS and GWR analysis were performed taking RVI (highest single factor explanatory
power, higher risk power), DVI, and roughness (highest interaction explanatory power)
as the independent variables and the SOM as the dependent variable. The GWR diag-
nostic indicators were significantly better than those of the OLS (Figure 6a). The residual
sum of square decreased from 30.657 (OLS) to 24.621 (GWR), and the AIC values were
126.076 (OLS) and 120.417 (GWR); the determination coefficient was significantly improved
from 0.265 (OLS) to 0.410 (GWR), indicating that the GWR local regression model accurately
estimated SOM with a spatially non-stationary distribution. Compared with GWR, GWRK
took into account the residual value and resulted in fine-resolution regional SOM mapping.
The accuracy metrics of the GWRK model and optimal traditional kriging (OK) are shown
in Figure 6b.

Comparing the two models in SOM estimation performance, the R2 of GWRK was
significantly greater than that of OK, whereas the MAE of OK was slightly better than that
of GWRK. From the RMSE point of view, however, the GWRK value was smaller than
that of OK. Overall, the result indicated that GWRK can obtain higher accuracy of SOM
estimation than OK.
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3.5. SOM Mapping and Comparison

Figure 7a,b show SOM maps derived from remote sensing data using OK and GWRK.
To avoid errors in SOM estimation, we excluded impervious surfaces and water bodies.
They were removed based on the global artificial impervious area result proposed by
Gong et al. [62] and modified normalized difference water index.

The results showed that the spatial variability of the SOM map using OK is different
from that using GWRK. Because of the inputs of environmental factors, especially the
remotely sensed variables, a finer SOM map was obtained compared with the map using
OK pure interpolation. To deeply analyze the difference between spatial recognition
rate and spatial distribution structure, we generated patches and distribution maps of
SOM levels.

The number of patches at all SOM levels was extracted to compare the spatial recogni-
tion rate (Table 5). Patches of GWRK increased significantly more than those of OK at all
levels. Since OK is based on the interpolation of sample points, the results obtained had
large spots, which can only reflect the overall spatial distribution of SOM on the island.
Incorporating landscape geographic factors, GWRK can describe SOM of spatial variation
in detail and hence give more precise predictions. The number of patches in the first level
increased the least (73 times) and the number of patches in the last level increased the most
(849 times). Overall, the spatial recognition rate (fineness) increased by more than 73 times
(Table 5).

Table 5. Number of patches at all soil organic matter levels in ordinary kriging (OK) and geographi-
cally weighted regression kriging (GWRK). Levels correspond to organic matter content <0.6% (1),
0.6–1% (2), 1–1.5% (3), 1.5–2% (4), 2–3% (5), and >3% (6).

Models
Levels

1 2 3 4 5 6

OK 46 77 64 38 13 1
GWRK 3364 6600 9230 6746 2212 849
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The SOM with less than 1.5% accounted for 94.71% of the total area of the study.
Therefore, the spatial distribution map of levels 1–3 was compared in detail to express
the difference in SOM spatial structure (Figure 7a1–a3,b1–b3). The first three levels of OK
and GWRK had similar spatial distribution trends except for forestland. Forestland was
at a higher level (level 5) of GWRK, while at a lower level (level 2) of OK. This could be
due to the addition of RVI and DVI to the GWRK model, which contributed to a high
interpretation ability for SOM and more accurately identified the higher grade of SOM.
Compared to OK, GWRK overestimated SOM in forestland to some extent, but this could
be closer to the actual situation. Although the spatial distribution of OK and GWRK in
other land use types showed similar patterns, the GWRK mapped a patchy, more detailed
SOM distribution than the OK interpolation.

The result of SOM distribution, which depends on pure spatial interpolation, is unable
to reasonably show the SOM spatial distribution. This is closely related to the sample size
of SOM data collected from the field and the less spatial representation of the samples.
However, with the incorporation of remote sensing and other environmental parameters,
the spatial pattern of SOM mapping was improved greatly and its spatial distribution was
more reasonable. Therefore, the GWRK method that combines environmental factors can
be used for better prediction of the spatial distribution of SOM.

SOM spatial distribution based on GWRK had certain spatial similarities with vegeta-
tion indices and the roughness index. High SOM areas were primarily found in the gently
sloped northeast and southwest regions under forest cover (Figure 7b). These regions had
higher RVI and DVI, indicating more raw materials that can be converted into SOM. The
SOM was less in extremely rough areas due to its exposure to high soil erosion. Although it
was not considered in the model, the land cover has an impact on the distribution of SOM
to a certain extent. For instance, SOM was found at a higher level in forests and farmland,
while the opposite was true in unused land.

4. Conclusions and Recommendations

This study aims to estimate and map the spatial distribution of near-surface SOM
on Pingtan Island with different underlying surfaces by using environmental variables
(especially variables extracted from remote sensing data) with 70 sampling points. Environ-
mental variables controlling SOM distribution on the island were explored using the GDM
model, and selected factors were used in geographic weighted regression kriging (GWRK)
to estimate SOM. The estimated SOM was compared with SOM using the traditional inter-
polation approach (ordinary kriging) to understand how we can improve the rationality
and accuracy of SOM distribution. The research has reached the following conclusions:

(1) The average SOM in the study area was 1.03% with high spatial variability. GDM
results showed that landscape structural factors (e.g., RVI, DVI∩roughness) played a major
role in the spatial variability of SOM.

(2) RVI, DVI, and roughness were selected as the SOM spatial predictor variables.
The GWRK model using these variables was more accurate (R2 = 0.405, MAE = 0.637, and
RMSE = 0.813) to estimate the spatial distribution of SOM than conventional interpolation
(e.g., OK) using soil samples alone (R2 = 0.291, MAE = 0.609, and RMSE = 0.863).

(3) The spatial pattern of the SOM map using the GWRK model was more reasonable
than that of the OK model, and the spatial recognition rate of SOM patches at all levels
using the GWRK method increased by more than 73 times compared with OK.

We conclude that the combination of limited SOM samples, remote sensing indices
(e.g., vegetation indices), topographic data, GDM, and GWRK is a pragmatic approach for
estimating regional-scale near-surface layer SOM. This study provides a practical method
for SOM prediction in places with complex underlying surfaces on a regional scale and
can be transferred to other regions by selecting appropriate variables considering the
characteristics of the study area.

Despite the encouraging results obtained in this study, the proposed methodology has
limitations. (1) Although 70 soil samples were sufficiently large for testing the robustness
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of the prediction model, a much larger number of soil samples should be collected across a
wider range of geographical locations on the island in future studies. In addition, we only
sampled the top soil layer in this study. Future sampling efforts will consider sampling
from different depths of the soil profile to obtain the soil carbon pool and contribute to
the carbon cycle and carbon-neutral research. (2) As Pingtan is a small regional-scale
island, spatial correlation can affect the accuracy and precision of the SOM estimation.
The estimation accuracy in this study was lower as compared to that of Lu et al. [30] and
Li et al. [31]. This may be due to their study area being in a single land use type (e.g.,
hickory plantation region and cropland), but our study was conducted in areas with greater
spatial heterogeneity, and more complex ground conditions in southern China. To improve
the accuracy of SOM estimation, additional environmental factors, such as soil moisture,
tree height, and underground LAI, will need to be considered in future studies.
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