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Abstract: The hydrogen fuel cell is a quite promising green device, which could be applied in
extensive fields. However, as a complex nonlinear system involving a number of subsystems, the fuel
cell system requires multiple variables to be effectively controlled. Oxygen excess ratio (OER) is the
key indicator to be controlled to avoid oxygen starvation, which may result in severe performance
degradation and life shortage of the fuel cell stack. In this paper, a nonlinear air supply system model
integrated with the fuel cell stack voltage model is first built, based on physical laws and empirical
data; then, conventional proportional-integral-derivative (PID) controls for the oxygen excess ratio
are implemented. On this basis, fuzzy logic inference and neural network algorithm are integrated
into the conventional PID controller to tune the gain coefficients, respectively. The simulation results
verify that the fuzzy PID controller with seven subsets could clearly improve the dynamic responses
of the fuel cells in both constant and variable OER controls, with small overshoots and the fastest
settling times of less than 0.2 s.

Keywords: oxygen excess ratio; PID; fuzzy logic inference; neural network

1. Introduction

Nowadays, sustainable or renewable energy sources and their involved development
technologies are becoming more and more important for addressing the environmental
pollution [1] and national economic security issues. Owing to its ingenious features such as
high efficiency and power density, low-temperature (50–100 ◦C) and quiet operation, and
nearly “zero pollution”, a proton exchange membrane fuel cell (PEMFC) fueled by hydrogen
is recognized as one of the most promising power sources for extensive applications [2,3].
Especially in the new energy vehicle industry, due to its great potential for future develop-
ment, PEMFC has recently attracted many research institutes and companies to engage in
its technology development to provide green electric power.

However, there remain many problems or challenges such as high expenses and short
lifetime to be solved before fuel cells’ widespread commercial application in real systems
thus far [4]. As a result, highly effective and feasible control methodologies are required to
control or regulate the key physical variables such as mass flow, pressure, temperature, and
humidity in the cathode/anode, so that the desired fuel cell transient performance, safety,
and life span level can be guaranteed.

Fuel cell controllers are essentially used to modify the natural response of fuel cells and
maintain desired operation despite uncertainties and disturbances; that is, effective control
strategies for fuel cell operation should prevent material and electrode degradation during
load transients. The transient response of a fuel cell system is quite crucial in vehicular
applications, as power demand varies frequently, which renders the fuel cell stack and
auxiliary subsystems not operating at the designed optimum steady-states [5]. During
transients, for the sake of achieving a fast and efficient power response that can also avoid
membrane damage and oxygen depletion, it is quite important to design advanced control
schemes to regulate air and hydrogen intake flow [6].
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Currently, hydrogen is usually stored in a pressurized tank at 35 MPa or 70 MPa in
practice and then supplied to the fuel cell anode via a pressure regulator, while the oxidant
in the cathode is supplied by a motor-driven compressor from the atmospheric air typically
for the vehicle application. Due to the relatively slow dynamics of the compressor and
the air supply manifolds, oxygen starvation may occur in the cathode if the load current
changes abruptly [7]. On the other hand, the response of a regulating valve in the hydrogen
channel is much faster than that of a compressor for the air supply, which means that we
usually let the anode pressure follow the cathode pressure whenever operating conditions
change. Furthermore, from the point of energy management, the power consumed for air
supply can account for 25% of the power generated by a stack; to reduce parasitic power
losses and reach maximum net power, it is required to regulate OER within an acceptable
range [8]. Thus, the flow control for the air side presents to be more crucial compared
with that for the hydrogen side. With respect to the cathode pressure or the objective
pressure, which needs to be kept in both sides of the membrane, flow rate control can be
utilized to realize it, to an extent, in view of the ideal gas law and conservation of mass.
Moreover, relative investigations demonstrate that adjusting OER to a certain value can
prevent oxygen starvation and reach the maximum power point in respect of the individual
current demand for the fuel cell. Therefore, oxygen excess ratio control becomes a quite
significant topic in fuel cell system control.

Fuel cell breathing control has been studied by many researchers in recent decades,
with various control algorithms or techniques applied in the literature. At the beginning,
Pukrushpan et al. [9] compared the static and dynamic feedforward controls for air supply,
which formed the basis for an enhanced feedback controller design. To date, feedback plus
feedforward still dominates the main design principles of the controllers for air supply
control. For example, a combined air mass flow-pressure control strategy was recently
designed for air supply control of a vehicular fuel cell system; the air mass flow and
cathode pressure controls were implemented via feedforward plus PID feedback control,
respectively [10]. Zeng et al. [11] proposed a feedforward-based decoupling control method
to independently control the air mass flow and pressure by feedback loops with diagonal
matrix decoupling method. However, there is a constraint that the feedforward-based
control reference for actuators needs to be previously obtained from experimental results.
Well-designed feedback controllers have advantages over feedforward controllers in terms
of robustness when unknown disturbance and plant parameter variations exist; however,
the realization of a full-state feedback controller requires all system states to be obtained.
Therefore, a state observer is usually needed to estimate the unmeasurable states of the
controlled plant. In [12], based on a reduced third-order nonlinear model, a disturbance
extended state observer was designed to estimate the cathode pressure parameters, thus
the real-time estimate of OER was realized. Jiang et al. [13] proposed an observer-based
model predictive control scheme for the control of the OER; the sliding mode PI observer
was used to estimate the cathode pressure and the OER. In [14], an improved high-order
sliding mode observer was developed to estimate OER and showed fast convergence and
good robustness despite parametric uncertainties and noisy measurements; then, several
observer-based OER closed-loop controllers were presented, among which the proposed
two-stage sliding mode fuzzy feedforward method exhibited the highest control precision
and fastest response with the smallest overshoot or undershoot during transient response.

Based on the work in [9], Niknezhadi et al. [15] designed improved LQR/LQG strate-
gies to control OER and validated the effectiveness of the proposed controllers through
experiment. However, the method was still based on the linearized plant model. The fuel
cell dynamic behavior is inherently nonlinear, any linear model cannot fully represent its
nonlinear dynamics, and the corresponding linear controllers depending on the operat-
ing point are restricted or powerless to deal with complicated and changeable operating
conditions. Feedback linearization is an essentially nonlinear control method, but it can
utilize the design principle of linear controllers after the state variable and control input
transformations. Using feedback linearization controllers can obtain better transient perfor-
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mances than using pure linear controllers, as the control design of feedback linearization
is based on the differential geometry and independent of the operating point. In [16] a
nonlinear controller using feedback linearization is proposed to track the optimal OER to
reduce power consumption, based on an improved three-order air supply system model.
Sliding mode control (SMC) [17–19] is another important and widely employed robust
nonlinear control method due to its insensitivities on parametric uncertainties and external
disturbances, so that it also exhibits its distinct advantage in the control for air supply. For
example, Deng et al. [18] proposed a cascade adaptive SMC controller to regulate the OER
in a PEM fuel cell system, and the real-time emulator results showed that faster response
time, better convergence characteristics, and robustness were realized with the proposed
technique. Yin et al. [19] put forward adaptive super-twisting SMC to cooperatively reg-
ulate air and hydrogen supply and maintain pressure balance between the cathode and
anode; simulation results showed its advantages in various load conditions: better transient
responses of gas supply and pressure balance than using conventional PID, and better
chattering rejection than using super-twisting SMC.

Recently, intelligent control techniques, which mainly include fuzzy logic control (FC)
and artificial neural network (NN), have been evolving quite fast and used in extensive
industrial domains. Such controls’ main philosophy is to utilize the combination of qualita-
tive and quantitative methods to deal with the complex information of the controlled plant
autonomously so as to make decisions and finally achieve the purpose of controlling the
plant. There have already been many applications that employ FC algorithms on fuel cell
systems, such as energy management [20,21], modeling [22–24], fault diagnosis [25,26], and
so on. Fuzzy logic techniques are also widely used to control the crucial physical variables.
For example, in [27], a fuzzy controller was developed to output the change of the pulse
width of the solenoid valves for the hydrogen injection so as to regulate the hydrogen inlet
pressure, and the stability of hydrogen pressure with this fuzzy controller was verified to
be better than with PID controller in the experiments. A fuzzy controller with its fuzzy
control rules optimized by improved quantum particle swarm algorithm was introduced to
maintain the stack temperature at an ideal temperature [28]. In [29], an improved extended
state observer with FC was constructed to calculate OER.

As emulation of the brain’s work mechanism, NN, with the distinctive nonlinear
adaptive ability for information processing, has become more and more important in exten-
sive applications. Artificial neural networks are developing faster to form computational
intelligence, integrated with fuzzy systems, genetic algorithms, and evolutionary mecha-
nisms. In the control field, neural network has been widely utilized in modeling [30,31],
prediction [32,33], controller design [34,35], and so forth. For fuel cell air supply control,
Wang et al. [34] presented an observer-based adaptive neural network control and used
radial basis function neural networks in both observer and controller designs: the observer
was used to estimate the variable according to the transformed canonical system, and the
controller ensured all signals uniformly bounded while achieving prescribed transient and
steady-state tracking performance. Jia et al. [35] uses a four-layer fuzzy neural network
control strategy to compensate for the shortcomings of the two preceding controllers: the
double closed-loop PID cannot achieve decoupling of intake air flow and pressure, and the
feedforward compensation decoupling is not adaptive.

Many of the aforementioned literature concerns complex controller design process and
could render perceptual difficulties for the application engineers not majoring in control
theory, or their implementation needs to consume considerable computational sources,
which may hinder their practical application. Fuzzy logic control is easily comprehensible
and quite useful in air or hydrogen flow control of a PEMFC system, due to its advantage
of using simple rules from human expertise to regulate the complex nonlinear process,
without identifying the controlled plant completely and extensive mathematical analy-
sis [28]. The neural network could have simple or complex structures, which determine
the computation burden levels, yet its work mechanism is also readily comprehensible.
In this paper, based on a previously designed PID controller for air supply, a fuzzy logic
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inference system is utilized to tune the three PID gain coefficients to formulate the fuzzy
PID controller. Furthermore, for comparison, another intelligent gain tuning method by
neural network is employed for the incremental PID controller. Through a number of
comparative simulations, the fuzzy PID controller with seven subsets is finally proposed at
present, which exhibits the best transient responses among the discussed control methods
in both constant and variable OER controls. Additionally, the NN in our study has been
consistently upgraded through improved weight updating methods to improve its control
efficacy and adaptation to various working conditions. Especially the introduction of
parameter x in the range between 1 and 2 extends the flexibility of the changeable learning
rates, as in the literature it is usually a constant of 2.

The remainder of the paper is organized as follows. Section 2 introduces the control-
oriented air supply system model; Section 3 presents the basic theories of the control
methods used in the work and describes how they are implemented in this investigation;
Section 4 contains the simulation results and discussion; finally, Section 5 concludes the
paper and presents possible extensions.

2. Plant Model Set-Up

Building up a control-oriented dynamic model of the plant is a crucial first step for
analyzing system behavior and then developing model-based control methodologies. To
develop a fuel cell model, several assumptions are needed: ideal and uniformly distributed
gases, constant pressures in the fuel cell gas flow channels; perfectly working humidifier
and temperature controllers, which have the fuel cell well humidified on both the anode
and cathode sides and operating at 80 ◦C, thus the generated water is in liquid phase; and
parameters for individual cells can be lumped together to represent the entire stack.

The gas flow rates on the anode and cathode sides depend on the partial pressures
and the stack current. Using the ideal gas law and the principle of mass conservation, the
dynamics of mass and pressure in the supply manifold, the pressure in the return manifold,
and the gas partial pressures in the cathode can be modeled. When the inertial dynamics
of the compressor joins, a simplified six-order model for the PEMFC air supply system is
constructed as follows.

dmsm

dt
= Wcp −Wsm,out (1)

dpsm

dt
=

γRa

Vsm
(WcpTcp,out −Wsm,outTsm) (2)

dpO2

dt
=

RTf c

MO2 Vca
(WO2,in −WO2,out −WO2,rct) (3)

dpN2

dt
=

RTf c

MN2 Vca
(WN2,in −WN2,out) (4)

dωcp

dt
=

1
Jcp

(τcm − τcp) (5)

dprm

dt
=

RaTrm

Vrm
(Wca,out −Wrm,out) (6)

In Equations (1)–(6), the physical quantities m, p, W, and T are mass, pressure, mass
flow, and temperature, respectively; the subscripts sm, rm, cp, cm, a, O2, N2, f c, and ca
denote supply manifold, return manifold, compressor, compressor motor, air, oxygen,
nitrogen, fuel cell stack, and cathode, respectively. In addition, in and out mean that the
location is at the inlet and outlet, respectively. Therefore, for example, Wrm,out indicates the
mass flow at the outlet of the return manifold. These six variables are selected as states, and
the control input for the plant is the compressor motor voltage; stack current is considered
as an external disturbance.



Sustainability 2023, 15, 8500 5 of 20

The calculations concerning the variables on the right side of Equations (1)–(6) are
listed in Appendix A. Furthermore, the stack voltage model is also integrated into the plant,
and the anode pressure is set to follow the cathode pressure using a simple proportional
controller [9].

3. Controller Design

In this study, the control objective is to control the air flow rate in the cathode in the
form of OER; the schematic diagram can be depicted as Figure 1. The pressure of the supply
manifold Psm and cathode pressure Pca (the total pressures of oxygen, nitrogen and vapor in
the cathode) which are from the model output are used to calculate the actual oxygen flow
rate entering the cathode, and the load current (or fuel cell stack current) Ist determines
the oxygen consumption and the present requested OER value. The controller outputs the
motor voltage to drive the compressor to provide air, according to the deviation between
the desired and actual oxygen excess ratios.
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PID is a simple but quite effective classical control method, which can deal with both
linear and nonlinear systems, and thus is widely used in industrial process control. The
basic form of a PID controller is:

u(t) = kpe(t) + ki

∫ t

0
e(τ)dτ + kd

de(t)
dt

(7)

where e is the feedback error, that is, the difference between the current value of the OER
and its set-point value; kp, ki, and kd are known as proportional gain, integral gain, and
derivative gain, respectively. Although the controller structure is so simple and easy to
understand, the determination for the gain coefficients is not trivial and could be quite com-
plicated if the controlled plant concerns nonlinearities, internal uncertainties, or unknown
disturbances. Through several trials, in our study, the PID1 and PID2 controllers were
designed via different empirical gain-tuning methods, mainly considering the oscillation
conditions of the response curves; the control effects of these controllers can balance the
transient responses of the controlled variable and the controller output.

3.1. Fuzzy Logic Inference

Two-dimensional fuzzy controllers (using the difference of the output variable e and
the rate of this difference ec as control input variables) are usually used for their effectiveness
and simplicity, as they can reflect the dynamic characteristics of the output variables in
the controlled process without the need for excessive calculation burden. Through the
accumulation of a large number of operation experience, it is known that there is a nonlinear
relationship between these three coefficients (kp, ki, kd) and the controller inputs: deviation
e(t) and deviation rate of change de(t)/dt. These relationships cannot be described in clear
mathematical terms, but they can be expressed in vague language. Therefore, the fuzzy
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logic method can utilize fuzzy inference to formulate the adaptive coefficients of the PID
controller according to the real-time change of the output variable.

The work process of an FC controller can be briefly depicted in Figure 2, it mainly
contains three steps: fuzzying, fuzzy inference, and defuzzifying. Herein, there are three
gains in a PID controller; thus, three groups of such fuzzy inference are involved.
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Figure 2. Schematic diagram of a two-dimensional fuzzy inference system.

For transformations between physical universe and fuzzy universe, scaling factors are
involved. Based on the original PID settings and a number of simulations, on the input
side of the fuzzy inference system, the scale factors for the deviation and the deviation rate
of change were chosen as 1/3 and 1/10, respectively; on the output side, the quantification
factors for the P, I, and D gains were set to 700, 1500, and 0.001, respectively. These factors
also have influences on the system dynamic behavior and should be cautiously selected.

In the study, a total of three fuzzy inference systems were employed to choose the
most effective one. The membership functions of the input and output fuzzy subsets were
simply selected, shown in Figures 3–5.
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Fuzzy inference rules are depicted in Tables 1–3. The three tables represent the fuzzy
inference rules for the cases with three, four, and seven fuzzy subsets of the input and
output variables, respectively. For example, 4 subsets for both deviation E and deviation
changing rate EC result in totally 4 × 4 rules, each of which gives out the fuzzy subsets of
P, I, and D gains with four possibilities, respectively.

Table 1. Fuzzy rules for tuning PID gains (three fuzzy subsets).

Kp/Ki/Kd E
S M L

EC
S M/S/S M/S/S L/S/S
M L/M/M M/M/S M/M/S
L L/L/L M/L/S S/L/S

Table 2. Fuzzy rules for tuning PID gains (four fuzzy subsets).

Kp/Ki/Kd E
L M S ZO

EC

L M/ZO/S S/S/M M/M/ZO M/L/ZO
M L/ZO/M M/S/M L/L/S L/L/ZO
S L/ZO/L M/Z/L L/L/S L/L/S

ZO L/ZO/L M/Z/L L/L/S ZO/ZO/ZO

Table 3. Fuzzy rules for tuning PID gains (seven fuzzy subsets).

Kp/Ki/Kd EC
NB NM NS ZO PS PM PB

E

NB PB/NB/PS PB/NB/NS PM/NM/NB PS/NM/NB PS/NS/NB ZO/ZO/NM ZO/ZO/PS
NM PB/NB/PS PB/NB/NS PM/NM/NB PS/NS/NM PS/NS/NM ZO/ZO/NS NS/ZO/ZO
NS PM/NB/ZO PM/NM/NS PM/NS/NM PS/NS/NM ZO/ZO/NS NS/PS/NS NS/PS/ZO
ZO PM/NM/ZO PM/NM/NS PS/NS/NS ZO/ZO/NS NS/PS/NS NM/PM/NS NM/PM/ZO
PS PS/NM/ZO PS/NS/ZO ZO/ZO/ZO NS/PS/ZO NS/PS/ZO NM/PM/ZO NM/PB/ZO
PM PS/ZO/PB ZO/ZO/NS NS/PS/PS NM/PS/PS NM/PM/PS NM/PB/PS NB/PB/PB
PB ZO/ZO/PB ZO/ZO/PM NM/PS/PM NM/PM/PM NM/PM/PS NB/PB/PS NB/PB/PB

3.2. Neural Network Design

By discretizing the basic PID a digital-form PID formulation can be obtained as:

u(k) = kpe(k) + ki∑k
j=0 e(k) + kd[e(k)− e(k− 1)] (8)

then an incremental PID formulation can be described according to last three errors:

∆u(k) = kp[e(k)− e(k− 1)] + kie(k) + kd[e(k)− 2e(k− 1) + e(k− 2)] (9)
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u(k) = u(k− 1) + ∆u(k) (10)

A two-layer feedforward neural network was constructed to generate the tuning
vector for the original coefficients. The reference value for the OER, its actual output value,
and the error between them, adding the constant input 1 which represents the offset, make
up the total of four nodes for the input layer. The number of hidden layer nodes is set to
seven appropriately, and certainly the output layer nodes are three so as to obtain three
coefficients for PID gains. Figure 6 briefly displays the structure of the neural network.
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As respect to the transition/activation functions, choose “tansig” function:

ϕ1(x) =
ex − e−x

ex + e−x =
1− e−2x

1 + e−2x (11)

for the hidden layer, and “logsig” function

ϕ2(x) =
ex

ex + e−x =
1

1 + e−2x (12)

for the output layer.
The weights of any two nodes between neighboring layers are adjusted according to

the error back propagation principle. The error function is described as:

E(k) =
1
2
[r(k)− y(k)]2 (13)

where r(k) and y(k) are the reference value and actual real-time value of the oxygen excess
ratio at k moments, respectively. According to the gradient method, the adjusting formula
for the weight coefficient of each neuron in the output layer is:

∆wki = −η
∂E(k)
∂wki

= −η
∂E(k)
∂netk

·∂netk
∂wki

= −η
∂E(k)
∂netk

·oi (14)

where η denotes the learning rate, netk means the total input of the k-th neuron in the output
layer, and oi is the output of the i-th neuron in the hidden layer. Define the intermediate
part of the Formula (14) as:
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δ
(3)
k = −∂E(k)

∂netk
= e(k)

∂y(k)
∂∆u(k)

∂∆u(k)
∂Ok(k)

ϕ′2(netk) (15)

where e(k) = r(k)− y(k), is the error of the controlled variable, u(k) denotes the current
controller output through the network tuning. In practice, due to the unknown ∂y(k)

∂∆u(k) , as

an approximation it is replaced by the sign function sgn[ ∂y(k)
∂∆u(k) ] in practice. As kp, ki, kd

are the elements of the network output vector O(k), ∂∆u(k)
∂Ok(k)

can be obtained according to
Equation (9). Finally, add an inertial term that makes the search converge fast and globally
minimal, and the weight adjustment formula becomes

∆wki(n) = ηδ
(3)
k oi + α∆wki(n− 1) (16)

where α denotes the inertia coefficient which is between 0 and 1, ∆wki(n− 1) = wki(n− 1)
−wki(n− 2) denotes the weight change at the previous moment.

Similarly, the adjusting method for the weights of the hidden layer neurons is:

∆wij(n) = ηδ
(2)
i oj + α∆wij(n− 1) (17)

δ
(2)
i = ϕ′1(neti)

3

∑
k=1

δ
(3)
k wki (18)

4. Results and Discussion

Concerning a convoluted complicated nonlinear system, linearizing the PEMFC plant
model for a PID configuration may be a tough errand and also unnecessary. There have
been a number of empirical or experimental methods summed up to tune the three gains
for PID controllers. In this study, two relatively satisfactory results of the conventional
PID control were obtained after a few tests using several tuning methods for gains. Next,
three fuzzy inference systems were employed to tune PID gains, respectively. Moreover, a
back-propagation neural network was also tried to tune these coefficients.

Several parameters or settings are concerned in the fuzzy inference system and the
neural network, respectively. The Mamdani fuzzy inference systems in the fuzzy logic
toolbox of Matlab software were employed in this study, and the default settings in the
interface for the inference methods were retained, except for choosing “sum” as the ag-
gregation method. The membership functions can be conveniently generated in the fuzzy
logic toolbox, while the scale factors for transformations between the domains of discourse
need to be cautiously addressed.

The neural network was implemented through an s-function integrated into the
Simulink model. Four input parameters for the s-function could be easily but cautiously
changed in the Masking interface. In our study, the learning rate η was set at 0.2, the inertia
coefficient α was 0.05, the number of hidden layer nodes j was finally set at 7, and the
sampling time was 0.01 s.

4.1. Constant OER Response Test

In the simulations, a constant setpoint value of 2 for the oxygen excess ratio was used
first in a step response simulation, which allows the load current to change from 160 A to
191 A at 3 s. Figure 7 presents the OER responses with the PID gains tuned by three fuzzy
inference systems, respectively, (corresponding control methods were named as FL3-PID,
FL4-PID, and FL7-PID, respectively, according to the numbers of partitions of the respective
fuzzy set). The purple line in the Figure 7 shows the 95% of the reference OER value,
which eases the comparison of the settling times with these three controllers. Although the
rising time of OER with FL4-PID is the shortest, the entire response is too sluggish with a
settling time of about 1 s, which is obviously longer than 0.4–0.5 s in the other two cases.
Comprehensively, the control methods using three subsets and seven subsets individually
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for the fuzzy set division behave better than the control using four subsets; furthermore,
using seven subsets is a little faster than using three subsets to reach the final steady-state
value.
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Figure 7. Step responses of constant OER for 160→191 A with fuzzy logic tuned PID gains.

In Figure 8, the constant oxygen excess ratio responses to the step load with four
controls (named PID1, PID2, FL7-PID, and NN-PID, respectively) are displayed together.
With PID2, the oxygen excess ratio increases more rapidly, yet an obvious overshoot
instantly occurs unfavorably, which renders the final settling time of nearly 0.35 s; with PID
1, the rising curve becomes smooth without any overshoot or undershoot, and a settling
time of about 0.32 s exhibits good performance. The FL7-PID (PID tuned by fuzzy logic
inference with seven fuzzy subsets) can be recognized as the best, due to fast response
speed (less than 0.1 s for the rising time, and 0.16 s for the settling time) with only a
tiny overshoot, although the steady-state value of oxygen excess ratio needs more than
1 s to fully reach the setpoint value 2 (this situation can be improved by increasing the
quantification factor of I part).

Distinctively, the neural network tuned PID controls behave differently in every
simulation test, without changing any parameter, as the initial weights between neural
network nodes are generated by random function and thus changeable each time. In
Figure 8, three test results of the identical NN-PID control are shown, among which NN-
PID-2 may be considered the best on the whole. Although these NN-PID tests show no
advantage here, the NN method still has the potential to be upgraded via integration with
other algorithms; for example, an optimal method may be adopted for providing the initial
weights. In addition, it should be pointed out that the neural network in Figure 8 adopts
seven hidden layer nodes, which was also compared in our study with other cases using
different numbers of hidden layer nodes.

If the amplitude of the step load increases, such as from 160 A to 220 A (see Figure 9),
there is also a certain overshoot with the PID1 control. On the other hand, the fuzzy logic
tuned PIDs still present smooth curves and can be deemed as the best compared with the
conventional PID and NN-PID methods; adjusting the quantification factor of I part for
the FL7-PID method to a bigger value could fast enough make the oxygen excess ratio get
more adjacent to the constant setpoint value (see FL7-PID-1, FL7-PID-2, and FL7-PID-3,
with gradually increasing I-part coefficients); for example, the FL7-PID-3 exhibits quite a
short rising time and reaches the setpoint value within less than 0.2 s. For NN-PID control,
still three test results are shown in Figure 9 (see NN-PID-1, NN-PID-2, and NN-PID-3),
among which NN-PID-3 may be considered to exhibit close performance to PID1, except
for a delay for settling time of approximately 0.5 s.
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Figure 9. Step responses of constant OER for 160→220 A with fuzzy logic tuned PID gains.

4.2. Variable OER Response Test

Figure 10a shows the optimal OERs when the load current changes. This curve was
obtained from the data for steady states, nevertheless, could still be utilized here for
providing a series of corresponding changeable setpoints of the OER when the load current
changes. It can be observed that the curve-fitted polynomial can represent the OER change
with the load current well in the range of less than 220 A except for the point of 200 A;
thus, a series of step load working conditions can be defined in Figure 10b for variable OER
simulation tests, in which different OER reference values are generated conveniently by the
polynomial.
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Figure 10. (a) Setpoint values for variable OER according to steady-state optimal powers; (b) self-
defined load currents for variable OER control.

The simulation results for the variable control of the oxygen excess ratio are shown in
Figure 11a. As to the first load current requests, the NN-PID control (three times of tests
are showed) can reach the setpoint values with a smaller overshoot, but the settling time is
approximately 1.2 s. It even gets worse that as the current increases, the settling times for
the next two step load conditions become more and more longer (2 s and 2.5 s, respectively),
although meanwhile overshoots gradually disappear. The FL7-PID fuzzy logic tuned PID
method presents obvious advantages in the performance indices of both overshoots and
settling time, and this could be observed clearly in the zoomed Figure 11b,c, which display
the OER responses to the step load increases from 100 A to 120 A and from 160 A to 220 A,
respectively. The settling times of FL7-PID concerned these two step loads are about 0.17 s
and 0.25 s, respectively; for PID1 and PID2, the settling times are about 0.4–0.5 s and 0.45 s,
respectively. Moreover, PID2 also exhibits considerably greater overshoots than PID1 and
FL7-PID; the overshoot of PID1 on the condition of high load increases a little, while the
overshoot of FL7-PID decreases clearly.
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Figure 11. Step responses of variable OER with four PID controls: (a) total response tests including
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transient at 8 s.

4.3. Discussion
4.3.1. About Fuzzy Logic Inference

The PID tuned with fuzzy logic, which used seven subsets for each fuzzy set, behaves
satisfactorily under all the working conditions of the simulation tests, showing its advantage
over the conventional PID and neural network controls. The distribution of fuzzy subsets
and their membership functions can be further optimized to improve the control effect.
Moreover, in the future, fuzzy inference system using formula method may be promising,
which directly defines subsets of the input variables as fuzzy numbers and uses them to
calculate the output fuzzy numbers through simple arithmetic operations. This method is
such ingenious and convenient, but can be flexible by using a correction factor b such as:

U = 〈bE + (1− b)EC〉, b ∈ [0, 1] (19)

where E, EC, and U are fuzzy numbers of the error, error change rate, and the output
variable of the fuzzy inference system.

4.3.2. About Neural Network

As for the back propagation neural network, it still encounters two difficulties: one is
the optimization issue for initial connection weights between neural network nodes, which
may even lead to non-stable situations of the network if not generated properly by the
random function; the other is that the OER responses with NN-PID to various load currents
should be speeded up with less vibrations.

Another weight update method was also tried in our study. The updating algorithm
is
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w(k + 1) = w(k) + η[(1− c)D(k) + cD(k− 1)] (20)

where w(k + 1), w(k) are the weights at the adjacent moments, D(k), D(k − 1) are the
negative gradients of the performance index at the adjacent moments D(k) = −∂E/∂w(k).
c herein is called momentum factor and intelligibly its range is [0, 1].

Through updating the output layer weights with this method, the NN-PID could catch
up to the OER demand more quickly than with the original weight update method when a
step-up current of 60 A is required at 8 s (see the dash dot lines for NN-PID (4–6)-revised in
Figure 12a); however, it is still regrettable that the settling times are still longer than other
methods mentioned in this paper. Moreover, when a greater increase of oxygen excess ratio
from 2.34 to 2.42 is requested, corresponding to a current change from 100 A to 120 A, large
overshoots may occur (see Figure 12b). Therefore, how to realize the general consideration
becomes a problem.
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Next, we tried using changeable learning rates for updating weights of the output
layer. η in Equation (20) is replaced by the following formula:

η(k) = xλη(k− 1) (21)
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λ = sgn[D(k)D(k− 1)] (22)

where η(k) and η(k − 1) represent the learning rates of two adjacent steps, x denotes a
real number between 1 and 2 (finally x = 1.4 was chosen), λ is determined by the gradient
direction of two successive generations. When the gradient direction of two successive
generations is the same, it indicates that the descent speed is too slow, and the step size can
be enlarged; when the gradient direction is opposite for two consecutive times, it indicates
that the descending speed is too fast, and the step size can be shortened.

By adding this adjusting strategy for the learning rate to the weight update method
(Equation (20)), a relatively better control NN-PID7revised2 is obtained (see Figure 12a,b),
with which the requirements of rapidity of high current section and small overshoot of low
current section are balanced, to an extent. With NN-PID7revised2 control, the overshoot of
oxygen excess ratio is observably reduced during the current step-up from 100 A to 120 A
compared with those by the NN-PID (4–6)-revised control; meanwhile, close performance
to NN-PID4revised and NN-PID6revised is obtained during the third step-up working
condition.

The simulation results of the above constant OER response test with the change in
load current of “160→191 A” (see Figure 8) and the section “100→120 A” in the variable
OER response test (see Figure 12b) for the change in load current of “100→120→160→220
A” can be summarized in Table 4 for comparison. Therefore, it is obviously observed that
the fuzzy PID controller with seven subsets acquires the best dynamic performance in both
constant OER regulation and variable OER tracking.

Table 4. Control results of OER regulation or tracking with four control methods.

Operation Condition Control Method Overshoot (%) Peak Time (s) Settling Time (s)

Constant OER response to
160→191 A

PID1 0.11 0.231 0.32
PID2 2.55 0.116 0.35

FL7-PID 0.42 0.108 0.16
NN-PID2 1.13 0.391 0.84

Variable OER response to
100→120 A

PID1 0.85 0.125 0.23
PID2 4.47 0.085 0.24

FL7-PID 1.09 0.090 0.18
NN-PID7revised2 2.25 0.346 0.68

4.3.3. About Fractional Order PID

When dealing with nonlinear controlled plants, using fractional order PID may acquire
better control efficacy than using conventional PID; thus, we tried using fractional order
PID controllers based on PID2 and FL7-PID, respectively. The orders for integral and
derivative terms of the controller were finally selected at 1.15 and 1.3, respectively, through
several simulation comparisons based on the original PID2.

The response comparisons of the four controllers for variable OER under the load con-
ditions in Figure 10b are displayed in Figure 13. It can be observed that the fractional order
PID (FOPID2) can reduce the overshoots of the OER and even eliminate the undershoots in
the transient processes. The fuzzy fractional order PID (FL7-FOPID) also exhibited smaller
overshoots than FL7-PID, but there were also two defects with FL7-FOPID: one is that
when the OER needed to increase for the current request 100→120 A, a time delay of more
than 1.2 s existed after the previous rapid rising process, which rendered the final settling
time more than 1.5 s; the other is that the steady-state error of OER with FL7-FOPID was a
little bigger than with the other methods. By increasing the quantification factor of part
I, the first defect could be greatly improved (see FL7-FOPID-r1 in Figure 13c, shortened
settling times in all transients); however, the steady-state error remains an issue. Therefore,
so far in our study, the FL7-PID controller is still the proposed one.
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based on FL7-PID.

5. Conclusions

For improving the oxygen supply for a PFMFC system, intelligent techniques includ-
ing three fuzzy logic inference systems and a neural network were employed to adjust the
gain coefficients of PID controllers. Simulation results demonstrate that the PID controller
integrated with the fuzzy logic inference with seven subsets (FL7-PID) has the best con-
trol efficacy in both constant-value OER response tests and variable OER response tests,
with small overshoots and the fastest settling times of less than 0.2 s, exhibiting obvious
advantages over conventional PID methods.

On the other hand, the neural network tuned PID could render control effect approx-
imate to conventional PIDs when dealing with constant OER regulations, except for the
delay of settling times of about 0.5 s. However, its responses to variable OER requests
are too sluggish (more than 1 s for the settling times). Through adding a momentum
term and adopting changeable learning rates for the weight update of the output layer,
improved performance (for example, less than 0.7 s for the settling time) is achieved to an
extent. In addition, fractional order PID controllers can also render smaller overshoots than
conventional PID controllers in the simulation of variable OER response tests.

In the future, other methods may be integrated to further improve the NN-PID method;
for example, an optimization algorithm will be of benefit to obtaining the proper initial
weights for the neural network nodes, or directly, optimization based intelligent tuning
methods for PID can be considered. On the other hand, there are numerous other attractive
realization forms for a fuzzy inference system, which may be applied to achieve good
results in fuel cell control. Moreover, a state observer for the cathode pressure could also be
considered in view of the difficulty for obtaining accurate measurement.
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Appendix A

Explanations for the Right Terms in Equations (1)–(6)
In Equation (1), the flow rate through the compressor is up to the rotational speed of

the compressor and the gas pressure in the supply manifold. It can be approximated as
below:

Wcp =
Wmax

cp wcp

wmax
cp

1− exp

−r(s +
w2

cp
q − psm)

s +
w2

cp
q − pmin

sm




where the characteristic parameters r, q, s, Wmax
cp , wmax

cp , and pmin
sm are constants. The mass

flow rate out of the supply manifold is expressed by the linear nozzle equation:

Wsm,out = ksm,out(psm − pca)

where ksm,out is the supply manifold outlet orifice constant, and pca denotes the total
pressure in the cathode (the sum of oxygen, nitrogen, and vapor pressures).

In Equation (2), the temperature after the compressor can be calculated according to
thermodynamics as:

Tcp,out =
Tatm

ηcp

[
(

psm

patm
)

γ−1
γ − 1

]
where Tatm and patm are the atmospheric temperature and pressure, respectively, and ηcp, γ
are the compressor efficiency and air’s ratio of specific heat capacities (normally set to 1.4),
respectively. Moreover, Tsm is obtained directly via the ideal gas law.

In Equation (3),

WO2,in = yO2

1
1 + Ωatm

Wsm,ca,out

WO2,out =
mO2

mca
Wca,out

WO2,rct = MO2

nIst

4F
In Equation (4),

WN2,in = yN2

1
1 + Ωatm

Wsm,ca,out

WN2,out =
mN2

mca
Wca,out

The mass fractions of oxygen and nitrogen can be calculated through their mole
fractions and molar mass in the gas mixture.

In Equation (5),

τcm = ηcm
kt

Rcm
(vcm − kvωcp)

τcp =
Cp

ωcp

Tatm

ηcp

[
(

psm,ca

patm
)

γ−1
γ − 1

]
Wcp
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In Equation (6),

Wca,out = kca,out(pca − prm,ca)

Wrm,ca,out =


CD,rm AT,rm prm,ca√

RTrm,ca

(
patm

prm,ca

) 1
γ
{

2γ
γ−1

[
1− ( patm

prm,ca
)

γ−1
γ

]} 1
2 patm

prm,ca
>
(

2
λ+1

) γ
γ−1

CD,rm AT,rm prm,ca√
RTrm,ca

γ
1
2 ( 2

γ+1 )
γ+1

2(γ−1) patm
prm,ca

≤
(

2
λ+1

) γ
γ−1
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