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Abstract: Shortwave track diseases are generally reflected in the form of local track irregularity. Such
diseases will greatly impact the train–track–bridge interaction (TTBI) dynamic system, seriously
affecting train safety. Therefore, a method is proposed to detect and localize local track irregulari-
ties based on the multi-sensor time–frequency features of high-speed railway bridge accelerations.
Continuous wavelet transform (CWT) was used to analyze the multi-sensor accelerations of railway
bridges. Moreover, time–frequency features based on the sum of wavelet coefficients were proposed,
considering the influence of the distance from the measurement points to the local irregularity on
the recognition accuracy. Then, the multi-domain features were utilized to recognize deteriorated
railway locations. A simply-supported high-speed railway bridge traversed by a railway train was
adopted as a numerical simulation. Comparative studies were conducted to investigate the influence
of vehicle speeds and the location of local track irregularity on the algorithm. Numerical simulation
results show that the proposed algorithm can detect and locate local track irregularity accurately and
is robust to vehicle speeds.

Keywords: local track irregularity identification; high-speed railway bridge; TTBI dynamic system;
CWT; multi-sensor time–frequency features

1. Introduction

In the straight section of track lines, the difference in geometric parameters produced
by the rail relative to the standard straight track position is called track irregularity [1].
During the operation of high-speed railroads, track irregularities are the primary cause of
abnormal train vibration. With the increased train running speed, even a small amplitude
of track irregularity may cause strong vibration between wheels and rails. Consequently,
track quality assessment has become a hot issue in transportation safety research. It
is critical for developing damage detection methods that minimize disruptions to the
transportation network.

Nowadays, high-speed lines mainly use ballastless tracks so the rail mainly has
shortwave diseases. Moreover, shortwave track diseases are generally manifested as local
track irregularities. Garg and Dukkipati [2] describe the various typically local irregularity
expressions reported in field measurements. Such irregularity will cause an additional
impact force from the wheel–rail force and accelerate the deterioration of the rail. Worse, the
additional impact force will be transmitted to the under-rail bridge structure through the
bridge–rail interaction point, causing potential damage to the bridge structure. Therefore,
shortwave track diseases must be detected and maintained as early as possible.

Regularly detecting the health status of the railway system through the track inspec-
tion car is the main traditional method [3–5]. However, this method is inefficient and
cannot accurately reflect the dynamic track irregularity under the actual train operation.
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Researchers found that train vibration responses contain information on track conditions
and disease. Kouroussis et al. [6] analyzed the vibration impact on the ground due to
vehicle excitation caused by local irregularity on the track. This analysis found that the
vibration energy is significantly higher when there is local damage. Therefore, it is of
practical significance to study track irregularity based on train vibration response.

The measurement of axle-box acceleration (ABA) signals does not require complex
instrumentation and the accelerometers can be easily fixed outside the axle box. In recent
years, many research teams at home and abroad have identified track operation status by
monitoring ABA signals [7–12]. The technology is easy to implement, low cost, and has the
potential for real-time monitoring. For example, Li et al. [13,14] proposed a finite element
model-based algorithm for the early monitoring of track depressions. They pointed out
that ABA is sensitive to short-wave irregularity. Molodova et al. [15] indicated that the
peak of ABA and its local frequency characteristics may be quantitatively related to the size
of the defect. Lin et al. [8] used EMD (empirical mode decomposition) and Cohen’s class
distribution algorithms to analyze ABA and the proposed algorithm can be applied to track
irregularity measurements. Yuan et al. [16] used the CVAE (conditional variational auto
encoder)-elliptic envelope method to detect and identify the rail squats. Zhang et al. [17]
proposed an algorithm to localize tunnel damage using ABA signals and WPE (wavelet
packet energy)-CVAE.

The bridge structure health monitoring system (BSHM) is equipped with many sen-
sors at different positions of the bridge structure to monitor the operation status of the
bridge [18–20]. Over the past decades, many scholars have conducted in-depth studies on
various types of monitoring data in BSHM systems. For example, Bao et al. [21] used sparse
time–frequency analysis of cable force acceleration to identify time-varying cable tension.
Huang et al. [22] developed a method based on Gibbs sampling to solve the problem of
sparse stiffness identification. Li et al. [23] modeled the cable tension ratio model using a
Gaussian mixture model to evaluate the state of the diagonal cable.

The BSHM monitoring data contains a wealth of structural state information. When
there is a local irregularity in the track structure, the additional local excitation will be
transmitted to the bridge structure through the track–bridge interaction point, affecting
the train-induced bridge accelerations. Therefore, this study analyzes train-induced bridge
accelerations at different measuring points to identify the local track irregularity.

The proposed algorithm aims to identify and locate the track structure’s local irregular-
ity. Continuous wavelet transform (CWT) extracts train-induced bridge response features.
In the train–track–bridge interaction (TTBI) system, the existence of local track irregularity
is equivalent to the additional external excitation imposed on the bridge. Thus, additional
energy is generated in the train-induced bridge responses. Moreover, the sum of wavelet
coefficients over the full scale can reflect the energy distribution of responses in the time
domain. Consequently, this paper uses the sum of wavelet coefficients over the full scale
to identify local track irregularities. The local peaks of the sum of wavelet coefficients can
reflect the location information of local track irregularities in the spatial domain. This paper
uses the local peaks of the sum of wavelet coefficients as the localization indicator.

The remaining paper is organized as follows. Section 2 illustrates the proposed
methodology and briefly introduces the excitation of local track irregularity in TTBI system
vibration. A numerical verification through TTBI simulation is demonstrated in Section 3.
Section 4 draws the main conclusions.

2. Theoretical Background
2.1. Excitation of Local Track Irregularity in TTBI System Vibration

With increasing rail capacity and speed, the problem of train–track–bridge interaction
(TTBI) has become more prominent. The theory of TTBI dynamics has opened up a new
field of railroad system dynamics research, creatively studying relatively independent
subsystems as a large unified system [24–27].
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The presence of track irregularities changes the wheel–rail contact relationship and
impacts the dynamic characteristics of the wheel-rail system. The vehicles vibrate under the
excitation of track irregularities and other external excitations. Moreover, the vibration is
then transferred to the track and bridge through the wheel–rail contact points, thus forming
the dynamic interaction process of the TTBI system [24]. Therefore, track irregularity is
considered one of the main sources of self-excited excitation for the TTBI system vibration.
Its frequency domain characteristics will significantly affect the dynamic response of bridges
and vehicles. The frequency domain characteristics embody the overall fluctuation state
of track irregularity. In this section, the harmonic irregularity curve of a single frequency
component is selected as the analysis sample:

w(x) =
A
2

(
1− cos

2πx
l

)
x ∈ [a, b] (1)

in which, A and l are the amplitude and wavelength of irregularity, respectively; x is the
position of irregularity; and interval [a, b] is the position range of irregularity.

Based on the wheel–track corresponding assumption, the vertical displacement of the
wheel z(t) can be expressed as:

z(t) = y(x, t) + w(x) (2)

where y(x, t) and w(x) are the vertical vibration displacement of the bridge and the dis-
placement caused by track irregularity, respectively.

The vertical force on the simply-supported beam could be simplified as follows:

P(x, t) = M1g−M1
d2z(t)

dt2 (3)

in which d2z(t)
dt2 ≈

∂2y(x,t)
∂t2 + ∂2w(x)

∂t2 ; M1 is the mass of moving load; and g is gravity acceleration.
In summary, the additional local force Pcos(t) generated by harmonic irregularity can

be expressed as:

Pcos(t) = M1
∂2w(x)

∂t2 =
2π2v2M1 A

l2 cos
2πvt

l
= P sin ωt t ∈

[
a
v

,
b
v

]
(4)

where P = 2π2v2 M1 A
l2 , ω = 2πvt

l + π
2 . Equation (4) shows that the effect of local harmonic

irregularity on the beam structure can be equivalent to a moving harmonic load.
From the Duhamel integral [28], generalized coordinates of the n-th mode of the

supported beam under the action of Pcos(t) are written as:

qn(t) =
2

mLωn
D

b/v∫
a/v

P sin ωτ sin nωτe−ωb(t−τ) sin ωn
D(t− τ)dτ (5)

where qn(t) is the generalized coordinates of the n-th mode; ωb = ξnωn is critical damping
frequency; and ωn

D is the n-th damped natural frequency.
According to the trigonometric transformation formula [29], Equation (5) can be

further written as:

qn(t) = P
mL

{
(ω2

n−r2
2)−(cos r2t−A)+2ωbr2 sin r2t− ωb

ωn
D
(ω2

n+r2
2)A

(ω2
n−r2

2)
2
+4ω2

b r2
2

−

(ω2
n−r2

1)−(cos r1t−A)+2ωbr1 sin r2t− ωb
ωn

D
(ω2

n+r2
1)A

(ω2
n−r2

2)
2
+4ω2

b r2
2

(6)

where r1 = ω + nω, r2 = ω− nω, ω = πv/L and A = e−ωbt sin ωn
Dt.



Sustainability 2023, 15, 8237 4 of 17

Thus, the acceleration of the bridge under the action of local harmonic irregularity can
be expressed as:

..
ycos(x, t) =

∞

∑
n=1

..
qn(t) sin

nπx
L

(7)

From Equation (7), it can be seen that under the action of moving harmonic force, the
mid-span acceleration of the simply-supported beam under the action of moving harmonic
force can be regarded as the superposition of three harmonic curves. That is, one frequency
is ωn

D, and the other two frequencies are r1 and r2, respectively. It is shown that when there
are local harmonic irregularities in the track structure, the high-speed operation of the
train leads to additional medium- and high-frequency components in bridge accelerations.
These frequency components are related to the train speed and the wavelength of the local
harmonic irregularities.

2.2. Time–Frequency Features Extraction

Continuous wavelet transform (CWT) performs multi-scale signal refinement by
scaling translation operation, which has high resolution and adaptability. For the bridge
acceleration signal x(t), its CWT form can be expressed as [28]:

Wx(a, t) = x(t)× ψa(t) = x(t)×
(

a
dθa(t)

dt

)
= a

d
dt
[x(t)× θa(t)] (8)

where a is the scale parameter, the wavelet function ψ(t) = dθ(t)
dt , θ(t) is a smooth function

and satisfies
∫ ∞
−∞ θ(t)dt = 1 and it is a higher order infinitesimal of 1

1+t2 ; θa(t) = a× θ
( t

a
)

is the original wavelet function.
The absolute value of the sum of wavelet coefficients on the whole scale can be

expressed as:

S(b) =
n

∑
j=1
|Wx(a, t)| (9)

in which n is the number of scales.
The inflection points of Wx(a, t) occur when the signal x(t) changes abruptly. At this

time, S(b) has a maximum value. Therefore, the mutation point of the signal can be found
when the wavelet coefficient is maximized. From the derivation of Section 2.1, it can be
seen that local track irregularity is equivalent to the additional harmonic force applied
to the simply-supported beam. When the train passes through the local irregularity, the
dynamic response of the bridge will have different degrees of mutation here. Therefore, by
analyzing the bridge accelerations and then performing CWT, the local irregularity can be
detected and located by analyzing the sum of wavelet coefficients S(b).

2.3. Local Track Irregularity Identification Based on Multi-Sensor Time–Frequency Features

In previous sections, it was shown that the sum of wavelet coefficients effectively
identifies the additional effects caused by local unevenness on the train-induced bridge
responses. Moreover, the local peaks of the sum of wavelet coefficients reflect the potential
location information of local track irregularities.

The detection process can be divided into the following steps:
Step 1: CWT is performed on the acceleration of multiple measuring points, and the

sum of wavelet coefficients Si(b) is extracted as the identification index-1. Among them,
index-1 is used to detect whether there is local track irregularity.

Step 2: The corresponding threshold Fi is defined for different measuring points based
on the baseline case. When the index-1 of a measuring point i exceeds Fi, it is considered
that there is local track irregularity.

Step 3: The degree of abrupt variation between multiple measurement points is
compared to determine which ones are far from the local irregularity. The data from these
measurement points are excluded from the subsequent positioning analysis.
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The location of local peaks of index-1 is further extracted for localization, which is
recorded as index-2. For trains with multiple cars, their wheels repeatedly pass through
local irregularity, which makes index-2 exhibit periodicity in space. The periodicity interval
is closely related to the spatial distribution of wheels. When the extracted local peak
position conforms to the spatial distribution of the wheel at the spatial interval, the location
of the local irregularity can be identified. The flow chart of the algorithm in this paper is
shown in Figure 1.
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Figure 1. The flow chart of the proposed algorithm.

3. Numerical Simulation
3.1. The Finite Element Model of High-Speed Railway Bridge

In this section, numerical analysis was performed using the universal mechanism (UM)
dynamics model of a high-speed railway simple-supported bridge. The simply-supported
beam bridge adopted the single-box single-compartment section. The total length of the
bridge was 32.6 m, and its cross-section is shown in Figure 2 [30]. The simulation analyzed
the vertical acceleration at the five measuring points on the center line of the box girder
floor, including the three points where the three sections of the bridge L/4, L/2, and 3L/4
intersect with the center line of the box girder floor, and the two points on the center line
of the box girder floor adjacent to both ends of the beam. The sampling frequency fs was
taken as 500 Hz.
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Figure 2. The cross-section diagram of the box girder.

The vehicle was a three-dimensional space model, using the CRH380A EMU train,
which consists of two motor cars and six trailers. The parameters modeling of the actual
train were referenced and the model was modeled concerning the parameters of the
actual train.

Moreover, the continuous elastic foundation beam model was selected as the track
model in the U.M. program. The rail model can be approximated as a continuous elastic
beam. The rail was connected to the under-rail foundation as a parallel connection of a linear
spring and damper system while laterally viewed as a series combination. Furthermore,
the CN60 rail used for the rails was the Chinese standard 60 kg/m rail. Figure 3 shows the
dynamic model of the TTBI system.
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3.2. Local Track Irregularity Simulation

In this section, the amplitude of local harmonic irregularity was set to 1 mm; the
wavelength was 500 mm. Moreover, the local irregularity position was set as 8 m, 16 m, and
24 m, respectively, denoted as single-1, single-2, and single-3 cases. To further investigate
the applicability of the proposed method to multi-point local irregularity identification,
multiple-1, multiple-2, and multiple-3 cases were defined. They were located at 8 m + 16 m,
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8 m + 24 m, and 16 m + 24 m, respectively. The damaged track irregularity is the sum of
initial random and local irregularities, as shown in Equation (10).

wr(x) = wi(x) + ws(x) (10)

in which, wr, wi, and ws are the damaged track irregularity, initial random track irregularity,
and local irregularity, respectively. The CRH2018 track irregularity spectrum is adopted in
this simulation as the initialized random track irregularity. Figure 4 exhibits the generated
damaged track irregularity of single-1 case.
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4. Discussion of Research Results
4.1. Multi-Domain Characteristics of Bridge Acceleration

Figure 5a–e show the bridge accelerations at the five measurement points. It can be
seen that a single local harmonic irregularity causes a sudden change in bridge acceleration
in the spatial domain when the vehicle passes through the local harmonic irregularity. Due
to the repeated action of multiple trains, the sudden change exhibits an obvious periodicity
in the spatial domain. The spatial intervals are related to the spatial distribution of the cars
(about the length of a single carriage). The farther the measurement point is from the local
unevenness, the less its measured bridge acceleration differs from the baseline model in
the spatial domain. Figure 5 suggests that the bridge acceleration response using multiple
measurement points can better capture the abrupt changes in acceleration response caused
by harmonic irregularities at different locations.

Figure 6a–e show the frequency domain characteristics of bridge acceleration at differ-
ent measurement points. It can be concluded that the local harmonic irregularities cause
medium- and high-frequency vibrations. However, it consists of multiple high dominant
frequencies, which indicates that the bridge acceleration caused by local harmonic irreg-
ularities is not a single impulse signal. The frequency domain characteristics of bridge
acceleration at different measuring points also differ in sensitivity to local harmonic irregu-
larity. When the measuring point is closer to the local harmonic irregularity, it is easier to
capture the influence of local harmonics on bridge acceleration.



Sustainability 2023, 15, 8237 8 of 17Sustainability 2023, 15, x FOR PEER REVIEW 8 of 17 
 

 
Figure 5. Vertical bridge acceleration in the spatial domain at five measurement points: (a) measure-
ment point 1; (b) measurement point 2; (c) measurement point 3; (d) measurement point 4; (e) meas-
urement point 5. 

Figure 6a–e show the frequency domain characteristics of bridge acceleration at dif-
ferent measurement points. It can be concluded that the local harmonic irregularities 
cause medium- and high-frequency vibrations. However, it consists of multiple high dom-
inant frequencies, which indicates that the bridge acceleration caused by local harmonic 
irregularities is not a single impulse signal. The frequency domain characteristics of bridge 

Figure 5. Vertical bridge acceleration in the spatial domain at five measurement points: (a) mea-
surement point 1; (b) measurement point 2; (c) measurement point 3; (d) measurement point 4;
(e) measurement point 5.



Sustainability 2023, 15, 8237 9 of 17

Sustainability 2023, 15, x FOR PEER REVIEW 9 of 17 
 

acceleration at different measuring points also differ in sensitivity to local harmonic irreg-
ularity. When the measuring point is closer to the local harmonic irregularity, it is easier 
to capture the influence of local harmonics on bridge acceleration. 

 

 

 
Figure 6. Vertical bridge acceleration in the frequency domain at five measurement points: (a) meas-
urement point 1; (b) measurement point 2; (c) measurement point 3; (d) measurement point 4; (e) 
measurement point 5. 

Since the frequency domain characteristics lose the time-varying characteristics of the 
acceleration response, further study of the time–frequency characteristics of multi-sensor 
bridge acceleration is necessary. Figure 7 is the acceleration wavelet time–frequency dia-
gram at different measuring points. From the diagram, it can be seen that under the exci-
tation of the baseline random track irregularity, there are nine energy concentration areas 
at measuring points 2–4, which are closely related to the spatial position of the wheelset. 
As measuring points 1 and 5 are near the end of the bridge, there are 16 energy concen-
tration areas. Under the excitation of train load and random track irregularity, the 

Figure 6. Vertical bridge acceleration in the frequency domain at five measurement points: (a) mea-
surement point 1; (b) measurement point 2; (c) measurement point 3; (d) measurement point 4;
(e) measurement point 5.

Since the frequency domain characteristics lose the time-varying characteristics of
the acceleration response, further study of the time–frequency characteristics of multi-
sensor bridge acceleration is necessary. Figure 7 is the acceleration wavelet time–frequency
diagram at different measuring points. From the diagram, it can be seen that under the
excitation of the baseline random track irregularity, there are nine energy concentration
areas at measuring points 2–4, which are closely related to the spatial position of the
wheelset. As measuring points 1 and 5 are near the end of the bridge, there are 16 energy
concentration areas. Under the excitation of train load and random track irregularity,
the acceleration response of the bridge will produce high-frequency vibration, mainly
concentrated at 60–130 Hz.
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Figure 8 is the wavelet time–frequency diagram of bridge acceleration when a local
harmonic irregularity is at 8 m. It can be implied from Figure 8 that due to local harmonic
irregularity, the wavelet time–frequency energy has a significant mutation. The energy
mutation generated by measuring points 1 and 2 near 8 m is the most obvious. The first
position of the mutation is about 8–10 m, and the mutation position is spatially periodic.
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In summary, the time–frequency domain can capture the additional response caused
by local harmonic irregularity. Therefore, this paper uses the sum of wavelet coefficients at
full scale for further analysis.

4.2. Data Generation and Feature Extraction

The established TTBI dynamic model is used to generate data for algorithm verification.
In order to investigate the effect of vehicle speed on the proposed algorithm, 100 vehicle
speed samples were generated within the interval [200,250] km/h and subjected to a
uniform distribution. It can be summarized in the following steps:

Step 1: Track irregularity generation by Equation (10) and input to the TTBI dynamic
model.

Step 2: Calculation of vertical bridge acceleration at multiple measuring points.
Step 3: Extraction of the sum of wavelet coefficients of the calculated accelerations.
In this section, the acceleration during the train crossing the bridge is chosen for

analysis. The different train speeds make the calculated acceleration samples unequal in
length. Thus, spatial domain resampling obtains the spatial-domain acceleration with equal
spatial intervals.

4.3. Local Track Irregularity Detection

In this simulation, threshold Fi = µi + 3σi, µi and σi are the mean and standard
deviation of index-1 extracted from the baseline case, respectively. Figure 9 shows the
sum of wavelet coefficients at full scale for the four conditions at a vehicle speed of
200 km/h. The figure shows that the sum of wavelet coefficients of bridge acceleration
at each measurement point is much smaller in the baseline condition compared with the
local irregularity condition. The sum of wavelet coefficients has a larger peak when the
measurement point is closer to the local irregularity. When the measurement point is far
from the local irregularity, the peak of the sudden change is smaller, and it is challenging to
distinguish whether there is local track irregularity.
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The time–frequency characteristics of bridge acceleration at 250 km/h are further
analyzed, as shown in Figure 10. Comparing Figures 9 and 10 show that speed has little
influence on the results of the proposed index-1. Local track irregularity can be detected by
comparing the multi-sensor index-1 values in the baseline condition with other operating
conditions. Figure 11 shows the sum of wavelet coefficients at 100 train speeds, which obey
a random distribution in the interval of (200, 250) km/h.
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The sum of wavelet coefficients for the multi-point irregularity condition is shown in
Figure 12. The wavelet coefficients and the degree of abrupt variation of the multi-point
non-smooth condition are significantly larger than those of the single-point non-smooth
condition. In addition, the number of local peak points of the wavelet coefficients is
also larger.
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4.4. Implementation Cases for Local Track Irregularity Localization

The example of two such conditions illustrate the localization process of the algorithm,
single-1 and multiple-1, at a vehicle speed of 200 km/h. The wavelet coefficients sum
curves of single-1 and multiple-1 compared with the baseline conditions are shown in
Figures 13 and 14.
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As shown in Figure 13a,b, under the single-1 condition, the sum of wavelet coefficients
of measuring point 1 and measuring point 2 has the largest mutation degree. It indicates
that there is local irregularity near these two measuring points. Similarly, themultiple-1
condition was then analyzed. From Figure 13, it can be seen that the measuring points
1–3 are relatively close to the local irregularity. In summary, the sum of wavelet coefficients
of measurement points 1–2 and 1–3 are selected for locating the local track irregularity of
conditions single-1 and multiple-1, respectively.

The index-2, the local peak of the sum of the wavelet coefficients, is used for position-
ing. Figures 15 and 16 are the local peak points identified under single-1 and multiple-1
conditions, respectively. The first local peak identified by measuring points 1 and 2 is 9 m.
The spatial interval of the remaining local peak points is consistent with the spatial distri-
bution of the wheel. It shows that there is a local irregularity near 9m. The identification
result is close to the local irregularity position of single point 1.
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Similarly, the locations of the peak points shown in Figure 15 were analyzed. From
this, it can be seen that measurement points 1 and 2 show a local irregularity near 9 m, and
analysis of measurement point 3 shows a local irregularity near 19 m. The identification
results indicate local irregularities at two locations in this case.

5. Conclusions

In this study, a local track irregularity identification method has been developed.
The proposed approach utilizes CWT to extract multi-sensor time–frequency features of
train-induced bridge accelerations. Since local irregularity will cause sudden changes in
the time–frequency energy of bridge accelerations, the extracted features can be used to
detect and locate local irregularity. A TTBI dynamic simulation was used to verify the
feasibility and effectiveness of the algorithm. The effects of vehicle speed and location
of local irregularity were investigated, through which main conclusions can be drawn
as follows:

• The action of the local harmonic irregularity on the bridge structure can be equated to
the action of the moving simple harmonic load. Local harmonic irregularities in the
track structure will result in additional mid- and high-frequency components in the
bridge acceleration response. Moreover, these additional frequency components are
related to the train speed and the wavelength of the local harmonic irregularities.

• The sum of the wavelet coefficients in the full scale was used as the local track irregu-
larity detection index-1, which reflects the change of the time–frequency energy of the
bridge acceleration with the train running position. When the train passes through the
location of local irregularity, the index will have a sudden change in the spatial domain.
Moreover, the degree of mutation is related to the distance from the measuring point
to local irregularity. When the measurement point is closer to the local irregularity
position, the peak of index-1 mutation is greater and vice versa.

• The local peak points of index-1 are used as index-2 to locate local irregularity. As
many carriages pass through local irregularity, the identified local peak points have
relatively obvious periodic intervals in the spatial domain, which is related to the
position of the wheels in the spatial domain. The two indexes proposed in this paper
have relatively strong robustness to train speed and local irregularity position, and
index-2 can identify multi-point local irregularity positions.

Future studies will study temperature and other environmental conditions and the
effect of noise levels on the proposed method. The next step will be to adjust the process of
the proposed method to reduce the influence of environmental factors on the identification
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results. A possible issue to be addressed in the future is the effect of different baseline orbit
upset spectra on the identification results.
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